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Chapter 6  The Laplace Transform 
 

6-1 Definition of the Laplace Transform 

1. For the linear time-invariant system with impulse response  h t , the output 

 y t  corresponding to the input of the form ste  is 

    
eigenfunction

eigenvalue

sty t H s e        (6.1) 

where 

    stH s h t e dt
 


        (6.2) 

is referred to as the Laplace transform of  h t . 

    j ts j H j h t e dt 
 


    is the Fourier transform of  h t . 

 

2. The Laplace transform of a general signal  x t : 

      
   

stX s x t e dt x t

x t X s

 



 

 





     (6.3) 

      
s j

X s X j x t





  F      (6.4) 

 

3. The Laplace transform of  x t  can be interpreted as the Fourier transform 

of  x t  after multiplication by a real exponential. 

       

    

j t

t j t t

s j

X s X j x t e dt

x t e e dt x t e

 

  

 

 
  



   



 

  

   


 F

    (6.5) 

 

Example 6.1:         2
,   converges for  > 0 .atx t e u t X j a x t dt




   

    

      

0

0

1
,  0at j t

s a t

X j x t e e dt a
j a

X s x t e dt




  

  

   


 





F
 

With s j   , we have 
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        

   

 

0

1
,  0, i.e.,  or Re

1
,  Re

a t a tj tX j e e dt e u t

a a s a
j a

s a
s a

  

 
 

       

      
 

  


 F

 

   1
,  ReX s s a

s a
   


 

Note: 

 The Laplace transform converges for some values of  Re s , and not 

for the others. 

 The existence of the Laplace transform does not imply the existence of 

the Fourier transform, e.g.,    ,  0atx t e u t a  . 

■ 

 

Example 6.2:    atx t e u t    

     

        
 

0 1

0,  0

s a tat st

a t a tj t

X s e e u t dt e dt
s a

e e u t dt e u t

t a a

 

 

   

 

    



     


       
        

 




F
 

 X s exists only for  Re s a  . 

Note: 

 In specifying the Laplace transform of a signal, both the algebraic 

expression and the range of values for which this expression is valid 

are required. 

 The range of values for which the Laplace transform exists is referred 

to as the region of convergence (ROC) of the Laplace transform. 

■ 

 

Example 6.3: Region of convergence (ROC) of     1

1atX s e u t
s a

 


  

and     2

1
.atX s e u t

s a
   


  
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■ 

Example 6.4:      2t tx t e u t e u t    

     

   

 

2

2

1 1
,  Re 1

1 2

t t st

t st t st

X s e u t e u t e dt

e e u t dt e e u t dt

s
s s

   



    

 

   

 

   
 


   

  
 

  
 

      

 

 
 

2

1 1
, Re 1 , Re 2

1 2

2

2

1 1
,  Re 1

1 2
2 3

                                      ,  Re 1
3 2

numerator polynom
                                      

t t

s s
s s

t t

e u t e u t

e u t e u t s
s s

s
s

s s
N s

D s

 

 
 

 

 

     
 


  

 




 
 



ial

denominator polynomial

 
 
 
 
 
 
 
 
 
 
 
  

 

Note: 

 Whenever  x t  is a linear combination of real or complex 

exponentials,  X s  can be expressed by      X s N s D s , i.e., 

 X s  is rational. 

 The roots of the numerator polynomial (denominator polynomial) are 

referred to as the zeros (poles) of  X s since for those values of s, 

  0X s  (  X s  ). 

ROC ROC 
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      X s N s D s  

[The order of  N s ]<[The order of  D s ] 

exist zeros at infinity   ,  0s X s   

[The order of  N s ]>[The order of  D s ] 

exist poles at infinity   ,  s X s   

 The representation of      X s N s D s  through its poles and zeros 

in the s-plane is referred to as the pole-zero diagram or the pole-zero 

plot. 

■ 

 

Example 6.5:   2

2 3

3 2

s
X s

s s




 
 

 

■ 

 

Example 6.6:        24 1

3 3
t tx t t e u t e u t     

 

   

   

        
2

22

1,  ROC : entire s plane

4 4 1
,  Re 1

3 3 1
1 1 1

,  Re 2
3 3 2

,  2 0 2 Re 2

t

t

tt st j t

t

e u t s
s

e u t s
s

e e u t dt e e u t dt s 



 



   

 



   


  


       






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   

 
    

2

4 1 1 1
1 ,  Re 2

3 1 3 2

1
,  Re 2

1 2

X s s
s s

s
s

s s

     
 


 

 

 

 

We will refer to the order of pole or zero as the number of times it is 

repeated at a given location. 

