Homework 7 Solution

1.
$$X(s) = \frac{2s}{s^2 - 4} = \frac{1}{s + 2} + \frac{1}{s - 2}$$

(1) Stable: $x(t) = e^{-2t}u(t) - e^{2t}u(-t)$, ROC: $-2 < \text{Re}(s) < 2$. (10%)
(2) Causal: $x(t) = e^{-2t}u(t) + e^{2t}u(t)$, ROC: $2 < \text{Re}(s)$. (10%)
(3) Anti-causal: $x(t) = -e^{-2t}u(-t) - e^{2t}u(-t)$, ROC: $\text{Re}(s) < -2$. (10%)
(4) Because $X(s)$ has a pole in the right half of the *s*-plane. (10%)

2.

(1) (5%)

$$\begin{split} sX(s) + X(s) & \xleftarrow{\mathcal{L}_u} & \frac{d}{dt}x(t) + x(t) \\ &= & \left[-2\sin(2t) + \cos(2t)\right]u(t) \end{split}$$

(2) (5%)

$$\begin{array}{rcl} X(s+2) & \xleftarrow{\mathcal{L}_u} & e^{-2t}x(t) \\ x(t) & = & e^{-2t}\cos(2t)u(t) \end{array}$$

(3) (5%)

$$B(s) = \frac{1}{s}X(s) \quad \xleftarrow{\mathcal{L}_u} \qquad \int_{-\infty}^t x(\tau)d\tau$$
$$\xleftarrow{\mathcal{L}_u} \qquad \int_{-\infty}^t \cos(2\tau)u(\tau)d\tau$$
$$\xleftarrow{\mathcal{L}_u} \qquad \int_0^t \cos(2\tau)d\tau$$

$$\begin{array}{rcl} B(s) & \xleftarrow{\mathcal{L}_u} & \frac{1}{2}\sin(2t) \\ \frac{1}{s}B(s) & \xleftarrow{\mathcal{L}_u} & \int_0^t \frac{1}{2}\sin(2\tau)d\tau \\ & \xleftarrow{\mathcal{L}_u} & \frac{1-\cos(2t)}{4}u(t) \end{array}$$

(4) (5%)

$$A(s) = e^{-3s}X(s) \quad \xleftarrow{\mathcal{L}_u} \quad a(t) = x(t-3) = \cos(2(t-3))u(t-3)$$
$$B(s) = \frac{d}{ds}A(s) \quad \xleftarrow{\mathcal{L}_u} \quad b(t) = -ta(t) = -t\cos(2(t-3))u(t-3)$$

3. (20%)

Since x(t) is real, the poles of X(s) must occur in conjugate reciprocal pairs. From $1 \sim 3$, we can know that X(s) is of the form:

$$X(s) = \frac{A}{(s+1-j)(s+1+j)}$$

From 5, we know that $X(0) = \frac{A}{(1-j)(1+j)} = 8$. Therefore, we may deduce that

A=16 and
$$X(s) = \frac{16}{s^2 + 2s + 2}$$
.

Let R_x denote the ROC of X(s). From the poles locations, we know that there are two possible choices of R_x . R_x may either be $\operatorname{Re}\{s\} < -1$ or $\operatorname{Re}\{s\} > -1$. Note that

$$y(t) = e^{2t} x(t) \longleftrightarrow Y(s) = X(s-2).$$

The ROC of Y(s) is R_x shifted by 2 to the right. Since it is given that y(t) is not absolutely integrable, the ROC of Y(s) should not include the $j\omega$ -axis. This is possible only if R_x is $\operatorname{Re}\{s\} > -1$.

4.
$$\frac{d^{2}y(t)}{dt^{2}} - \frac{dy(t)}{dt} - 2y(t) = \frac{dx(t)}{dt} - x(t).$$
(1)
$$H(s) = \frac{Y(s)}{X(s)} = \frac{s-1}{s^{2}-s-2} = \frac{s-1}{(s-2)(s+1)}.$$
Im
$$\frac{1}{x} = \frac{2}{x} = \frac{1}{x}$$

1

