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Chapter 7  The z-Transform 
 
7-1 Definition of the z-Transform 

The z-transform of a sequence x[n] is defined as 

    n

n
X z x n z

 
   

   
    

zx n X z

Z x n X z

 



    (7.1) 

where z is a complex variable. 

  nx n z  is an eigenfunction of discrete-time LTI systems 
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    eigenvaluek

k
H z h k z

 


      (7.3) 

1.   j

j

z e
z e X z 




   is the discrete-time Fourier transform of x[n]. 

Note:  

 Bilateral z-transform:     n

n
X z x n z

 


             (7.4) 

 Unilateral z-transform:    
0

n

n
X z x n z

 


                (7.5) 

2. The z-transform of x[n] can be interpreted as the Fourier transform of x[n] 

after multiplication by a real exponential nr .  jz re   
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    (7.6) 

 

Note:  

 The z-transform reduces to the Fourier transform when the magnitude      

of transform variable z is unity (i.e., for jz e   ). 

 The Laplace-transform reduces to the Fourier transform when the real 

part of the transform variable is zero (i.e., for s j  ). 
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■Figure 7.1 The z-plane and s-plane. (a) z-plane. (b) s-plane. 

 

Note: 

 The unit circle of z-plane and the jω-axis of s-plane play a similar role. 

 For convergence of the z-transform, we require that the Fourier 

transform of   nx n r  converges. 

 The range of values for which the z-transform exists is referred to as 

the region of convergence (ROC) of the z-transform. 

 If the ROC includes the unit circle, then the Fourier transform also 

converges. 

 

Example 7.1: The z-transform and ROC 

   
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For convergence of  X z , we have  1 1   zaz a    

  1

1
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1

z
X z a
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pole-zero plot and ROC: 

a

 

The Fourier transform of x[n] converges only if 1a  .    ■ 
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Example 7.2: The z-transform and ROC 
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 X z  converges if  1 1   za z a    

  1 1

1 1
1 ,    z

1 1

z
X z a

a z az z a      
  

 

pole-zero plot and ROC: 

a

 
■ 

Example 7.3: The z-transform and ROC 
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pole-zero plot and ROC: 

1

3

           ■ 

Example 7.4: The z-transform 
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Both series converge if the ROC is given by 
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7-2 The Region of Convergence for the z-transform 

   Properties of the ROC for the z-transform: 

1. The ROC of X(z) consists of a ring in the z-plane centered about the origin. 

    j nX re x n r F       (7.7) 

The convergence of X(z) is dependent only on r z  but not on  . 

2. The ROC does not contain any poles. 

3. If x[n] is of finite duration, then the ROC is the entire z-plane, except 

possibly 0z   and/or z  . 

   2

1

N n

n N
X z x n z


       (7.8) 

The z-transform is the sum of a finite number of terms.  

  X z  will converge for z not equal to zero or infinity. 

(1)  1 0 only negative powers of N z z     is included in the ROC, 

and 0z   is not included in the ROC. 

(2) 1 20 and 0 0 and N N z z       are not included in the ROC. 

(3)  2 0 only positive powers of 0N z z    is included in the ROC, and 

z   is not included in the ROC. 

4. If x[n] is a right-sided sequence and if the circle 0z r  is in the ROC, then 

all finite values of z for which 0z r  will also be in the ROC. 

0r

 
■Figure 7.2 The ROC of right-sided sequence 

 

   
1

n

n N
X z x n z

 


       (7.9) 

When 1 0N  , the summation includes terms with positive powers of z 

which become unbounded as z   . Consequently, for right-sided 

sequences, in general, the ROC will not include infinity. 

Suppose the z-transform of x[n] converges for some value of 0r r , i.e., 

0z r  is in the ROC. Then 



EE3610 Signals and Systems  Fall 2011 

 214 

   
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For 1 0r r  
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 The maximum value of  in the summation is 
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     
         
  

0The z-plane for  is in the ROC.z r   

5. If x[n] is a left-sided sequence and if the circle 0z r  is in the ROC, then 

all values of z for which 00 z r   will also be in the ROC. 

0r

 

■Figure 7.3 The ROC of left-sided sequence 

 

   2N n

n
X z x n z


        (7.12) 

When 2 0N  , the summation includes terms with negative powers of z 

which become unbound when 0z  . Consequently, for left-sided 

sequences, in general, the ROC will not include 0z  . 

Note:  When 2 0N  ,  ROC will include 0z  . 

Suppose 0z r  is in the ROC, then 
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6. If x[n] is a two-sided and if the circle 0z r  is in the ROC, then the ROC 

will consist of a ring in the z-plane which includes the circle 0z r . 

 

Note: 

 A two-sided sequence can be expressed as a sum of a right-sided 

sequence and a left-sided sequence. 

 

Rr

 
(ROC for the right-sided sequence) 

Lr

 

(ROC for the left-sided sequence) 

 

LrRr

 

■Figure 7.4 The ROC of two-sided sequence. ( Lr  must be greater than Rr ; 

otherwise  X z  does not converge.) 
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Example 7.5: The z-transform 

  ,    0 1  ,   0

0  ,      otherwise                

na n N a
x n

    
 


 

   
 
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 
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 
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a
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 The ROC includes the entire z-plane except the origin. 

 2

pole:   0                        
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z z a

z a z a

z ae k N

  


   

  

 

■ 

 

Example 7.6: The z-transform 

 
     

       ,      0

1

n

n n

x n b b

x n b u n b u n

 

    
 

  1

1
          ,     

1
znb u n z b

bz
 


     (7.15) 

  1 1

1 1
1   ,   

1
znb u n z

b z b


 


   


    (7.16) 

For 1:b          

  1 1 1

1 1 1
  ,    

1 1
X z b z

bz b z b  


    

 
   (7.17) 

  
2

1

1
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
 
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      (7.18) 
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 For 1:  There is no common ROC and thus the sequence  has no z-transform.b x n

 

 

■Figure 7.5 Pole-zero plots and ROCs for Example 7.6. (a) Eq. (7.15) for |b| 

< 1. (b) Eq. (7.15) for |b| > 1. (c) Eq. (7.16) for |b| < 1. (d) Eq. (7.16) for |b| > 

1. (e) pole-zero plot and ROC for Eq. (7.18) with |b| < 1.    

 ■ 
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Note: For any rational z-transform 

 The ROC will be bounded by poles or will extend to infinity. 

 For a right-sided sequence, the ROC is bounded on the inside by the pole 

with the largest magnitude and on the outside by infinity. 

 For a left-sided sequence, the ROC is bounded on the outside by the pole 

with the smallest magnitude and on the inside by zero. 

 

Example 7.7: Characteristics of ROC 

 
 1 1

1
1

1 1 2
3

X z
z z 


   
 

 

pole-zero plot: 

31

2

 
pole-zero plot and ROC if x[n] is right-sided: 

31

2

 

pole-zero plot and ROC if x[n] is left-sided: 

31

2
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pole-zero plot and ROC if x[n] is two-sided: 

31

2

 
■ 

7-3 The Inverse z-transform 

Very often, we will be able to analyze or design discrete-time signals and 

systems using their z transforms without having to convert the transforms 

back to the corresponding sequences. However, such conversion is 

sometimes desired or necessary and is accomplished via the inverse z 

transform. The formal definition of the inverse z transform is simple in 

concept, but somewhat cumbersome to use; and for rational transforms, in 

particular, we will obtain simpler methods to invert the z transform. 

