Homework No. 5 Solution

- 1. Let x[n] be a periodic signal with period N and Fourier coefficients a_k .
 - (1) Express the Fourier coefficients b_k of $|x[n]|^2$ in terms of a_k . (10%) Since $x[n] \xleftarrow{F.S.} a_k$ and $x[n] \xleftarrow{F.S.} a_{-k}^*$. By using the convolution property, we have: $x[n]x^*[n] = |x[n]|^2 \xleftarrow{F.S.} b_k = \sum_{l=<N>} a_l a_{l+k}^*$.
 - (2) If the coefficients a_k are real, is it guaranteed that the coefficients b_k are also real? (10%)
 From (1), it is clear that the answer is yes.
- 2. You are given $x[n] = n(1/2)^{|n|} \xleftarrow{DTFT} X(\Omega)$. Without evaluating $X(\Omega)$, find y[n] if
 - (1) $Y(\Omega) = \operatorname{Re}\{X(\Omega)\}\$ (5%) \Rightarrow Since x[n] is real and odd, $X(\Omega)$ is pure imaginary, thus y[n] = 0.

(2)
$$Y(\Omega) = dX(\Omega)/d\Omega$$
 (5%)
 $\Rightarrow y[n] = -jnx[n] = -jn^2(1/2)^{|n|}.$

(3) $Y(\Omega) = X(\Omega) + X(-\Omega)$ (5%) $\Rightarrow y[n] = x[n] + x[-n] = n(1/2)^{|n|} - n(1/2)^{|n|} = 0$

(4)
$$Y(\Omega) = e^{-4j\Omega} X(\Omega)$$
 (5%)
 $\Rightarrow y[n] = x[n-4] = (n-4)(1/2)^{|n-4|}$

3. Let x[n] and h[n] be the signals with the following Fourier transforms:

$$X\left(e^{j\Omega}\right) = 3e^{-j\Omega} + 1 - e^{j\Omega} + 2e^{j3\Omega}$$
$$H\left(e^{j\Omega}\right) = 2e^{-j2\Omega} - e^{-j\Omega} + e^{j4\Omega}$$

Determine y[n] = x[n] * h[n]. (15%) y[n] = x[n] * h[n] $= (3\delta[n-1] + \delta[n] - \delta[n+1] + 2\delta[n+3]) * (2\delta[n-2] - \delta[n-1] + \delta[n+4])$ $= 6\delta[n-3] - \delta[n-2] - 3\delta[n-1] + \delta[n] + 4\delta[n+1] - 2\delta[n+2] + 3\delta[n+3]$ $+ \delta[n+4] - \delta[n+5] + 2\delta[n+7]$

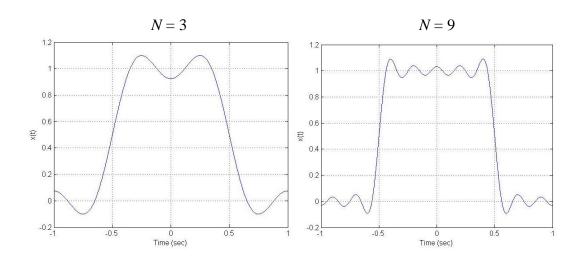
1

- 4. Consider the finite-length sequence $x[n] = 2\delta[n] + \delta[n-1] + \delta[n-3]$.
 - (1) Compute the five-point DFT X[k]. (10%) $\Rightarrow X[k] = 2 + e^{-j\frac{2\pi}{5}k} + e^{-j\frac{32\pi}{5}k}.$
 - (2) If $Y[k] = X^2[k]$, determine the sequence y[n] with five-point inverse DFT for $n = 0 \sim 4$. (10%)

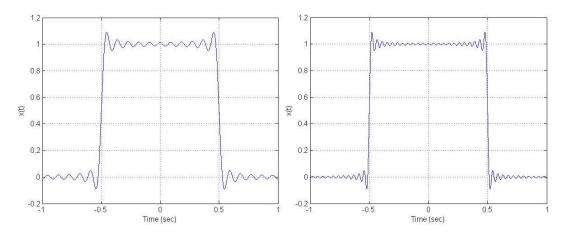
$$Y[k] = X^{2}[k] = 4 + 4e^{-j\frac{2\pi}{5}k} + e^{-j2\frac{2\pi}{5}k} + 4e^{-j3\frac{2\pi}{5}k} + 2e^{-j4\frac{2\pi}{5}k} + e^{-j6\frac{2\pi}{5}k}$$
$$= 4 + 5e^{-j\frac{2\pi}{5}k} + e^{-j2\frac{2\pi}{5}k} + 4e^{-j3\frac{2\pi}{5}k} + 2e^{-j4\frac{2\pi}{5}k}$$

 $\therefore y[n] = 4\delta[n] + 5\delta[n-1] + \delta[n-2] + 4\delta[n-3] + 2\delta[n-4]$

- (3) If *N*-point DFTs are used here, how should we choose *N* such that y[n] = x[n] * x[n], for $0 \le n \le N 1$. (5%) $\Rightarrow N \ge 4 + 4 - 1 = 7$.
- 5. The plot of $x_N(t)$ for N = 3, 9, 21, and 45 are shown below, respectively. (20%)



N = 45



Note that as N increases, the *ripples* in the approximating waveform $x_N(t)$ get narrower and narrower, but the *overshoot* of the waveform beyond the desired unity amplitude remains constant at about $\pm 0.18\%$, or about 9% of the height of the discontinuity.

MATLAB code:

```
clear all;
clc;
j = sqrt(-1);
t = -1:0.001:1;
N = input('Number of harmonics ');
a0 = 0.5; w0 = pi;
x = a0*ones(1, length(t));
for k = 1:2:N
   ak = sin((k*pi)/2)/(k*pi);
   x = x + 2*ak*exp(j*k*pi*t);
end
figure;
plot(t,x)
grid
ylabel('x(t)')
xlabel('Time (sec)')
```