Homework No. 7 Solution

1.

(1)
$$e^{-t}e^{jt}u(t) \xrightarrow{L} \frac{1}{s+1-j}, \operatorname{Re}\{s\} > -1$$

$$e^{-t}e^{-jt}u(t) \xrightarrow{L} \frac{1}{s+1+j}, \operatorname{Re}\{s\} > -1$$

$$e^{-t}\sin(t)u(t) = \frac{1}{2j}[e^{-t}e^{jt} - e^{-t}e^{-jt}]u(t) \xrightarrow{L} \frac{1}{(s+1)^2 + 1}$$

$$\operatorname{ROC:} \operatorname{Re}\{s\} > -1$$

(2)

$$A(s) = \frac{1}{s} \xleftarrow{\mathcal{L}} a(t) = u(t)$$

$$right-sided$$

$$B(s) = e^{-3s} A(s) \xleftarrow{\mathcal{L}} b(t) = a(t-3) = u(t-3)$$

$$X(s) = \frac{d}{ds} B(s) \xleftarrow{\mathcal{L}} x(t) = -tb(t) = -tu(t-3)$$

2.

(1)

The possible ROCs are:

• ROC₁: Re $\{s\} > 2$

• ROC₂: $-1 < \text{Re}\{s\} < 2$

• ROC₃: Re $\{s\}$ < -1

(2)

• ROC₁: Re $\{s\} > 2 \Rightarrow$ causal, unstable.

- ROC2: $-1 < \text{Re}\{s\} < 2 \Rightarrow \text{noncausal}$, stable.
- ROC3: $Re\{s\} < -1 \Rightarrow$ noncausal, unstable.

(3)

The inverse is $H_{inv}(s) = \frac{s^2 - s - 2}{s^2 - 2s + 1}$.

By long division, we obtain $H_{inv}(s) = 1 + \frac{s-3}{(s-1)^2}$.

By the partial-fraction expansion method, $H_{inv}(s) = 1 + \frac{1}{s-1} + \frac{\left(-2\right)}{\left(s-1\right)^2}$.

The inverse system is known to be stable, thus

$$h_{inv}(t) = \delta(t) - e^{t}u(-t) + 2te^{t}u(-t)$$
.

3. Taking the unilateral Laplace transform of both sides of the given differential equation, we get

$$s^{3}Y(s) - s^{2}y(0^{-}) - sy'(0^{-}) - y''(0^{-}) + 6s^{2}Y(s) - 6sy(0^{-})$$
$$-6y(0^{-}) + 11sY(s) - 11y(0^{-}) + 6Y(s) = X(s).$$

(1) For the zero state response, assume that all the initial conditions are zero. Furthermore, from the given z(t) we may determine

$$X(s) = \frac{1}{s+4}$$
, Re{s} > -4.

Then we have

$$Y(s)\{s^3 + 6s^2 + 11s + 6\} = \frac{1}{s+4}$$

Therefore,

$$Y(s) = \{s^3 + 6s^2 + 11s + 6\} = \frac{1}{(s+4)(s^3 + 6s^2 + 11s + 6)}$$

Taking the inverse unilateral Laplace transform of the partial fraction expansion of the above equation, we get

$$y(t) = \frac{1}{6}e^{-t}u(t) - \frac{1}{6}e^{-4t}u(t) + \frac{1}{2}e^{-2t}u(t) - \frac{1}{2}e^{-3t}u(t).$$

(2) For the zero-input response, we assume that X(s) = 0. Assuming that the initial conditions are as given, we obtain

$$Y(s) = \frac{s^2 + 5s + 6}{s^3 + 6s^2 + 11s + 6} = \frac{1}{s+1}.$$

Taking the inverse unilateral Laplace transform of the above equation, we get $y(t) = e^{-t}u(t)$.