    1x n Z X z  
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 

 



 

 



 

  

   

 
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2
nX z z dz
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 �       (7.19) 

       and    fixedjz re r  

11

jdz jre d jzd

d z dz
j





    

  
 

:�  denotes a counterclockwise closed circular contour centered at the 

origin and with radius r. 

The value of r can be chosen as any value for which X(z) converges. 
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Example 7.8: The inverse z-transform 
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■ 

 

Example 7.9: The inverse z-transform 

   1 1log 1   ,      or 1X z az z a az      

  Using the Taylor’s series expansion for  log 1  ,   1 ,    we have 
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■ 

Example 7.10: Consider a right-sided sequence with z-transform 
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x n a u n b u n
a b b a

 

 

   

   

 

 
 

  
   

   
   

   
   

  
   

 

■ 
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2.  

The basis of the inverse z transform is the Cauchy Integral Theorem from 

the theory of complex variables, which states that 

1 1, 01
,

0, 02
k k

z dz
kj






  

�      (7.20) 

where   is a counterclockwise contour of integration enclosing the origin. 

Therefore, to find x[n] from X(z), we multiply both sides of Eq. (7.1) by 
1

2

kz

j



, and integrate along a suitable   in R to obtain 

   

   

1 1

1

1 1

2 2

1
                              .

2

k n k

n

n k

n

X z z dz x n z dz
j j

x n z dz x k
j

 



   
 

   
 



 

 

 

� �

�
 

Thus, the inverse z transform is given by 

    11
,

2
nx n X z z dz

j



 �             (7.21) 

where   is a counterclockwise contour in the region of convergence of X(z) 

enclosing the origin. We know that a suitable   enclosing the origin can 

always be found since R is an annular ring centered on the origin. 

3.  

     Computation of the inverse z-transform: 

(1)  Cauchy integration 

In the usual case where X(z) is a rational function of z, the Cauchy 

Residue Theorem states that Eq. (7.21) can be evaluated by 

  i
i

x n   ,                      (7.22) 

where the i  are the residues of   1nX z z   at the poles inside  . To 

show the k poles at iz p  explicitly, we write 

   
 

1n i
k

i

z
X z z

z p
 



                  (7.23) 

and the residue at pi is then given by 

 
 1

1

1

1 !
i

k
i

i k

z p

d z

k dz












.               (7.24) 

   Very often, 1k  , in which case Eq. (7.24) becomes simply 

 i i ip   .                     (7.25) 
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Example 7.11: Consider the z transform 

        ,     
z

X z z a
z a

 


. 

The function   1
n

n z
X z z

z a
 


 has poles at z a  and, for 0n  , at 

0z  . Any   in the region of convergence z a  will enclose all 

of these poles. Thus, for 0n  , we have only the residue 

1
n n

z a
z a


  , 0n  . 

      For 1n   , there are residues at both z a  and 0z   given by 

1 1
1 z a

z a  


   and 1

2
0

1

z

a
z a

 



  


 

      and, therefore   1 21 0x      . 

For all 1n   , we must use the general form of (7.24) to obtain the 

residues, and the reader can verify that   0x n  , 1n   . Thus, we 

have determined that 

   nx n a u n , 

   which checks with our previous derivation of the particular X(z). 

■ 

(2)  Long division: 

   
 

0

0

M m
mm

N k
kk

b zN z
X z

D z a z







  


 

Starting with the lowest powers of 1z , we divided N(z) by D(z) to 

expand X(z) in power series form. 

 

Example 7.12:  

 
1

1 2

1 2

1 2 4

z
X z

z z



 




 
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1 2 1

1 2

2

2 3 4

3 4

3 4 5

1 2 4 1 2

1 2 4

            4

            4 8 16

                          8 16

                         8 16 32

                                            32

z z z

z z

z

z z z

z z

z z z

z

  

 



  

 

  

  

 



  



 



2 3 5

5

1 4 8 32                        

                                                  

z z z  



  


 

           0 1,  1 0,  2 4,  3 8,  4 0,  5 32,x x x x x x           

■ 

(3)  The Cauchy product and a recurrence relation: 

   
1 2

0 1 2
1 2 0

0 1 2

m
nm

m n
m

b b z b z b z
X z x n z

a a z a z a z

  
 

   

   
 

    


 

Note:  

 The numerator and denominator have the same degree. If this is 

not the case, we merely have some coefficients that are zero. 

     
      0 0 0

n n n
n nn n n

b z a z x n z
    
  

    

   where 0  for  n na b n m    

Applying the Cauchy product to the right-hand side results in 

 
0 0 0

nn n
n n kn n k

b z x k a z
  

  
       

     1

00 0

n n

n n k n kk k
b x k a x n a x k a



  
      

0Assume  0a   

 

   

0

0

1

0
0

0 ,                                    0

       
1

,  0
n

n n kk

b
x n

a

x n b x k a n
a





   
     


 

 

Example 7.13:  

 
1 1 2

0 1 2
1 2 1 2

0 1 2

1 2

1 2 4

z b b z b z
X z

z z a a z a z

  

   

  
 

   
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0 1 2

0 1 2

1,  2,  4,  0,  for  3

1,   2,  0,  0,  for  3
n

n

a a a a n

b b b b n

    
     

 

 

   
     
         

0

0

1 1

2 2 1

3 3 2 1

0 1

1 0 2 1 2 0

2 0 1 0 1 4 0 2 4

3 0 1 2 4 2 8

                                  

                                  

b
x

a

x b x a

x b x a x a

x b x a x a x a

  


     


          
         








 

■ 

(4)  Partial-fraction expansion: 

  0

0

M m
mm

N k
kk

b z
X z

a z







 


 

(a) If M N  and X(z) has no multiple poles, it may be expanded in  

a partial-fraction of the form 

  11
,       ,     (causal)

1

N k
k

k

A
X z z r

p z
 

        (7.26) 

with the pk being poles of X(z). But each term in Eq. (7.26) is just 

the z transform of an exponential sequence, and thus the inverse z 

transform for X(z) is given by 

   
1

.
N n

k kk
x n A p u n


                     (7.27) 

 

(b) If M N , we divide N(z) and D(z) starting with the highest 

powers of 1z  to produce 

 
 

1
1 0

1
0 1 0       

M N
M N

N M
N M

C z C z C
R z

a z a b z b z b
D z

  


  

  

     



       (7.28) 

where the remainder polynomial R(z) is of order 1M N   , or 

less. Then,    R z D z  can be expanded in a partial-fraction 

expansion as before and x[n] is given by 

     
0 1

M N N n
i k ki k

x n C n i A p u n

 
    .         (7.29) 
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(c) For the case of multiple poles, e.g., K multiple poles of p1, X(z) 

should be expanded as 

                     

 
 

 

11 12
21 1

1 1

11 21
1 11

21

1 1

           
1 11

NK
K

N

A A
X z

p z p z

AA A

p z p zp z

 

 

  
 

   
 





    (7.30) 

 

Example 7.14: Assume that 

 
2 1

1

2 2
,    1

1

z z
X z z

z

 



 
 


. 

