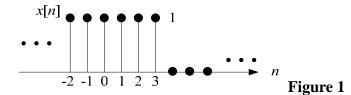
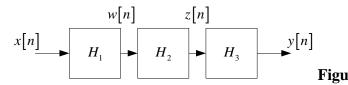
Homework No. 2 Solution

1. The signal x[n] is as shown in Fig. 1. x[n] can be obtained by flipping u[n] and then shifting the flipped signal by 3 to the right. Therefore, x[n] = u[-n + 3]. This implies that M = -1 and $n_0 = -3$.



2. Let us name the output of H_1 as w[n] and the output of H_2 as z[n] (see Fig. 2). Then,

$$y[n] = z[2n] = w[2n] + \frac{1}{2}w[2n-1] + \frac{1}{4}w[2n-2]$$
$$= x[n] + \frac{1}{2}x[n-1] + \frac{1}{4}x[n-2]$$



Linearity:

$$y_{1}[n] = x_{1}[n] + \frac{1}{2}x_{1}[n-1] + \frac{1}{4}x_{1}[n-2]$$

$$y_{2}[n] = x_{2}[n] + \frac{1}{2}x_{2}[n-1] + \frac{1}{4}x_{2}[n-2]$$

$$x_{3}[n] = \alpha x_{1}[n] + \beta x_{2}[n]$$

$$y_{3}[n] = \alpha x_{1}[n] + \beta x_{2}[n] + \frac{1}{2}(\alpha x_{1}[n-1] + \beta x_{2}[n-1])$$

$$+ \frac{1}{4}(\alpha x_{1}[n-2] + \beta x_{2}[n-2])$$

$$= \alpha y_{1}[n] + \beta y_{2}[n]$$

Time invariant:

$$y_{4}[n] = x_{4}[n] + \frac{1}{2}x_{4}[n-1] + \frac{1}{4}x_{4}[n-2]$$

$$x_{5}[n] = x_{4}[n-n_{0}]$$

$$y_{5}[n] = x_{5}[n] + \frac{1}{2}x_{5}[n-1] + \frac{1}{4}x_{5}[n-1]$$

$$= x_{4}[n-n_{0}] + \frac{1}{2}x_{4}[n-n_{0}-1] + \frac{1}{4}x_{4}[n-n_{0}-2]$$

$$\therefore y_4[n-n_0] = x_4[n-n_0] + \frac{1}{2}x_4[n-n_0-1] + \frac{1}{4}x_4[n-n_0-2] = y_5[n]$$

3.

	Memory-less	Stable	Causal	Linear	Time Invariant
$y[n] = \cos(2\pi x[n+1]) + x[n]$	×	0	×	×	0
$y(t) = \frac{d}{dt} \left\{ e^{-t} x(t) \right\}$	×	×	0	0	×
$y[n] = \log_{10}(x[n])$	0	×	0	×	0
$y(t) = \int_{-\infty}^{2t} x(\tau) d\tau$	×	×	×	0	×
y(t) = x(t/2)	×	0	×	0	×
$y[n] = 2x[2^n]$	×	0	×	0	×

(1)
$$y[n] = \cos(2\pi x[n+1]) + x[n]$$

• y(t) depends on future time, so it is memory and noncausal.

$$y_{1}[n] = \cos(2\pi x_{1}[n+1]) + x_{1}[n]; \ y_{2}[n] = \cos(2\pi x_{2}[n+1]) + x_{2}[n]$$

$$y_{3}[n] = \cos(2\pi \{\alpha x_{1}[n+1] + \beta x_{2}[n+1]\}) + \alpha x_{1}[n] + \beta x_{2}[n]$$

$$= \cos(2\pi \alpha x_{1}[n+1])\cos(2\pi \beta x_{2}[n+1])$$

$$-\sin(2\pi \alpha x_{1}[n+1])\sin(2\pi \beta x_{2}[n+1]) + \alpha x_{1}[n] + \beta x_{2}[n]$$

$$\neq \alpha y_{1}[n] + \beta y_{2}[n]$$

Nonlinear

(2)
$$y(t) = \frac{d}{dt} \left\{ e^{-t} x(t) \right\} = \lim_{\Delta \to 0} \frac{e^{-(t+\Delta)} x(t+\Delta) - e^{-t} x(t)}{\Delta}$$

The value of x(t) does not specify its slope at the same time instant.⇒ memory

Let
$$x(t) = \sin(t^2)$$
. Then $y(t) = -e^{-t}\sin(t^2) + 2te^{-t}\cos(t^2)$. $y(t)$ is unbounded while $x(t)$ is bounded by 1. \Rightarrow unstable

lacktriangle For continuously differentiable x, the left limit is the same as the right

limit, so the slope can be determined with past information only. \Rightarrow causal

$$y_{1}(t) = \frac{d}{dt} \left\{ e^{-t} x_{1}(t) \right\} = \lim_{\Delta \to 0} \frac{e^{-(t+\Delta)} x_{1}(t+\Delta) - e^{-t} x_{1}(\Delta)}{\Delta}$$

$$y_{2}(t) = \frac{d}{dt} \left\{ e^{-t} x_{1}(t-t_{0}) \right\} = \lim_{\Delta \to 0} \frac{e^{-(t+\Delta)} x_{1}(t-t_{0}+\Delta) - e^{-t} x_{1}(t-t_{0})}{\Delta}$$

$$y_{1}(t-t_{0}) = \frac{d}{dt} \left\{ e^{-(t-t_{0})} x_{1}(t-t_{0}) \right\}$$

$$= \lim_{\Delta \to 0} \frac{e^{-(t-t_{0}+\Delta)} x_{1}(t-t_{0}+\Delta) - e^{-t-t_{0}} x_{1}(t-t_{0})}{\Delta}$$

$$\neq y_{2}(t)$$

Time-varying

(3)

