EE3610 Signals and Systems 2016-Fall

1-5 Systems

1. Asystem can be viewed as any process that results in a transformation of signals

Input—m System |—»Output Input—» g —Output

(a) (b)

Figure 1.21 (a) Block diagram of a system; (b) representation of a system operator H.

(1) Continuous-time systems: continuous-time input and continuous-time output
x(t) > y(1), y(1)=H{x(r)} (1.69)
(2) Discrete-time systems: discrete-time input and discrete-time output
x[n]—> y[n], y[n]=H{x[n]} (1.70)

Example 1.18: Moving-average (MA) system
y[n]:%(x[n]+x[n—l]+x[n—2])

y[n] is the average of three consecutive sample values x[n—2], x[n—1], and x[n].

The value of y[n] changes as n moves along the discrete-time axis. Let the

operator S¥ represent a system that shifts the input x[n] by k time units to

produce an output equal to x[n—k]. Then, the overall operator for the moving

average system can be expressed by

H:%@+S+Sﬂ

Lad

e

2. Interconnection of systems:

(1) Series interconnection (or cascade interconnection)

In}:&» System 1 » System 2 | Qutput

Figure 1.22 Series (cascade) interconnection [1].
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(2) Parallel interconnection

» System |
) 4

Input E } Qutput

A

» System 2

Figure 1.23 Parallel interconnection [1].

(3) Series/parallel interconnection

» System 1 System 2

Y
Input E > Qutput
4

» System 3

Figure 1.24 Series/parallel interconnection [1].

Example 1.19: y[n]= (2x[n] —5x’ [”])2

» Multiply by 2

Y
x[i» (AD » Square r» y[n]

» Square Multiply by 5

Viewing a complex system in this manner is often useful in facilitating the

analysis of the system. [ ]

(4) Feedback interconnection

Input >K \ » System 1 7Oitp ut

-

4

System 2 a—

Figure 1.25 Feedback interconnection [1].

3. Properties of systems

(1) Systems with or without memory

(a) Memoryless systems: the output at a given time is dependent only on the

input at the same time.
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(b) Systems with memory: the output at a given time is dependent on the
inputs at some previous and/or future time instants other than (or in

addition to) the input at the same time.

Example 1.20:
@ y[n]= Zj}wx[k] and y(7)=x(¢—1) have memory.
@ A resistor is memoryless because of i(¢)=v()/R.

@ An inductor has memory because of i(t):%j:ov(r)dr.
@ The MA system y[n]=%(x[n]+x[n—1]+x[n—2]) has memory.

S y[n]zxz[n] is memoryless. |

(2) Invertibility
A system is said to be invertible if distinct inputs lead to distinct outputs. That is,
there must be a one-to-one mapping between the input and output signals for a
system to be invertible.

= Observing the system output, we can determine the system input.

I
K1) [system] () &) 2(0)=x(1)
" » System

Hinv

Figure 1.26 A system with the invertibility property.

H™ {y(t)} = H™ {H{x(t)}} = H" H {x(¢)} (1.71)
For this output signal to equal the original input x(¢), we require that
H™H =1 (1.72)

where I denotes the identity operator.

Example 1.21: y[n] = Zz}mx[k] (invertible system)

The difference between two successive values of the output is precisely the last

input value.

z[n]=y[n]=y[n=1]=x[n]

x[n]

o y[n] =20 x[#]

z[n]:y[n]—y[n—l] —»

y[;]
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Example 1.22: y(t)=x2 (t) = x(t)=m or —m

= a non-invertible system ]

Example 1.23: y(t)=x(t—1,)=S" {x(t)}

S {p(e)) =5 {s" {x(0)}} =578 {x ()} = 1{x(1)}

The inverse of the system is a time shift —zo. ]

(3) Causality

A system 1is causal if the output at any time depends only on values of the input

at the present time and in the past.
= This is often referred to as the non-anticipative property.

@ If two inputs to a causal system are identical up to some time #o or no, the

corresponding outputs must also be equal up to this same time.

Example 1.24.

y[n]ZX[n]_X[n+l]} noncausal; y[n]:zz?wx[k] causal
y(£)=x(t+1) ’

@ All memoryless systems are causal. (True)

All systems with memory are causal. (False)

@ Causality is not of fundamental importance in some applications, such as

image processing, in which the independent variable is not time.

@ The important point to note here is that causality is required for a system to

be capable of operating in real time.