   By long division, we obtain 

  2 3 4 52X z z z z z          

   and thus 

 

 

0,            0

2,            0

0,            1

1 ,     2.
n

n

n
x n

n

n


   
  

 

   By the partial-fraction expansion method 

  1
1

1
1 ,    1

1
X z z z

z


   


 

   and thus 

         1 1
n

x n n n u n      , 

   which checks with our previous result. 

 

The above techniques can also be employed even if x[n] is not causal, 

with suitable modification. Common z transform pairs are given in 

table 7.1. 

■ 

Example 7.15: 

 
1

1 2

1

1 11 1

3 1
1

4 8

4 4
        

1 11 1 1 11 1
2 42 4

z
X z

z z

z

z zz z



 



  


 

  
       
  
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    ROC:    1 1 1
 4

2 2 4

n n

z x n u n
           
     

 

    ROC:      1 1 1 1
 4 1 4

4 2 2 4

n n

z x n u n u n             
   

 

    ROC:    1 1 1
4 1

4 2 4

n n

z x n u n
              
     

 

■ 

Example 7.16: 

 
 

1 2

1 1 2

1

1 2
1

11
3 7

2
1

1 1 2 4
2

        
1 1 2 41
2

z z
X z

z z z

A B Cz

z zz

 

  



 


 

    
 


 

 

 

 
1

1

1 2

1
1 2

2

2

1
3 71 21 2

2 1 2 4z

z

z z
A z X z

z z



 


 





         
 

 

 

 

 

1

1 2
1

1 11 2

1 1 2 1 1 2

1 1

1 2 1 2

2
           

1 1 2 41
2

13 1 1 21
22

1 1
1 1 2 4 1 1 2 4

2 2

1 2
                                           

1 2 4 1 2 4

B Cz
X z

z zz

z zz z

z z z z z z

z B Cz

z z z z



 


  

     

 

   


  

 

     
 

           
   

 
 

   

 

 
1

1 2
1

2 1 2
1 1 2 41
2

z
X z

z zz



 



  

 
 

   1 2 1 2
2 2 cos sin

2 3 33

n
nx n n n u n

                          
 

       Alternate solution: 
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  1 1
1

,
1 1 11
2

A B C
X z

pz p zz
  


  

 
 

1 3

1 3

p i

p i

  

  
 

■ 

Example 7.17: 

 
   

 

1 2

21 1

21 11

4 8 6

1 2 1

        
1 2 11 2

z z
X z

z z

A B C

z zz

 

 

 

 


 

  
 

 

   

   

1

1

21

1

2

1

1

1 2 1

1   2

z

z

B z X z

C z X z













  

  
 

       
1 2

2 21 1 1
1 1

4 8 6
1 2 1 2 1 2

1 1

z z C
X z z A z B z

z z

 
  

 

 
      

 
 

   Applying differentiation to the both sides 

     

 

     
 

1

1

1

21 21

1 1 1

1 2

211

1 1 1

1

21

2

1 1 1 2

21
1

2

1 2 1 2
2

1

4 8 6
1 211 1

2 2 1

8 12 1 4 8 6 11
       

2 1

z

z

z

d X z z zd
A C

dz dz z

z z
d

zz d
A C

dz dz z

z z z z

z







 

  

 



  





   





          
 

 

   
                  
  

           
  

0

3 3
3 4 4

1 2 2       1
92
4

          
     

 

 
 21 11

1 1 2

1 2 11 2
X z

z zz
 

   
 

 

     or 
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   
 

 

1 1

21 11

1

21 11

1 2 21 2

1 2 11 2

2 2 2
        

1 2 11 2

z z
X z

z zz

z

z zz

 

 



 

 
  

 

  
 

 

         2 2 2 2 1
nn nx n n u n        

(5)  Power series: 

If X(z) is not a rational function of z, its inverse z-transform x[n] may 

still be obtained from the power series expansion of X(z). 

 

Example 7.18: Assume a z transform of the form 

  ,       0.a zX z e z   

Since R contains z  , the sequence x[n] must be causal. The power 

(Maclaurin) series for X(z) is given by 

 
0 !

n
n

n

a
X z z

n

 


   

   from which we have immediately that 

   
!

na
x n u n

n
 . 

■ 

Example 7.19: Let 

   1log 1   ,     X z az z a   . 

   The power series expansion for  log 1 y  is of the form 

 
1

1
log 1 n

n
y y

n






   

   from which 

 
1

1 n n

n
X z a z

n

 



 . 

   Hence, 

   1 .
na

x n u n
n

  
                          

 

7-4 Properties of the z-transform 

1. Linearity 

   
   

1 1 1

2 2 2

   ,     ROC

  ,     ROC

z

z

x n X z R

x n X z R

 

 
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         1 1 2 2 1 1 2 2 1 2, ROC containing za x n a x n a X z a X z R R      (7.31) 

If pole-zero cancellation occurs, the ROC may be larger than 1 2R R . 

■ 

2. Time shifting 

      ,    ROCz
xx n X z R   

   0
0

z nx n n z X z    , ROC xR  except for the possible addition or  

 deletion of the origin or infinity.           (7.32) 

0

0

0

0

0   as  0

introducing  a  pole   0

                       a  zero   

0   as  

introducing  a  pole   

                      a  zero   0

n

n

n z z

z

z

n z z

z

z





   
 

 

    
  



 

■ 

3. Frequency shifting 

      ,    ROCz
xx n X z R   

   0 0   ,    ROCzj n j
xe x n X e z R         (7.33) 

 X z  0jX e z 

0



 

 0 0
0

  ,    ROCzn
x

z
z x n X z R

z

 
   

 
     (7.34) 

0

0

0 0

0

0

1 , reduce to the above

 the pole and zero locations are rotated in the z-plane 

by an angle of  and scaled in position radially by a factor of .

j

j

z z e

z re

r





  

 


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4. Time Reversal 

      ,    ROCz
xx n X z R   

  1 1
  ,    ROC

1 1
     

z

x

p
p

x n X
z R

z z
z z

     
 

  
   (7.35) 

■ 

5. Convolution Property 

   
   

1 1 1

2 2 2

,     ROC

,     ROC

z

z

x n X z R

x n X z R

 

 
   

       1 2 1 2 1 2,    ROC contains zx n x n X z X z R R     (7.36) 

 

Proof: 

         
     

    
   

   

1 2 1 2

1 2

1 2

1 2

1 2

   

           

           

           

k

n

n k

n

k k

k

k

y n x n x n x k x n k

Y z x k x n k z

x k x n k z

x k z X z

X z X z





  
 

  
 

 


   

  

 

 




 
 


 

The ROC may be larger than 1 2R R  if pole-zero cancellation occurs in 

   1 2X z X z . 