•
$$x[n] = 0, |y[n]| = |\log_{10}(0)| = \infty$$
, unstable

$$y_{1}[n] = \log_{10}(|\alpha x_{1}[n]|); \ y_{2}[n] = \log_{10}(|\beta x_{2}[n]|), \text{ nonlinear}$$

$$y_{3}[n] = \log_{10}(|\alpha x_{1}[n] + \beta x_{2}[n]|) \neq y_{1}[n] + y_{2}[n], \text{ nonlinear}$$

(4)

 Since the integrated range starts from negative infinite, the system has memory.

$$|y(t)| = \left| \int_{-\infty}^{2t} x(\tau) d\tau \right| \le \int_{-\infty}^{2t} |x(\tau)| d\tau$$

$$= M_x \int_{-\infty}^{2t} 1 d\tau = M_x (2t + \infty) = \infty$$
, unstable

• y(1) requires knowledge of x(2) (future value). Noncausal.

$$y_1(t-t_0) = \int_{-\infty}^{2t-2t_0} x_1(\tau) d\tau$$

 $x_{2}(t) = x_{1}(t - t_{0})$, time-varying $y_{2}(t) = \int_{-\infty}^{2t} x_{2}(\tau) d\tau = \int_{-\infty}^{2t} x_{1}(\tau - t_{0}) d\tau$ $= \int_{-\infty}^{2t - t_{0}} x_{1}(\tau') d\tau' \neq y_{1}(t - t_{0})$

(5)

• y(-1) = x(-1/2), noncausal and memory

$$y_{1}(t) = x_{1}(t/2); \ x_{2}(t) = x_{1}\left(\frac{t-t_{0}}{2}\right)$$

$$\Rightarrow y_{2}(t) = x_{2}(t/2) = x_{1}\left(\frac{t/2-t_{0}}{2}\right) \neq y_{1}(t-t_{0}) = x_{1}\left(\frac{t-t_{0}}{2}\right)$$

Time-varying

$$(6) \quad y[n] = 2x \lceil 2^n \rceil$$

• y[1] = 2x[2], memory and noncausal

$$y_{1}[n] = 2x_{1}[2^{n}]; x_{2}[n] = x_{1}[n - n_{0}]$$

$$y_{2}[n] = 2x_{2}[2^{n}] = 2x_{1}[2^{n} - n_{0}] \neq y_{1}[n - n_{0}] = 2x_{1}[2^{n - n_{0}}]'$$
time-varying

4.

(1) Using the given input-output relation:

$$y[n] = a_0x[n] + a_1x[n-1] + a_2x[n-2] + a_3x[n-3]$$

We may write

$$|y[n]| = |a_0x[n] + a_1x[n-1] + a_2x[n-2] + a_3x[n-3]|$$

$$\leq |a_0x[n]| + |a_1x[n-1]| + |a_2x[n-2]| + |a_3x[n-3]|$$

$$\leq |a_0|M_x + |a_1|M_x + |a_2|M_x + |a_3|M_x$$

$$= (|a_0| + |a_1| + |a_2| + |a_3|)M_x$$

where $|x[n]| \le M_x$. Hence, provide that M_x is finite, the absolute value of output will always be finite. This assumes that the coefficients a_0 , a_1 , a_2 , and a_3 have finite values of their own. The system is BIBO stable.

(2) The memory of the discrete-time system extends 3 time units into the past.

5.

(1)
$$y(t) = x(2t)$$

(a) If x(t) is periodic, then y(t) is periodic. **True**.

$$y(t) = x(2t + T_x) = x(2(t + T_x/2)) = x(2(t + T_y)) = y(t + T_y)$$

 $\therefore T_y = T_y/2$

(b) If y(t) is periodic, then x(t) is periodic. **True**.

$$y(t) = y(t + T_y) = x(2(t + T_y)) = x(2t + 2T_y) = x(2t + T_x)$$

$$\therefore T_x = 2T_y$$

- (2) y[n] = x[2n].
 - (a) If x[n] is periodic, then y[n] is periodic. **True**.

$$y[n] = x[2n] = x[2n + N_x]$$

If N_x is even, then

$$y[n] = x[2n] = x[2n + N_x] = x[2(n + N_x/2)] = y[n + N_y]$$

$$\therefore N_y = N_x/2$$

There is also a special case, if x[n] is also periodic when those odd points are excluded, i.e., $x[2n] = x[2n + N_x/2] \Rightarrow N_y = N_x/4$.

$$\therefore N_y = \begin{cases} N_x/2, \text{ even part is not periodic.} \\ N_x/4, \text{ even part is periodic.} \end{cases}$$

If N_x is odd, then

$$y[n] = x[2n] = x[2n + N_x]^{?} y[n + N_y]$$
$$y[n + N_y] = x[2n + 2N_y + N_x]$$

 $\therefore 2N_y + N_x = mN_x$, m is a nonnegative integer.

$$N_y = \frac{m-1}{2}N_x \Rightarrow m = 3(\because N_x \text{ is odd and } N_y \text{ is a positive integer.})$$

 $\Rightarrow N_y = N_x$

(b) If y[n] is periodic, then x[n] is periodic. **False**.

Let
$$x[n] = g[n] + h[n]$$
 where

$$g[n] = \begin{cases} 1, & n \text{ is even.} \\ 0, & n \text{ is odd.} \end{cases}$$
 and $h[n] = \begin{cases} 0, & n \text{ is even.} \\ (1/2)^n, & n \text{ is odd.} \end{cases}$

Then y[n] is periodic, but x[n] is clearly not periodic.