Example 1.25:
The MA system described by y[n] = (x[n]+x[n—l]+x[n—2])/3 is
causal, while the MA system described by (x[n +1] +x[n] +x[n —1])/3 is

noncausal.
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(4) Stability
Bounded input — bounded output (BIBO): “stable system”

Bounded input — unbounded output (the magnitude grows without bound):

“unstable system”

A system is BIBO stable if the output signal y(¢) satisfies the condition

v (1) <M, <o forallt (1.73)

whenever the input signal x(¢) satisfies the condition

|x(¢)|< M, <oo forall £ (1.74)

Both My and M, represent some finite positive numbers.
Example 1.26: y[n] = %(x[n] + x[n - 1] + x[n - 2])

) = (D] 1] x[n-2])
< (el o)
<Lt on, a0 -,

The MA system is stable. ]

Example 1.27. y[n] = 2Ml+1 ZZLMx[n—k]

x[n] is bounded — y[#] is bounded = “stable system” [ |
Example 1.28: y[n] = r”x[n], r>1

r?‘l

pln] =

x[n]‘—)oo ('.'r>l) ]

Example 1.29: y[n]=)" u[k]=(n+1)u[n]

y[-1]=0, y[0] =1, y[1]=2, y[2]=3,...,¥[n] grows without bound.

= The output signal grows without bound. = This is an unstable system.
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(5) Time invariance

A system is time-invariant if a time shift in the input signal causes an identical
time shift in the output signal. Put another way, the characteristics of a
time-invariant system do not change with time. Otherwise, the system is said to

be time-variant or time-varying.

x(t) > (1)

x(t=t,)—> y(t—1,) (173)

Example 1.30: y(1)= sin(x(t))
v (¢)=sin(x, (1)) =y, (t—1,) =sin(x (1= 1,))

Let x,(¢)=x(t-1,). Then y,(r)=sin(x,())=sin(x (1—1,)) =y (1—1,).

= The system is time-invariant. ]

Example 1.31: y(n)znx(n)
yl[n]:nxl[n]:yl[n—no]:(n—no)xl[n—no]
Let xZ[n]:xl[n—no].Then yz[n]=nx2[n]:nxl[n—no];tyl[n—no]

= The system is time-varying. [

Example 1.32: Inductor

v (t=1,) =z£:0 x (z)dr

'=1—1, 1 e

1 ¢ ' '
yz(t):zj._wxl(f—to)dr = 7 xl(r)drzyl(t—to)

—00

= The system is time-invariant. [

Example 1.33: Thermistor

A thermistor, y,(#)=x,(¢)/R(t), has a resistance that varies with time due to

temperature changes.

v, () =x(t=1,)/R(2); » (t=t,)=x(1=1,)/R(t~1,).
In general, R(¢)# R(t—t,) for t,#0.So y,(¢—1t,)# y,(t) for #,#0.

= The system is time-varying. ]
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(6) Linearity

A linear system is one that possesses the two important properties of additivity
and homogeneity (i.e., the superposition principle). That is, if the input is
formed by a weighted sum of several signals, then the output is simply the
weighted sum (or the superposition) of the responses corresponding to those
signals.

(a) Additivity property:
H{x1 (l)} = (t)
H{x, ()} =y, (1) (1.76)
= H {x; (1) +x, (1)} = H {x (0)f + H {x; ()} = 31 (1) + 2 (1)
Then for a system to be linear, it is necessary that the composite input

x,(t)+x,(¢) produces the corresponding output y, (#)+y,(z).

(b) Homogeneity or scaling property:

Hx(®)} = y(t)

:H{ax(t)} ZaH{x(t)} =ay(t) for an arbitrary scalar a (1.77)

(c) Superposition principle:
Hix (1)} = y(2)
Hix,(0)} = y,(?) (1.78)
:>H{axl (1)+bx, (t)} = H{ax1 (t)} +H{bx2 (t)} =ay, (¢)+by, ()
(d) General superposition principle:
H{x(t)}=y,(t), i=12,..,N
H{Z:[]i1 ax, (t)} = le a[H{x[ (t)} = le ay, (1)

@ The output of a linear system is zero when the input is zero. From the

(1.79)

scaling property,
H{ax(t)} =y, (t) = aH{x(t)} =y, (t) =0 when a=0. (1.80)

This means that “zero input” produces “zero output” for a linear system.

@ An incrementally linear system is one that responds linearly to changes in

the input, i.e., the superposition principle holds for changes in the input.

@ When a system violates either the additivity property or the homogeneity

property, the system is said to be nonlinear.
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Example 1.34. y[n] = 2x[n] +3
x[n] =0=> y[n] =3 #0. So the system is not linear.
b2 [n] -, [n] =2x, [n] +3- {2x2 [n] + 3} = 2{)(l [n] - X, [n]}

= The system is incrementally linear. [

@ An incrementally linear system can be visualized as follows:

Linear

x(t) g system y(t)

Figure 1.27 Structure of an incrementally linear system [1]. y, (t) is the zero-input

response of the overall system.

Example 1.35: y[n]=nx[n] is linear.

x[n]= Z,}il ax,[n]
y[n] = ”Zil a:X; [n] = Zil a;nx; [n] = Z: @) [n]

Example 1.36: y(t)=x(t)x(1—1) is nonlinear.
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