■ 

Note:  

 When two polynomials or power series    1 2 and X z X z  are 

multiplied, the coefficients in the polynomial representing the product 

are the convolution of the coefficients in the polynomials 

   1 2 and X z X z . 

   

   
   

     
   

1 2
1 0 1 2

1 2
2 0 1 2

3 1 2

1 2 2
3 0 1 2 2

0

1  points

 1  points

if      then

2 1  points

  ,      0,1,2, , 2

N
N

N
N

N
N

N

n k n k n nk

X z a a z a z a z N

X z b b z b z b z N

X z X z X z

X z c c z c z c z N

c a b a b n N

  

  

  



      

      



      

   








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6. Differentiation in the z-Domain 

      ,    ROCz
xx n X z R   

      ,    ROC    poles are the samez
x

d
nx n z X z R

dz
     (7.37) 

If there is a pole at 0z   originally, then an extra pole at 0z   will occur 

after differentiating and that will be cancelled with the new zero 0z  . 

Proof: 

   

   

   

1

    

   

n

n

n

n

n

n

X z x n z

d
X z nx n z

dz
d

z X z nx n z
dz

 


  


 




 

  







 

■ 
Example 7.20:  

   1ln 1   ,    X z az z a    

Find  x n  ?      

   

   

   

   

     

     

1

1

1

1

1
1

1

          ,    
1

1
      ,    

1

      ,    
1

1   ,    
1

1

1

z

n z

n z

n z

n

n

d az
nx n z X z z a

dz az

a u n z a
az

a
a a u n z a

az

az
a a u n z a

az

nx n a u n

a
x n u n

n














  


  


   


    


    

 
  



 
■ 

Example 7.21:  

 
 

 

 
 

1

21

1

1

21 1

      ,    
1

1
      ,    

1

1
  ,    

1 1

zn

zn

az
X z z a

az

a u n z a
az

d az
na u n z z a

dz az az









 

 


 


       

 

■ 
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7. The Initial Value Theorem 

If   0x n   for 0n  , then 

   0 lim
z

x X z


       (7.38) 

Proof:        lim lim n

nz z
X z x n z

 
 

   

       

 
     

 

0

0 1 2

lim

lim 0 1 2

0

n

nz

z

x n z

x z x z x z

x

 


 





     






 
 

8. The Final Value Theorem 

If  x n  is causal and stable with z-transform  X z , then 

  
     1

1
lim lim 1
n z

x n z X z

 
   (  X z  has poles inside the unit circle.)

 (7.39) 

Proof: 

  First we know             1 11 1Z x k x k X z z X z z X z        

  Then take limit as 1z   on both sides: 

   

         

             
   

1

1

1
0 0

lim 1

lim 1 1

0 1 0 2 1 ...

lim

z

k

z
k k

n

z X z

x k x k z x k x k

x x x x x x

x x n





 



 





       
 

      

  

 
 

■ 

Note:  

 If the system is stable, then the impulse response  h n  is absolutely 

summable. 

 the Fourier transform of the impulse response  h n  converges 

 the ROC of  H z  must include the unite circle 

 If the system is both causal and stable, the ROC of the z-transform of 

the impulse response must include the unit circle and be outside the 

outermost pole. 

 For a causal and stable system, all the poles of the system function 

must be inside the unit circle.  
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Example 7.22:  

       

       

   
 

1 1

1 1

1 1 1

1 1
1 1

2 3
1 1

2 3
1 1

1 13 3
1 1 1

1 1 1
2 2 2

y n y n x n x n

Y z z Y z X z z X z

z zY z
H z

X z z z z

 

 

  

    

  


   

  

 

Assume the system is causal and stable. 

Then the ROC is 0.5z  . 

    

   

1

1
1 1 1

            1
2 3 2

n n

h n z H z

u n u n





 

        
   

 

■ 

7-5 The System Function for LTI Systems 

Invertible Systems: 

If an LTI system h[n] is invertible, there must exist an inverse system with 

impulse response hI[n] such that 

[ ] [ ] [ ]Ih n h n n  .                   (7.40) 

Expressing this relationship in terms of z-transforms, we thus have 

( ) ( ) 1IH z H z   or 
1

( )
( )IH z

H z
 .               (7.41) 

If H(z) is the rational fraction B(z)/A(z), then HI(z) is the rational faction A(z)/B(z), 

and the poles of H(z) are the zeros of HI(z), and vice versa. In general, the inverse 

system HI(z) for a given H(z) is not unique because multiple ROCs can be defined 

for a rational fraction A(z)/B(z) having at least poles at other than 0z   or 

z  . However, if we set the requirements of stability and/or causality on HI(z), 

it will be unique. 

Example 7.23: Given the accumulator system function 

  1

1
,   1

1
H z z

z
 


, 

the associated inverse system is 

                     1( ) 1 ,   0,IH z z z    

corresponding to the impulse response 

                      [ ] [ ] [ 1]Ih n n n    . 
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This system is known as a first-difference operator and is unique because HI(z) 

has only a pole at 0z  . Checking that Eq. (7.30) is indeed satisfied by hI[n], we 

have  

                  

[ ] [ ] [ ] { [ ] [ 1]}

                  [ ] [ 1]

                  [ ].

Ih n h n u n n n

u n u n

n

 



    
  


 

■ 

Example 7.24: Given the stable and causal system 

                   
1

1

1 0.8
( ) ,   z 0.5,

1 0.5

z
H z

z






 


 

we can identify two corresponding inverse systems, as follows: 

                   
1

1 1

1 0.5
( ) ,   z 0.8,

1 0.8I

z
H z

z






 


 

and 

                   
1

2 1

1 0.5
( ) ,   z 0.8

1 0.8I

z
H z

z






 


. 

In most practical applications, however, only HI1(z) is useful because it is both 

stable and causal. 

On the other hand, for the stable and causal system 

       
1

1

1 2
( ) ,   z 0.5,

1 0.5

z
H z

z






 


 

the two possible inverse system are 

                   
1

3 1

1 0.5
( ) ,   z 2,

1 2I

z
H z

z






 


 

and 

                   
1

4 1

1 0.5
( ) ,   z 2

1 2I

z
H z

z






 


. 

Hence, in this case, we must choose between stability and causality for the 

inverse system because HI3(z) is causal but not stable, while HI4(z) is stable but 

not causal. 

■ 

Difference Equations: 

Given a finite-order linear difference equation with constant coefficients 

              
0 0

[ ] [ ]
N M

k k
k k

a y n k b x n k
 

    ,                  (7.42) 

 we can obtain its z-transform 

        
0 0

( ) ( )
N M

k k
k k

k k

a z Y z b z X z 

 

   



EE3610 Signals and Systems  Fall 2011 

 235 

 and the corresponding system function 

                       0

0

( )
( )

( )

M
k

k
k
N

k
k

k

b z
Y z

H z
X z a z









 



.                    (7.43) 

 

Example 7.25: In the first-order linear difference equation 

                         [ ] [ 1] [ ]y n ay n x n   , 

 we have 

       1(1 ) ( ) ( )az Y z X z  . 