 
            ■ 

 

 

 

6-2 The Region of Convergence for Laplace Transforms 

Properties of ROC for Laplace transforms: 

1. The ROC of  X s  consists of strips parallel to the j -axis in the s-plane. 

Example 6.7:  X s  converges only for  Re s a  (or  Re s a ). The 

ROC depends only on the real part of s.        

■ 

2. For rational Laplace transforms, the ROC does not contain any poles. 

s = pole  X s   

3. If  x t is of finite duration and if there is at least one value of s for which the 

Laplace transform converges, then the ROC is the entire s-plane. 

 

 
■Figure 6.1 Finite-duration signal. 
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Proof: 

Let  x t  be zero outside the interval between 1T  and 2T . Then 

   2

1

T st

T
X s x t e dt        (6.6) 

Assume the line   0Re s   is in the ROC. Then 

 2
0

1

T t

T
x t e dt  

       
(6.7) 

(1) For 1 0  , 

     

   

2 2
1 001

1 1

2
1 0 1 0

1

T T ttt

T T

TT t

T

x t e dt x t e e dt

e x t e dt

 

  

 

  



  

 

    

(6.8) 

(  The maximum value of  1 0 te    in the interval of integration is
 1 0 1Te    .) 

This implies the s-plane for   0Re s   is in the ROC. 

(2) For 2 0  , 

     

   

2 2
2 002

1 1

2
2 0 2 0

1

T T ttt

T T

TT t

T

x t e dt x t e e dt

e x t e dt

 

  

 

  



  

 

    

(6.9) 

This implies the s-plane for   0Re s   is in the ROC. 

From Eq. (6.1) and Eq. (6.2), we can see that the ROC of a finite-duration 

signal includes the entire s-plane.   

        ■ 

4. If  x t is right-sided and if the line   0Re s  is in the ROC, then all 

values of s for which   0Re s   will also be in the ROC. 

 

■ Figure 6.2 Right-sided signal. 

   2tx t e u t : there is no value of s for which the Laplace transform will 

converge. 
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Suppose the Laplace transform of ( )x t  converges for some value of  , 

denoted by 0 . Then  

  0tx t e dt 


        (6.10) 

  0

1

t

T
x t e dt         (6.11) 

For 1 0  , 

         1 0 1 0 10 01

1 1 1

t Tt tt

T T T
x t e dt x t e e dt e x t e dt                 (6.12) 

(  The maximum value of  1 0 te     in the interval of integration is
 1 0 1Te    .) 

ROC of a right-sided signal: 

 

■ Figure 6.3 ROC of a right-sided signal. 

 

5. If  x t  is left-sided and if the line   0Re s   is in the ROC, then all 

values of s for which   0Re s   will also be in the ROC. 

ROC of a left-sided signal: 

  

■ Figure 6.4 (a) Left-sided signal; (b) ROC of a left-sided signal. 

ROC

ROC
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6. If  x t
 
is two-sided and if the line   0Re s   is in the ROC, then the 

ROC will consist of a strip in the s-plane which includes the line   0Re s  . 

 
■ Figure 6.5 Two-sided signal divided into the sum of a right-sided and 

left-sided signal. 

 

 
■ Figure 6.6 ROCs for  Rx t  and for  Lx t  assuming that they overlap. 

The overlap of the two ROCs is the ROC for      R Lx t x t x t  . 

Note: 

 L  must be greater than R ; otherwise, the Laplace transform of  x t  

does not exist. 

 

 Re Rs   

 Re Ls   
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Example 6.8: 

 
,  0

,  otherwise0

at t Te
x t

  
 


 

 x t is a finite-duration sequence. 

the ROC of  X s in the entire s-plane 

   

 

 
 

 

0

1
1

0

1 0

1
lim lim lim

T s a Tat st

s a T

s a T

aT sT

s a s a s a

X s e e dt e
s a

s a
s a

e

d
e

dsX s Te e T
d

s a
ds

  

 

 

 

  

    
      

   
 

       
 

 
 



 

 
 

 has no poles.

 has an infinite number of zeros.

X s

X s





 

   1 0 2 ,  0,  1,  2,

2
,  0,  1,  2,

s a Te s a T j k k

k
s a j k

T





        

      




 

 

 
■ 
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Example 6.9:   b tx t e  

     

   

   

right-sided left-sided

1
,  Re

1
- ,  Re

bt bt

bt

bt

x t e u t e u t

e u t s b
s b

e u t s b
s b





  

  



  


 





 

 

For b<0, there is no common region of convergence.   x t
 
has no 

Laplace transform if b<0. 

For b> 0,  

   2 2

1 1 2
,  Re

b
x t b s b

s b s b s b


     

  
  

Pole-zero plot 

 
■ 
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Summary for the ROC: 

Finite-duration signal
entire -plane

does not exist

s
 


 

Right-sided signal
right-half -plane

does not exist

s
 


 

Left-sided signal
left-half -plane

does not exist

s
 


 

Two-sided signal
a strip

does not exist


 


 

Note: 

 The ROC is bounded by poles or extends to infinity. 