(3) The total response is the sum of the zero-state and zero-input responses.

$$y(t) = \frac{7}{6}e^{-t}u(t) - \frac{1}{6}e^{-4t}u(t) + \frac{1}{2}e^{-2t}u(t) - \frac{1}{2}e^{-3t}u(t).$$

4. If $x(t) = e^{2t}$ produces $y(t) = (1/6)e^{2t}$, then H(2) = 1/6. Also, by taking the Laplace transform of both sides of the given differential equation we get

$$H(s) = \frac{s + b(s+4)}{s(s+4)(s+2)}.$$

Since H(2)=1/6, we may deduce that b=1. Therefore

$$H(s) = \frac{2(s+2)}{s(s+4)(s+2)} = \frac{2}{s(s+4)}.$$

5.

(1) The Laplace transform of the relation between x(t) and y(t) can be written as

$$Y(s) = \frac{s^2 - s - 6}{s^2 + 2s + 1}X(s)$$

Taking the inverse Laplace transform, we obtain

$$\frac{d^2y(t)}{dt^2} + 2\frac{d^2y(t)}{dt^2} + y(t) = \frac{d^2x(t)}{dt^2} - \frac{dx(t)}{dt} - 6x(t).$$

(2) The two poles of the system are at -1. Since the system is causal, the ROC must be to the right of s = -1. Therefore, the ROC must include the $j\omega$ -axis. Hence, the system is stable.

6.

(1)

$$Z(s) = X(s) - H_B(s)Y(s)$$

$$Y(s) = W(s) = H_A(s)Z(s) = H_A(s)X(s) - H_A(s)H_B(s)Y(s)$$

$$\Rightarrow H(s) = \frac{Y(s)}{X(s)} = \frac{H_A(s)}{1 + H_A(s)H_B(s)}$$

(2)

$$\frac{d^{2}w(t)}{dt^{2}} + \frac{dw(t)}{dt} + aw(t) = \frac{d^{2}z(t)}{dt^{2}} - z(t) \longleftrightarrow s^{2}W(s) + sW(s) + aW(s) = s^{2}Z(s) - Z(s)$$

$$\Rightarrow (s^{2} + s + a)W(s) = (s^{2} - 1)Z(s)$$

$$\Rightarrow H_{A}(s) = \frac{W(s)}{Z(s)} = \frac{s^{2} - 1}{(s^{2} + s + a)} = \frac{(s + 1)(s - 1)}{(s^{2} + s + a)}, \text{ and we have } H_{B}(s) = \frac{1}{s + 1}.$$

$$H(s) = \frac{H_A(s)}{1 + H_A(s)H_B(s)} = \frac{\frac{s^2 - 1}{s^2 + s + a}}{1 + \frac{(s+1)(s-1)}{s^2 + s + a} \cdot \frac{1}{s+1}} = \frac{\frac{s^2 - 1}{s^2 + s + a}}{1 + \frac{s - 1}{s^2 + s + a}}$$
$$= \frac{\frac{s^2 - 1}{s^2 + s + a}}{\frac{s^2 + 2s + a - 1}{s^2 + s + a}} = \frac{s^2 - 1}{s^2 + 2s + (a - 1)}$$

and we have
$$h(t) = \delta(t) - 2e^{-t}u(t) \longleftrightarrow H(s) = 1 - \frac{2}{s+1} = \frac{s-1}{s+1}$$

$$\Rightarrow H(s) = \frac{s^2 - 1}{s^2 + 2s + (a - 1)} = \frac{s - 1}{s + 1} = \frac{(s - 1)(s + 1)}{(s + 1)(s + 1)} = \frac{s^2 - 1}{s^2 + 2s + 1}$$

$$\Rightarrow a-1=1$$

$$\Rightarrow a = 2$$

(3) Since y(t) is right-sided,

=>
$$Y(s) = \frac{1}{s+2}$$
, ROC: Re $\{s\}$ > -2.
=> $X(s) = \frac{Y(s)}{H(s)} = \frac{s+1}{(s-1)(s+2)} = \frac{2/3}{(s-1)} + \frac{1/3}{(s+2)}$.

For the causal input, the ROC of x(t) should be $Re\{s\} > -2$.

we get
$$x(t) = \frac{2}{3}e^{t}u(t) + \frac{1}{3}e^{-2t}u(t)$$
.