 Hence, the actual system function can be either 

             1 1

1
( ) ,   z ,

1
H z a

az
 


 

 or 

       2 1

1
( ) ,   z ,

1
H z a

az
 


 

 corresponding to the causal ad anticausal impulse response 

              1[ ] [ ]nh n a u n  

 and 

                           2[ ] [ 1]nh n a u n    , 

respectively. Since h1[n] and h2[n] are both nonzero for an infinite time duration, 

they are classified as infinite-impulse-response (IIR) filters. Clearly, any filter 

with at least one nonzero, finite pole (i.e., a pole at other than 0z   or z  ) 

that is not canceled by a zero, will be IIR because such poles imply exponential 

components in h[n].            ■ 

 

Example 7.26: The first-difference operator was defined in Example 7.23 by the 

system function 

                 1( ) 1 ,   0H z z z   . 

Recognizing that H(z) is a first-order rational fraction of the form in Eq. (7.43), 

with b0 = 1, b1 = -1, and a0 = 1 (and thus M = 1 and N = 0), we can write the 

corresponding difference equation from Eq. (7.42) as simply 

          [ ] [ ] [ 1]y n x n x n   . 

Since the associated impulse response 
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          [ ] [ ] [ 1]h n n n     

is nonzero for only a finite time duration, this filter is classified as a 

finite-impulse response (FIR) filter. Note, in particular, that in contrast with the 

IIR case, this filter has only a pole at 0z  . 

■ 

7-6 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot 

1. As the continuous-time systems we introduced in Section 6-4. First, 

factoring the numerator and denominator polynomials of the rational 

fraction into products of first-order factors of the form 

 

 

1

1

1

1

1
( )

1

M

k
k

N

k
k

C z z
H z

p z

















,          (7.44) 

where kz  and kp  are the zeros and poles, respectively, of ( )H z  and 

0 0C b a , we may write ( )H z  in the equivalent form 

 

 
1

1

( )

M
N M

k
k

N

k
k

Cz z z
H z

z p















.         (7.45) 

The corresponding frequency response ( )jH e   is then simply 

 

 

( )

1

1

( )

M
j N M j

k
j k

N
j

k
k

Ce e z
H e

e p

  

 













.         (7.46) 

Therefore, for a given frequency  , each complex-valued numerator term 

( )j
ke z   can be thought of as a vector in the complex ( )z  plane from the 

zeros kz  to the point je   on the unit circle; and likewise, each 

denominator term ( )j
ke p   is effectively a vector from the pole kp  to 

the point je  . Also, the N M  zeros (or M N  poles if M N ) at 

0z   produce an additional factor ( )j N Me    in the frequency response. 

Utilizing Eq. (7.46) to write the magnitude response | ( )|jH e  , we thus have 

1

1

( )

M
j

k
j k

N
j

k
k

C e z
H e

e p



 













.         (7.47) 

That is, the magnitude response as the frequency   equals the scaled 

product of the lengths of all vectors ( )j
ke z   from the zeros to the point 
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je   divided by the product of the lengths of all vectors ( )j
ke p   from 

the poles to the point je  , with the scaling constant being 0 0C b a . 

Similarly, the phase response ( )jH e   can be written from Eq. (7.46) as  

     
1 1

( )
M N

j j j
k k

k k

H e e z e p N M C  

 

           ;  (7.48) 

and thus ( )jH e   is simply the sum of the angles of all numerator vectors 

( )j
ke z   minus the sum of the angles of all denominator vectors 

( )j
ke p   plus a linear-phase term ( )N M C  . 

 

2. The z-transform reduces to the Fourier transform for 1z  . 

    j

j

z e
X e X z 




       (7.49) 

1V

2V

21

 
Example 7.27:  

     

     

 

 

1

1 1

22 2

1 2 2

1
               

1
zero: 0

                      
pole: 

:  zero vector1
        

:  pole vector

j

n

H ej j

j

j

H z z a h n a u n
az

zz

z az a

H e H e e

V V
H e

VV V

H e   





 





  







 

 

    

�

 

 

 

■ 

  Note:  

 The magnitude of the frequency response will be the maximum at 
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0   and will decrease monotonically as   increases from 0 to π. 

 The angle of the pole vector begins at zero and increases monotonically 

but not linearly as   increases from 0 to π. 

 As a  decreases, the impulse response decays more sharply and the 

step response settles more quickly.  ( a  is similar to time constant.) 

Example 7.28:  

   

    

     

1 2 2

2 2

2 2

1

1 2 cos

         
2 cos

sin 1

sin

j j

n

H z
r z r z

z z

z r z r z re z re

n
h n r u n

 








 




 

 
   




 







3V


1V
 2V


 

 

1

2 3

2

1

2 3 2 3

        :  zero vector

 ,   :  pole vector

1
       j

V

V V

V
H e

V V V V
  



 



   

 

  
 

The length of 2V


 has a minimum length when   . 

The magnitude of the frequency response peaks for   near  . 

 

Note:  

 r   the impulse response decays more sharply and the step 
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response settles more quickly. 

 r   the peak is larger. 

Example 7.29: The 3-dB bandwidth of these filters is easily approximated in 

narrowband cases using geometric analysis, as follows: 

    

(1 )
( )

(1 )

( 1)
,

( )

j
j

j

j

j

e
H e C

ae

e
C

e a

 


 















          (7.50) 

where (1 ) / 2C a   for unity gain at dc. The vectors ( 1)je   , ( )je a  , 

and also (1 )a  are depicted in Fig. 7.6 for 0 1a � . 

       

/ 4

(1 )a

a 1

~ (1 )a

1

( 1)je  

Im( )z

Re( )z

je 

( )je a 

 

■Figure 7.6 Geometric approximation of 3-dB bandwidth for first-order LPF. 

 

Since the dc gain of the LPF is unity, the 3-dB point occurs at the value b  

for which ( ) 1 2bjH e   . 

Approximating the unit circle in the vicinity of 1z   by the dotted vertical 

line shown in the Fig. 7.6, we note that the vectors ( )je a   and (1 )a  

and the dotted line approximate an isosceles triangle for 0 1a �  when 

the angle of ( )je a   is /4 , as illustrated. Hence, since the vector 

( )je a   forms the approximate hypotenuse of this triangle, its length can 

be estimated as 2(1 )a  at this angle, while, on the other hand, the length 

of the numerator vector ( 1)je   , which equals 2 for 0  , is only 

slightly less in this case. 

We thus find that b    for this geometric situation 
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2 1
( )

2(1 ) 2
jH e C

a
  


. 

Finally, to estimate the value of b , we note that the two sides of an 

isosceles triangle have equal lengths and that the length of an arc on the unit 

circle equals the associated angle (in radians). Therefore the vertical side of 

the triangle has length 1 a , and for 0 1a � , the associated angle 

(bandwidth) b  is also approximately 

1b a   ,          (7.51) 

as depicted in the Fig. 7.6. 

A similar geometric derivation can be employed to estimate the bandwidth 

of a first-order HPF in the narrowband case.  