 For a right-sided signal, the ROC is the region in the s-plane to the right 

of the rightmost pole. 

 For a left-sided signal, the ROC is the region in the s-plane to the left of 

the leftmost pole. 

 

 

 

 

 

6-3 The Inverse Laplace Transform 

       t j t tX j x t e e dt x t e   
   


   F    (6.13) 

      1 1

2
t j tx t e X j X j e d     


 


    F    (6.14) 

       1 1

2 2
j tj t tx t X j e e d X j e d       

 
  

 
       (6.15) 

If we change the variable of integration from   to s and use the fact that   is 

constant so that ds jd , we obtain 

   1

2

j st

j
x t X s e ds

j




 

 
       (6.16) 

“The basic Inverse Laplace Transform.” 

Note: 

   is any value in the ROC of  X s . 
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Example 6.10: 

      

    
   
   

1

2

1
,  Re 1

1 2

1 1 1

1 2 1 2 1 2

1 1

2 1

s

s

X s s
s s

A B
X s

s s s s s s

A s X s

B s X s





  
 

    
     

  

   

 

Since the ROC for  X s
 
is  Re 1s   , the ROC for the individual terms in 

the partial fraction includes  Re 1s   . 

 

     

     

        

2

2

1
,  Re 1 right-sided

1
1

,  Re 2 right-sided
2

1
,  Re 1

1 2

t

t

t t

e u t s
s

e u t s
s

e e u t s
s s





 

  


  


    
 







 

■ 

Example 6.11: 

        

  

          

   

   

   

2

2

1
,  Re 2 left-sided

1 2

1 1 1

1 2 1 2

1
,  Re 2

1 2

1
,  Re

1
,  Re 1

1
1

,  Re 2
2

t t

bt

t

t

X s s
s s

s s s s

x t e e u t s
s s

e u t s b
s b

e u t s
s

e u t s
s

 







  
 

  
   

      
 


  


          

 










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Example 6.12:       1
,  2 Re 1

1 2
X s s

s s
    

 
 

          2 1
,  2 Re 1

1 2
t tx t e u t e u t s

s s
         

 
  

■ 

  

 

6-4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot 

1. Consider  1 1H s s a   

 

■ Figure 6.7 Complex plane representation of the vectors 1s


, a


, and 

 1s a
 

 representing the complex numbers 1s , a , and  1s a  

respectively. 

 

For    1/H s s a  , the denominator can be represented by the same 

vector as above and the value of  1H s  has a magnitude that is the 

reciprocal of the vector  1s a
 

. 

 
2. A system function described by a linear differential equation with constant 

coefficients is a rational fraction of the form  

0

0

( )
( )

( )

M
k

k
k
N

k
k

k

b s
B s

H s
A s a s





 



.                      (6.17) 

The numerator and denominator polynomials ( )B s  and ( )A s  can always 

be factored into products of M and N first-order terms, respectively, and thus 

( )H s  can also be written as 
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1

1

( )
( )

( )

M

k
k
N

k
k

s z
H s C

s p













,                        (6.18) 

where /M NC b a , and kz  and kp  are the zeros and poles, respectively, 

of ( )H s . Therefore the corresponding frequency response ( )H j  is 

simply  

1

1

( )
( )

( )

M

k
k
N

k
k

j z
H j C

j p


















.                       (6.19) 

For a given frequency  , each complex-valued numerator term ( )kj z   

in Eq. (6.19) can be thought of as a vector in the complex ( )s  plane from 

the zero kz  to the point j  on the imaginary axis; and likewise, each 

denominator term ( )kj p   is effectively a vector from the pole kp  to the 

point j . Hence, via Eq. (6.19), the magnitude and phase responses of the 

system can be determined by the lengths and angles, respectively, of these 

pole/zero vectors as functions of the variable . 

To evaluate  H s at 1s s , each term in the product is represented by a 

vector from the zero or pole to the point 1s : 

(1) The magnitude response | ( ) |H j is 

 
 

1

1

the product of the lengths of the zero vectors
    

the product of the lengths of the pole vectors

| |
 | | .

| |

M

k
k
N

k
k

C

j z
C

j p


















  (6.20) 

The phase response ( )H j is 

(the sum of the angles of the zero vectors) 

(the sum of the angles of the pole vectors)   (6.21) 

        = 
1 1

( ) ( ).
M n

k k
k k

j z j p 
 

       

If C is negative, then in additional angle of   would be included. 

