2016-Fall

1-5 Systems

1. A system can be viewed as any process that results in a transformation of signals

Input \longrightarrow System \longrightarrow Output Input \longrightarrow H \longrightarrow Output (a) (b)

Figure 1.21 (a) Block diagram of a system; (b) representation of a system operator H.

(1) Continuous-time systems: continuous-time input and continuous-time output

$$x(t) \to y(t), \quad y(t) = H\left\{x(t)\right\}$$
(1.69)

(2) Discrete-time systems: discrete-time input and discrete-time output

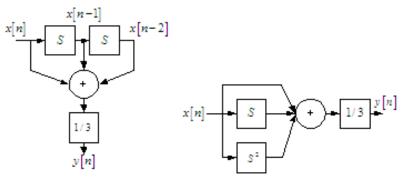
$$x[n] \rightarrow y[n], \quad y[n] = H\left\{x[n]\right\}$$
(1.70)

Example 1.18: Moving-average (MA) system

$$y[n] = \frac{1}{3} (x[n] + x[n-1] + x[n-2])$$

y[n] is the average of three consecutive sample values x[n-2], x[n-1], and x[n]. The value of y[n] changes as n moves along the discrete-time axis. Let the operator S^k represent a system that shifts the input x[n] by k time units to produce an output equal to x[n-k]. Then, the overall operator for the moving average system can be expressed by

$$H = \frac{1}{3} \left(1 + S + S^2 \right)$$



- 2. Interconnection of systems:
 - (1) Series interconnection (or cascade interconnection)

Figure 1.22 Series (cascade) interconnection [1].

(2) Parallel interconnection

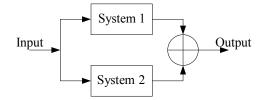


Figure 1.23 Parallel interconnection [1].

(3) Series/parallel interconnection

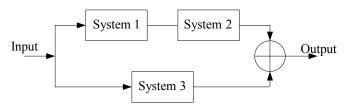
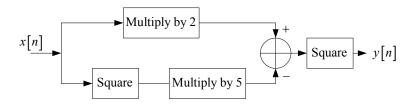


Figure 1.24 Series/parallel interconnection [1].

```
Example 1.19: y[n] = (2x[n] - 5x^2[n])^2
```



Viewing a complex system in this manner is often useful in facilitating the analysis of the system.

(4) Feedback interconnection

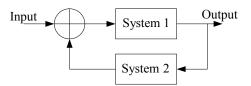


Figure 1.25 Feedback interconnection [1].

- 3. Properties of systems
 - (1) Systems with or without memory
 - (a) Memoryless systems: the output at a given time is dependent only on the input at the same time.

(b) Systems with memory: the output at a given time is dependent on the inputs at some previous and/or future time instants other than (or in addition to) the input at the same time.

Example 1.20:

- $y[n] = \sum_{k=-\infty}^{\infty} x[k]$ and y(t) = x(t-1) have memory.
- A resistor is memoryless because of i(t) = v(t)/R.
- An inductor has memory because of $i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau$.
- The MA system $y[n] = \frac{1}{3}(x[n]+x[n-1]+x[n-2])$ has memory.

•
$$y[n] = x^2[n]$$
 is memoryless.

(2) Invertibility

A system is said to be invertible if distinct inputs lead to distinct outputs. That is, there must be a one-to-one mapping between the input and output signals for a system to be invertible.

 \Rightarrow Observing the system output, we can determine the system input.

$$x(t) \xrightarrow{\text{System}} y(t) \xrightarrow{y(t)} \text{System} z(t) = x(t)$$

$$H^{inv}$$

Figure 1.26 A system with the invertibility property.

$$H^{inv}\left\{y(t)\right\} = H^{inv}\left\{H\left\{x(t)\right\}\right\} = H^{inv}H\left\{x(t)\right\}$$
(1.71)

For this output signal to equal the original input x(t), we require that

$$H^{inv}H = I \tag{1.72}$$

where I denotes the identity operator.

Example 1.21: $y[n] = \sum_{k=-\infty}^{n} x[k]$ (invertible system)

The difference between two successive values of the output is precisely the last input value.

$$z[n] = y[n] - y[n-1] = x[n]$$

$$x[n] \longrightarrow y[n] = \sum_{k=-\infty}^{n} x[k] \longrightarrow z[n] = y[n] - y[n-1] \longrightarrow z[n] = x[n]$$

Example 1.22:
$$y(t) = x^2(t) \implies x(t) = \sqrt{y(t)} \text{ or } -\sqrt{y(t)}$$

 \Rightarrow a non-invertible system

Example 1.23: $y(t) = x(t-t_0) = S^{t_0} \{x(t)\}$

$$S^{-t_0}\left\{y(t)\right\} = S^{-t_0}\left\{S^{t_0}\left\{x(t)\right\}\right\} = S^{-t_0}S^{t_0}\left\{x(t)\right\} = I\left\{x(t)\right\}$$

The inverse of the system is a time shift $-t_0$.