(1 )
( )

(1 )

( 1)
,

( )

j
j

j

j

j

e
H e C

ce

e
C

e c

 


 















      (7.52) 

where (1 ) / 2C c  , the vectors ( 1)je   , ( )je c   and also (1 )c  are 

shown in Fig. 7.7 for 0 1c � . Again, since the maximum gain of the HPF 

is unity (at  ), the 3-dB point occurs at the value b  for which 

( ) 1 2bH e  . Note that the vector ( 1)je    is almost vertical and thus 

forms an approximate isosceles triangle with the other two vectors when the 

angle of ( )je c   is / 4 , as illustrated. Therefore the length of ( 1)je    

is approximately 1 c , while the length of the hypotenuse ( )je c   is 

approximately 2(1 )c . Note also that 1C   for 0 1c � . Hence, the 

magnitude response in this situation is approximated by 
1 1

( )
2(1 ) 2

j c
H e

c
 

 


, 

and thus b   . As before, the associated value of the angle b  

(bandwidth of the stopband) is then simply 

1b c   .      (7.53) 
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/ 4

(1 )c

c 11

Im( )z

Re( )z

je 

( )je c 

( 1)je  

 

■Figure 7.7 Geometric approximation of 3-dB bandwidth for first-order HPF. 

Example 7.30: Second-Order IIR Filters 

The second-order underdamped system function 

1 2
1 2

1 2 2
0

1
( )  ,       z  ,

1 2 (cos )

b z b z
H z r

r z r z

 

 

 
 

  
   (7.54) 

can provide an LPF, HPF, BPF, or BSF response, depending upon the values 

of the numerator coefficients 1b  and 2b  , as illustrated by the following 

cases： 

LPF Case: For 1 2b   and 2 1b  , Eq. (7.54) becomes 

1 2

1 2 2
0

1 2

1 2 2
0

1 2
( )

1 2 (cos )

(1 )
,     z ,

1 2 (cos )

z z
H z

r z r z

z
r

r z r z

 

 



 

 


  


 

  

   (7.55) 

and hence there is a double zero at 1z   . Therefore ( ) 0jH e   , implying 

an LPF response. Sketching the corresponding pole/zero plot and magnitude 

response, we can actually identify two possible cases, as illustrated in Fig. 

7.8. In particular, if the poles are close enough to the unit circle to produce 

discernible peaks in | ( )|jH e  , the response is nonmonotonic in the 

passband, as shown in Fig. 7.8(a). By analogy with the corresponding 

continuous-time case, such filters are called highly underdamped. On the 

other hand, if the radius ( )r  of the poles is sufficiently small, distinct 

peaks due to the poles are not discernible in | ( )|jH e  , and the response 

decreases monotonically, as depicted in Fig. 7.8(b). 
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Im( )z

Re( )z
11

(2) r

0 

( )jH e 

(a)



 

     

Im( )z

Re( )z
11

(2) r

0 

( )jH e 



(b)  
■Figure 7.8 Pole/zero plots and magnitude responses for second-order LPF. 

 

HPF Case: For 1 2b   and 2 1b  , we have instead 

1 2

1 2 2
0

1 2

1 2 2
0

1 2
( )

1 2 (cos )

(1 )
,     .

1 2 (cos )

z z
H z

r z r z

z
z r

r z r z

 

 



 

 


  


 

  

    (7.56) 

Thus there is double zero at 1z   , implying an HPF response with 

0( ) 0jH e  . As in the LPF case, we have again depicted two possible forms 

for the associated magnitude response in Fig. 7.9. That is, if the poles are 

close enough to the unit circle to produce discernible peaks in | ( )|jH e  , the 

response is nonmonotonic in the passband, as shown in Fig. 7.9(a), and the 

filter is said to be highly underdamped. However, if the radius ( )r  of the 

poles is sufficiently small, distinct peaks due to the poles are not evident in 

| ( )|jH e  , and the response increases monotonically, as illustrated in Fig. 

7.9(b). 
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Im( )z

Re( )z
1

(2)r

0 

( )jH e 



(a)  

        

Im( )z

Re( )z
1

(2)r

0 

( )jH e 



(b)  
■Figure 7.9 Pole/zero plots and magnitude responses for second-order HPF. 

 

BPF Case: For 1 0b   and 2 1b   , Eq. (7.54) becomes 

2

1 2 2
0

1 1

1 2 2
0

1
( )

1 2 (cos )

(1 )(1 )
,      ,

1 2 (cos )

z
H z

r z r z

z z
z r

r z r z



 

 

 




  

 
 

  

    (7.57) 

implying single zeros at both 1z   and 1z   , and thus 
0( ) ( ) 0j jH e H e   . Figure 7.10 depicts the corresponding pole/zero plot 

and magnitude response. Note that the center frequency for the BPF 

response is approximately 0  since the denominator vector from the pole 

at 0jre   to the point je   on the unit circle is shortest when 0   . The 

associated 3-dB bandwidth is readily shown to be about 2(1 )r  radians 

for narrowband filters, that is, 0 1r � . 

   

Im( )z

Re( )z
1

0

0 

( )jH e 



0 0

1

 
■Figure 7.10 Pole/zero plot and magnitude response for second-order BPF. 
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BSF Case: For 1 02(cos )b     and 2 1b  , Eq. (7.54) takes the form 

1 2
0

1 2 2
0

1 2(cos )
( ) ,      ,

1 2 (cos )

z z
H z z r

r z r z

 

 

  
 

  
    (7.58) 

implying complex-conjugate zeros on the unit circle at angles of 0 , as 

shown in Fig. 7.11. That is, 0 0( ) ( ) 0j jH e H e    . Note then that the pole 

angles and the zeros angles are the same. Using the geometric method to 

sketch the resulting notch-filter response in Fig.7.11, we produce | ( )|jH e   

as shown. Note that at 0  , and also at   , the numerator and 

denominator vectors all have about the same length, and hence 

0( ) ( ) 1j jH e H e   . As in BPF case, the associated 3-dB bandwidth (of the 

stopband) is readily shown to be about 2(1 )r  radians for BSF responses 

with narrow stopbands, that is, 0 1r � . 

   

Im( )z

Re( )z
1

0

0 

( )jH e 



0 0

~ 1

 

■Figure 7.11 Pole/zero plot and magnitude response for second-order BSF. 

 

Example 7.31: Linear-Phase FIR Filters  

Letting 0 1a   and 0ka   for all 0k  in the general difference equation  

0 0

[ ] [ ]
N M

k k
k k

a y n k b x n k
 

                          (7.59) 

we produce the nonrecursive difference equation 

0

[ ] [ ],
M

k
k

y n b x n k


 
             

(7.60) 

and thus, setting [ ] [ ],x n n  we find that the corresponding impulse 

response is simply 
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0

[ ] [ ].
M

k
k

h n b n k


   

That is, 

, 0,  1, ,     
[ ]

0, otherwise.     

bn n M
h n

 
 
         

(7.61) 

Therefore any discrete-time system satisfying a finite-order nonrecursive 

difference equation is FIR. (As might then be expected, a recursive 

difference equation having 0ka  for some 0k  usually implies an IIR 

system, but pole/zero cancelations can still cause such systems to be FIR.) 

Because of their special properties, discrete-time FIR filters find wide 

application in digital signal processing and communications. 

