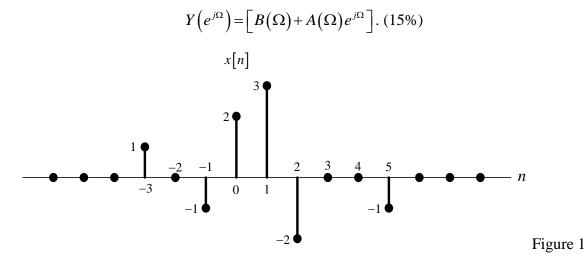
Homework #5

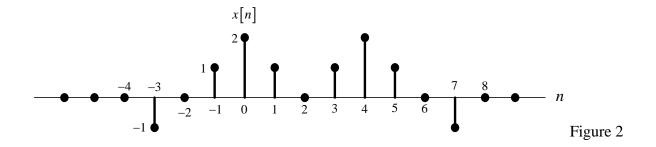
(Due by 17:30, December 04, 2014)

- 1. Suppose we are given the following information about a periodic signal x[n] with period 8 and Fourier coefficients a_k :
 - (1) $a_k = -a_{k-4}$.


(2)
$$x[2n+1] = (-1)^n$$
.

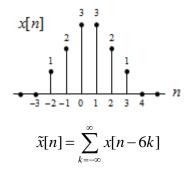
Sketch one period of x[n]. (15%)

2. Consider the signal depicted in Figure 1. Let the discrete-time Fourier transform of this signal be written in rectangular form as


$$X\left(e^{j\Omega}\right) = A(\Omega) + jB(\Omega)$$

Sketch the function of time corresponding to the discrete-time Fourier transform

- 3. Let $X(e^{j\Omega})$ denote the Fourier transform of the signal x[n] depicted in Figure 2. Perform the following calculations without explicitly evaluating $X(e^{j\Omega})$: (30%)
 - (1) Evaluate $X(e^{j0})$.
 - (2) Find $\blacktriangleleft X(e^{j\Omega})$.
 - (3) Evaluate $\int_{-\pi}^{\pi} X(e^{j\Omega}) d\Omega$.
 - (4) Find $X(e^{j\pi})$.
 - (5) Determine and sketch the signal whose Fourier transform is $\operatorname{Re}\{x(\Omega)\}$.
 - (6) Evaluate:


(i)
$$\int_{-\pi}^{\pi} |X(e^{j\Omega})|^2 d\Omega$$
; (ii) $\int_{-\pi}^{\pi} \left| \frac{dX(e^{j\Omega})}{d\Omega} \right|^2 d\Omega$.

- 4. Let x[n] be a periodic signal with period N and Fourier coefficients a_k .
 - (1) Express the Fourier coefficients b_k of $|x[n]|^2$ in terms of a_k . (10%)
 - (2) If the coefficients a_k are real, is it guaranteed that the coefficients b_k are also real? (10%)
- 5. Let $\tilde{x}[n]$ be a periodic signal with period *N*. A finite-duration signal x[n] is related to $\tilde{x}[n]$ through

$$x[n] = \begin{cases} \tilde{x}[n], & n_0 \le n \le n_0 + N - 1\\ 0, & \text{otherwise} \end{cases},$$

for some integer n_0 . That is, x[n] is equal to $\tilde{x}[n]$ over one period and zero elsewhere. Consider the following two signals:

Let a_k denote the Fourier coefficients of $\tilde{x}[n]$ and let $X(e^{j\Omega})$ denote the Fourier transform of x[n].

- (1) Determine a closed-form expression for $X(e^{j\Omega})$. (10%)
- (2) Using the result of part (1), determine an expression for the Fourier coefficients a_k . (10%)