(3) Causality

A system is causal if the output at any time depends only on values of the input at the present time and in the past.

 \Rightarrow This is often referred to as the non-anticipative property.

If two inputs to a causal system are identical up to some time t₀ or n₀, the corresponding outputs must also be equal up to this same time.

Example 1.24:

$$\begin{array}{c} y[n] = x[n] - x[n+1] \\ y(t) = x(t+1) \end{array} \quad \text{noncausal;} \quad \begin{array}{c} y[n] = \sum_{k=-\infty}^{n} x[k] \\ y(t) = x(t-1) \end{array} \right\} \text{ causal}$$

- All memoryless systems are causal. (True)
 All systems with memory are causal. (False)
- Causality is not of fundamental importance in some applications, such as image processing, in which the independent variable is not time.
- The important point to note here is that causality is required for a system to be capable of operating in *real time*.

Example 1.25:

The MA system described by y[n] = (x[n]+x[n-1]+x[n-2])/3 is causal, while the MA system described by (x[n+1]+x[n]+x[n-1])/3 is noncausal.

(4) Stability

Bounded input \rightarrow bounded output (BIBO): "stable system"

Bounded input \rightarrow unbounded output (the magnitude grows without bound): "unstable system"

A system is BIBO stable if the output signal y(t) satisfies the condition

$$\left| y(t) \right| \le M_{y} < \infty \text{ for all } t \tag{1.73}$$

whenever the input signal x(t) satisfies the condition

$$\left|x(t)\right| \le M_x < \infty \text{ for all } t . \tag{1.74}$$

Both M_x and M_y represent some finite positive numbers.

Example 1.26: $y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$ $|y[n]| = \frac{1}{3}|(x[n] + x[n-1] + x[n-2])|$ $\leq \frac{1}{3}(|x[n]| + |x[n-1]| + |x[n-2]|)$ $\leq \frac{1}{3}(M_x + M_x + M_x) = M_x$

The MA system is stable.

Example 1.27: $y[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k]$

x[n] is bounded $\rightarrow y[n]$ is bounded \Rightarrow "stable system"

Example 1.28: $y[n] = r^n x[n], r > 1$

$$y[n] = |r^n| |x[n]| \to \infty \quad (\because r > 1)$$

Example 1.29: $y[n] = \sum_{k=-\infty}^{n} u[k] = (n+1)u[n]$ y[-1] = 0, y[0] = 1, y[1] = 2, y[2] = 3, ..., y[n] grows without bound. \Rightarrow The output signal grows without bound. \Rightarrow This is an unstable system.

(5) Time invariance

A system is time-invariant if a time shift in the input signal causes an identical time shift in the output signal. Put another way, the characteristics of a time-invariant system do not change with time. Otherwise, the system is said to be time-variant or time-varying.

$$\begin{array}{l}
x(t) \to y(t) \\
x(t-t_0) \to y(t-t_0)
\end{array}$$
(1.75)

Example 1.30: $y(t) = \sin(x(t))$

$$y_1(t) = \sin(x_1(t)) \Rightarrow y_1(t-t_0) = \sin(x_1(t-t_0))$$

Let $x_2(t) = x_1(t-t_0)$. Then $y_2(t) = \sin(x_2(t)) = \sin(x_1(t-t_0)) = y_1(t-t_0)$.
 \Rightarrow The system is time-invariant.

Example 1.31: y(n) = nx(n) $y_1[n] = nx_1[n] \Rightarrow y_1[n-n_0] = (n-n_0)x_1[n-n_0]$ Let $x_2[n] = x_1[n-n_0]$. Then $y_2[n] = nx_2[n] = nx_1[n-n_0] \neq y_1[n-n_0]$

 \Rightarrow The system is time-varying.

Example 1.32: Inductor

$$y_{1}(t) = i(t) = \frac{1}{L} \int_{-\infty}^{t} x_{1}(\tau) d\tau$$

$$y_{1}(t-t_{0}) = \frac{1}{L} \int_{-\infty}^{t-t_{0}} x_{1}(\tau) d\tau$$

$$y_{2}(t) = \frac{1}{L} \int_{-\infty}^{t} x_{1}(\tau-t_{0}) d\tau^{\tau'=\tau-t_{0}} \frac{1}{L} \int_{-\infty}^{t-t_{0}} x_{1}(\tau') d\tau' = y_{1}(t-t_{0})$$

 \Rightarrow The system is time-invariant.