The most important class of FIR filters in practice are those having 

piecewise linear-phase responses. Assuming [ ]h n  to be real, such 

linear-phase filters have either even or odd symmetry about the midpoint of

[ ]h n , that is, 

n M nb b          (7.62) 

or 

n M nb b   .       (7.63) 

Examples of even- and odd-symmetric impulse responses are shown in Fig. 

7.12 for even and odd values of .M  Note that the center of symmetry 

(shown by a dotted line) occurs at the coefficient / 2Mb  for M  even, but 

between two coefficients for M  odd. Note also that / 2Mb  must equal zero 

for odd symmetry and M even. 

To show the linear-phase property of such filters, we first express the FIR 

system function ( )H z as 

0

/ 2 ( )

0

( )

( )

M
n

n
n

L
M n M n

c n M n
n

H z b z

b z b z b z





   






  




   (7.64) 

where L  is the integer part of ( 1) / 2M   and cb  is the central 

coefficient (if there is one), that is, 
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/ 2 ,  even

0,  odd.
M

c

b M
b

M


 
  

[ ]h n [ ]h n

0

2

M

/ 2Mb

0

2

MM M
n n

(  even)M (  odd)M

(a)  
[ ]h n [ ]h n

2

M

/ 2Mb

2

MM M
n n

(  even)M (  odd)M

(b)  
■Figure 7.12 Four cases of symmetry for linear-phase FIR filters: (a) even 

symmetry and (b) odd symmetry. 

 

In the even-symmetry case ( )n M nb b  , we then have 

 

 

/ 2 ( )

0

/ 2 ( / 2 ) ( / 2 )

0

/ 2

0

/ 2

( ) ( )

( )

2 cos[ ( ) ]
2

( ),

L
j j M j n j M n

c n
n

L
j M j M n j M n

c n
n

L
j M

c n
n

j M

H e b e b e e

e b b e e

M
e b b n

e R

       



      



 



 

  

  

   

 







   (7.65) 

where ( )R   is a purely real function of  . Therefore the associated 

magnitude and phase responses are simply 

( ) ( )jH e R    

and 

( ) ( ),
2

j M
H e R 

         (7.66) 

where ( ) 0R    if ( ) 0R   , and ( )R      if ( ) 0R   . Hence 

the phase response is a piecewise linear function having a discontinuity of 

  radians at each zero crossing of ( )R  .  
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A similar derivation for odd symmetry ( n M nb b   ) leads to the result 

/2

0

/2

( /2 /2)

( ) 2 sin ( )
2

           ( )

           ( )

L
j j M

n
n

j M

j M

M
H e je b n

je R

e R

  



 



     
 

 


                   (7.67) 

for real ( )R  . Therefore the associated magnitude response is again simply

| ( ) | | ( ) |jH e R   , 

but the phase response has an additional component of / 2  (90 o ), that is, 

( ) ( )
2 2

j M
H e R

 
     .                        (7.68) 

A simple example of this case is the first-difference operation 1( ) 1H z z  , 

which has the frequency response 

/2( ) 2 sin
2

j jH e je   
 .                            (7.69) 

The corresponding magnitude and phase responses are then 

| ( ) | 2 | sin |
2

jH e  
                               (7.70) 

and  

/ 2 / 2, 0 ,
( )

/ 2 / 2, 0,
jH e

 
 

    
       

                   (7.71) 

As shown in Fig.7.13. Note, in particular, the phase discontinuity of   

radians at 0   due to the real factor ( ) 2sin / 2R    , which changes 

sign at 0  . 

 

   




( )jH e | ( ) |jH e 







/ 2

/ 2

2

0

0

 

■Figure 7.13 Magnitude and phase responses for 1( ) 1 .H z z   

 

Example 7.32: 
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A crude but common technique for smoothing a noisy data sequence is to 

average the sequence over M+1 adjacent data samples, that is,  

0

1
[ ] [ ]

1

M

k

y n x n k
M 

 
  .                      (7.72) 

Hence, y[n] is computed as the average of x[n] and M preceding samples 

x[n-1], x[n-2], …, x[n-M]. The corresponding impulse response is thus 

0

1 1
[ ] [ ] ( [ ] [ 1])

1 1

M

k

h n n k u n u n M
M M




     
  ,          (7.73) 

Implying the system function 
( 1)

1
0

1 1
( )

1 ( 1)(1 )

MM
k

k

z
H z z

M M z

 






 

   .                (7.74) 

The zeros of ( )H z  occur at values of z satisfying  
( 1) 1Mz                                 (7.75) 

And thus equation the (M+1)st roots of unity, that is, 

2 /( 1) ,    1,  2,  ...,  .j k M
kz e k M                       (7.76) 

The zeros at z = 1 for k = 0 is not included in Eq. (7.76) because, as seen 

from Eq. (7.74), this zero is canceled by a pole at z = 1. 

n

[ ]h n

1/ 8

0 7

Re( )z

Im( )z


(7) 1

 
■Figure 7.14 Impulse response and pole/zero plot for simple-averaging 

filter. 

Therefore H(z) has M zeros on the unit circle spaced by 2 / ( 1)M   

radians and M poles at z = 0, as illustrated in Fig. 7.14 for M = 7. Note that 

M zeros are expected since this is an Mth-order FIR filter, and M poles at z 

= 0 result from the fact that the filter is causal. Also, since h[n] has even 

symmetry about its midpoint, this is a linear-phase FIR filter. 

To determine the magnitude and phase responses, we set jz e   in Eq. 
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(7.74) to produce 

 

( 1)

( 1)/2 ( 1)/2 ( 1)/2

/2 /2 /2

/2 ( 1)/2

/2

1
( )

( 1)(1 )

( )
           

( 1) ( )

sin[ ( 1) / 2]
           

( 1)sin( / 2)

           ( ),
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j

j M j M j M

j j j
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j M

e
H e

M e

e e e

M e e e

e e M
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e R

  


 

       

    

    

 




 




 




 

 

                   (7.77) 

which is consistent with Eq. (7.65). Fig. 7.15 shows | ( ) |jH e   and 

( )jH e   for M = 7. Hence the simple-average filter defined by Eq. (7.72) 

has a lowpass response and a bandwidth of about / ( 1)M  . Note that the 

zeros on the unit circle in the z plane produce zeros of transmission in 

| ( ) |jH e   at 2 / ( 1)k M    , k = 1, 2, …, M, and that phase 

discontinuities of   radians occur in ( )jH e   at the same frequencies. 

 

   



| ( ) |jH e 






( )jH e 
1

0 0

7 / 8

7 / 8  

■Figure 7.15 Magnitude and phase responses for simple-averaging filter. 

 

7-7 The Unilateral z Transform 

The z transform defined in Eq. (7.4) is sometimes referred to as the two-sided or 

bilateral z transform (BZT) to distinguish it from the one-sided or unilateral z 

transform (UZT) defined by 

0

( ) [ ] .n

n

X z x n z






         (7.78) 

The UZT is useful for calculating the response of a causal system to a causal 

input when the system is described by a linear difference equation with constant 

coefficients but nonzero initial conditions. That is, the system need not be at 

initial rest. Specifically, the zero-input response [ ]ziy n , as well as the zero-state 

response [ ]zsy n , is readily determined using the UZT. Note that such analysis is 

not anticipated by the relationship ( ) ( ) ( )Y z H z X z  using the BZT because 



EE3610 Signals and Systems  Fall 2011 

 250 

this assumes that the system is LTI, not merely incrementally linear. (On the 

other hand, if the nonzero initial conditions are replaced by an equivalent 

nonzero input [ ]x n  for 0n   , then the BZT can be employed.) 

 The basic properties of the UZT that are useful in this application relate to the 

transforms of the delayed signals [ ]x n k  and are listed in Table 7.2. These 

properties may be derived as follows: Computing the UZT of the unit delay 

[ 1]x n  , we have 

0 1

1

0

1

[ 1] [ 1] [ 1]

[ 1] [ ]

[ 1] ( ),

n n

n n

m

m

x n z x x n z

x z x m z

x z X z

 
 

 


 





    

  

  

 

     (7.79) 

as indicated in Table 7.2. Likewise, 

0 1

1

0

1 2

[ 2] [ 2] [ 2]

[ 2] [ 1]

[ 2] [ 1] ( ),

n n

n n

m

m

x n z x x n z

x z x m z

x z x z X z

 
 

 


 



 

    

   

    

 

    (7.80) 

 and so forth. 

 

Example 7.33:  

A discrete-time system described by the linear difference equation 

[ ] [ 1] [ ] [ ],ny n ay n x n b u n           

with [ 1] Iy Y  . Applying the UZT to both sides of this equation, we obtain 

1
1

1
( ) ( ) [ 1]

1
Y z az Y z ay

bz


   


      

or 

1
1

1
(1 ) ( ) ,

1Iaz Y z aY
bz


  


       

and thus 

1 1 1

1
( ) ,

(1 )(1 ) 1
IaY

Y z
az bz az   

  
       

from which 
1 1

1[ ] , 0
n n

n
I

b a
y n Y a n

b a

 


  


.      

In particular, note that 
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1 1

[ ] ,
n n

zs

b a
y n

b a

 



        

while 

1[ ] .n
zi Iy n Y a          

■ 

Example 7.34: 

The response of an all-pole discrete-time system with zero input for 0n  , but 

nonzero initial conditions, can be modeled as the impulse response of a pole/zero 

system at initial rest. To see this, consider the second-order difference equation 

1 2[ ] [ 1] [ 2] [ ],y n a y n a y n x n         (7.81) 

with [ ] 0x n  , 0n  , and initial conditions 1[ 1] Iy Y   and 2[ 2] Iy Y  , 

corresponding to the LTI system 

1 2
1 2

1
( ) ,

1
H z

a z a z 
 

        

with an unknown input for 0n  . Taking the UZT of both sides of Eq. (7.81), 

we obtain 

1 2 1
1 2( ) { ( ) [ 1]} { ( ) [ 1] [ 2]} 0Y z a z Y z y a z Y z z y y               

or 

1 2 1
1 2 1 1 2 2 2 1( )[1 ] [ ] ,I I IY z a z a z a Y a Y a Y z            

from which 

1
0 1

1 2
1 2

( ) ,
1

b b z
Y z

a z a z



 




 
        

where 0 1 1 2 2[ ]I Ib a Y a Y    and 1 2 1Ib a Y  . Hence ( )Y z  has the form of a 

system function with the same poles as ( )H z , plus a zero at 1 0/z b b  , and 

[ ]y n  can be thought of as the corresponding impulse response. 

■ 

7-8 Structures for Discrete-Time Filters 

The structure corresponding directly to the general difference equation in Eq. 

(7.42) was called the direct form and is shown in Fig. 7.16, with z-1 denoting each 

unit delay. 

Note that the structure in Fig. 7.16 consists effectively of the cascade of two 

subsystems. The first subsystem corresponds to the nonrecursive difference 
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equation 

             
0

[ ] [ ]
M

k
k

v n b x n k


                        (7.82) 

 and is thus FIR because its system function is 

       1
0

( )
M

k
k

k

H z b z



  .                        (7.83) 





1z



1z


1z



1z

1z

1z











[ ]x n

[ 1]x n 

[ 2]x n 

[ ]x n M

0b

1b

2b

1Mb 

Mb

[ ]v n

1a

2a

1Na 

Na

[ ]y n

[ 1]y n 

[ 2]y n 

[ ]y n N
 

■Figure 7.16 General discrete-time direct form structure. 

In general, the second subsystem is IIR because it implements the recursive 

difference equation 

         
1

[ ] [ ] [ ]
N

k

y n v n y n k


                      (7.84) 

and has the system function 

     2

0

1
( ) N

k
k

k

H z
a z






.                       (7.85) 

Hence, the system function of the total system can be represented by 

    0
1 2

0

( ) ( ) ( )

M
k

k
k
N

k
k

k

b z
H z H z H z

a z









 



                (7.86) 

as Eq. (7.43). 

By reversing the order of H1(z) and H2(z) and eliminating the redundant delays, 

we produce the canonical direct form II, shown in Fig. 7.17. 
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







1z

1z

1z









[ ]x n [ ]y n[ ]w n 0b

1b

2b

1Mb 

Mb

1a

2a

1Na 

Na
[ ]w n N  

■Figure 7.17 General discrete-time direct form II structure. 
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Table 7.1 Common z-transform pairs: 

Sequence z-transform ROC 

 n  1 all z 

 ,     0n m m    mz  0z   

 ,     0n m m    mz  z    

 u n  
1

1

1 z
 1z   

 1u n    
1

1

1 z
 1z   

 na u n  
1

1

1 az
 z a  

 1na u n    
1

1

1 az
 z a  

 nna u n   
1

211

az

az




 z a  

   cos n u n  
1

1 2

1 cos

1 2 cos

z

z z






 


 

 1z   

   sin n u n  
1

1 2

1 sin

1 2 cos

z

z z






 


 

 1z   

   cosna n u n  
1

1 2 2

1 cos

1 2 cos

az

az a z






 


 

 z a  

   sinna n u n  
1

1 2 2

1 sin

1 2 cos

az

az a z






 


 

 z a  

 

Table 7.2  Unilateral z Transforms 

Delayed signal Transform 

[ 1]x n   
1 ( ) [ 1]z X z x    

[ 2]x n   
2 1( ) [ 1] [ 2]z X z x z x      

[ 3]x n   
3 2 1( ) [ 1] [ 2] [ 3]z X z x z x z x         

[ ]x n k  
( 1) 1( ) [ 1] [ ( 1)] [ ]k kz X z x z x k z x k            



EE3610 Signals and Systems  Fall 2011 

 255 

 

 

 

 

References: 

[1] V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems, Englewood 

Cliffs, NJ: Prentice-Hall, 1983. 

[2] S. Haykin and B. Van Veen, Signals and Systems, 2nd Ed., Hoboken, NJ: John 

Wiley & Sons, 2003. 

[3] Leland B. Jackson, Signals, Systems, and Transforms, NJ: Addison-Wesley, 

1991. 