Example 1.33: Thermistor

A thermistor, $y_1(t) = x_1(t)/R(t)$, has a resistance that varies with time due to temperature changes.

$$y_{2}(t) = x_{1}(t-t_{0})/R(t); \quad y_{1}(t-t_{0}) = x_{1}(t-t_{0})/R(t-t_{0}).$$

In general, $R(t) \neq R(t-t_{0})$ for $t_{0} \neq 0$. So $y_{1}(t-t_{0}) \neq y_{2}(t)$ for $t_{0} \neq 0$.
 \Rightarrow The system is time-varying.

(6) Linearity

A linear system is one that possesses the two important properties of additivity and homogeneity (i.e., the superposition principle). That is, if the input is formed by a weighted sum of several signals, then the output is simply the weighted sum (or the superposition) of the responses corresponding to those signals.

(a) Additivity property:

$$H \{x_{1}(t)\} = y_{1}(t)$$

$$H \{x_{2}(t)\} = y_{2}(t)$$

$$\Rightarrow H \{x_{1}(t) + x_{2}(t)\} = H \{x_{1}(t)\} + H \{x_{2}(t)\} = y_{1}(t) + y_{2}(t)$$
(1.76)

Then for a system to be linear, it is necessary that the composite input

 $x_1(t) + x_2(t)$ produces the corresponding output $y_1(t) + y_2(t)$.

(b) Homogeneity or scaling property:

$$H\{x(t)\} = y(t)$$

$$\Rightarrow H\{ax(t)\} = aH\{x(t)\} = ay(t) \text{ for an arbitrary scalar } a$$
(1.77)

(c) Superposition principle:

$$H\{x_{1}(t)\} = y_{1}(t)$$

$$H\{x_{2}(t)\} = y_{2}(t)$$

$$\Rightarrow H\{ax_{1}(t) + bx_{2}(t)\} = H\{ax_{1}(t)\} + H\{bx_{2}(t)\} = ay_{1}(t) + by_{2}(t)$$
(1.78)

(d) General superposition principle:

$$H\left\{x_{i}(t)\right\} = y_{i}(t), \ i = 1, 2, ..., N$$

$$H\left\{\sum_{i=1}^{N} a_{i} x_{i}(t)\right\} = \sum_{i=1}^{N} a_{i} H\left\{x_{i}(t)\right\} = \sum_{i=1}^{N} a_{i} y_{i}(t)$$
(1.79)

The output of a linear system is zero when the input is zero. From the scaling property,

$$H\{ax(t)\} = y_2(t) = aH\{x(t)\} \Rightarrow y_2(t) = 0 \text{ when } a = 0.$$
 (1.80)

This means that "zero input" produces "zero output" for a linear system.

- An incrementally linear system is one that responds linearly to changes in the input, i.e., the superposition principle holds for changes in the input.
- When a system violates either the additivity property or the homogeneity property, the system is said to be nonlinear.

Example 1.34: y[n] = 2x[n] + 3 $x[n] = 0 \Rightarrow y[n] = 3 \neq 0$. So the system is not linear. $y_1[n] - y_2[n] = 2x_1[n] + 3 - \{2x_2[n] + 3\} = 2\{x_1[n] - x_2[n]\}$ \Rightarrow The system is incrementally linear.

• An incrementally linear system can be visualized as follows:

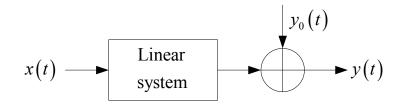


Figure 1.27 Structure of an incrementally linear system [1]. $y_0(t)$ is the zero-input response of the overall system.

Example 1.35: y[n] = nx[n] is linear.

$$x[n] = \sum_{i=1}^{N} a_{i} x_{i}[n]$$

$$y[n] = n \sum_{i=1}^{N} a_{i} x_{i}[n] = \sum_{i=1}^{N} a_{i} n x_{i}[n] = \sum_{i=1}^{N} a_{i} y_{i}[n]$$

Example 1.36: y(t) = x(t)x(t-1) is nonlinear.

$$\begin{aligned} x(t) &= \sum_{i=1}^{N} a_{i} x_{i}(t) \\ y(t) &= \sum_{i=1}^{N} a_{i} x_{i}(t) \sum_{j=1}^{N} a_{j} x_{j}(t-1) \\ &= \sum_{i=1}^{N} a_{i} \left[\sum_{j=1}^{N} a_{j} x_{i}(t) x_{j}(t-1) \right] \neq \sum_{i=1}^{N} a_{i} y_{i}(t) \end{aligned}$$

References

- [1] Alan V. Oppenheim and Alan S. Willsky, with S. Hamid Nawab, *Signals and Systems*, 2nd Ed., Prentice-Hall, 1997.
- [2] S. Haykin and B. Van Veen, Signals and Systems, 2nd Ed., Hoboken, NJ: John Wiley & Sons, 2003.
- [3] H. P. Hsu, Schaum's Outline of Theory and Problems of Signals and Systems, McGraw-Hill, 1995.