In many cases, this simple geometric approach is sufficient to enable us to 

sketch | ( ) |H j  and ( )H j  with adequate directly from the pole/zero 

diagram for ( )H s  without having to evaluate ( )H j  itself. 
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Example 6.13: Consider the simple first order response     ,ath t e u t
 

0,a  with system function    1H s s a   and frequency response   
 

   1 .H j j a    

The corresponding pole/zero plot showing the denominator vector  j a   

is drawn in the following with three cases: 

 Re s

 Im s

j

 a 

a  Re s

 Im s

 a 

a  Re s

 Im s

j

a



ja ja



ja
 a 



 

The resulting sketch of  H j  and  H j  are shown in the 

following. 

 
 

Note: 

 j a 
 
increases monotonically as increases from 0  . 

 The 3dB point will be at a  . 

  H j
 
decreases monotonically with   from a value at 0   and 

approaches an asymptotic value of / 2  for a  . Moreover, 

 H j  is an odd function of  . 

■ 
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Example 6.14: Adding a zero at s = 0 to the preceding example, we have 

    ,  0,H s s s a a    and thus    .H j j j a   
 
The corresponding 

pole/zero diagram, magnitude response, and phase response are shown in the 

following. 

 Re s

 Im s

/ 2

a

j



 
 

 

 

 

Note: 

  H j
 
is zero at 0   and decreases as   increases. For ,a 

  1.H j   

 The 3dB point will be at a  . 

  H j discontinuity at 0   due to there is a zero on the j  axis. 

■ 



EE3610 Signals and Systems   Fall 2011 

 189

Example 6.15: Letting       ,  with 0 ,H s s b s a b a      we have the 

frequency response      .H j j b j a    
 
This case is almost the same 

as Example 6.14 except that the zero is moved to the left. 

 Re s

 Im s



a

j



b  

 
 

Note: 

   / 1H j b a  
 
at 0  and increases as   increases. For 

,a     1.H j   Therefore  H j  is again high-pass, but with 

less attenuation near 0  . 

 

6-5 Properties of the Laplace Transform 

1. Linearity 

1 1 1( ) ( ),  with ROCx t X s R 

    (6.22) 

2 2 2( ) ( ),  with ROCx t X s R      (6.23) 

1 2 1 2( ) ( ) ( ) ( )ax t bx t aX s bX s   

 
with ROC containing 1 2R R  (6.24) 

Note: 

 The ROC can also be larger than 1 2R R . 
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Example 6.16:    1

1
,  Re 1

1
X s s

s
  


 

      2

1
,  Re 1

1 2
X s s

s s
  

 
 

     

        

    

1 2

1 2

1 1

1 1 2

1 1
,  Re 2

1 2 2

x t x t x t

X s X s X s
s s s

s
s

s s s

 

   
  


   

  

 

In the combination of 1( )x t and 2 ( )x t , the pole at 1s    is cancelled by a 

zero at 1s   . “pole-zero cancellation”      

 

2. Time shifting 

   ,  with ROCx t X s R       (6.25) 

   

    
0

0

0

0

,  with ROCst

stst

x t t e X s R

x t t e dt e X s



 



   

 



    (6.26) 

3. Shifting in the s-plane 

   ,  with ROCx t X s R       (6.27) 

     
 

0
0 0

0

,  with ROC Re

pole 

s t

p p

e x t X s s R s

s s s

    

 



   (6.28) 

 
■ Figure 6.8 Effects on the ROC of shifting in the s-domain. 

ROC ROC 
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4. Time scaling 

   ,  with ROCx t X s R      (6.29) 

 

 

1
,  with ROC

pole p p

s
x at X aR

a a

s as

    
 





   (6.30) 

 
■ Figure 6.9 Effects on the ROC of time scaling. 

 

a> 0, 

       1

1 1

s
tst ax at x at e dt x t e dt

a
s s

X X
a a a a

 

 
  

       
   

 

   (6.31) 

a< 0, 

      

 

1

1 1

s
tst a

s
t

a

x at x at e dt x t e dt
a

s
x t e dt X

a a a

 

 





  

      
 

 





   (6.32) 

 

5. Convolution property 

   1 1 1,  with ROCx t X s R       (6.33) 

   2 2 2,  with ROCx t X s R       (6.34) 

           1 2 1 2
1 2

with ROC
,  

containing 
x t x t x t X s X s X s

R R
    


  (6.35) 

Note: 

 The ROC of  X s  may be larger than 1 2R R  if pole-zero 

cancellation occurs in the product. 

ROC ROC 
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Example 6.17: 

   

   

1

2

1
,  Re 2

2
2

,  Re 1
1

s
X s s

s
s

X s s
s


  




  


 

Then      1 2 1X s X s X s  , with ROC = entire s-plane.    

 

6. Differentiation in the time domain 

   ,  with ROCx t X s R      (6.36) 

   ,  with ROC containing 
dx t

sX s R
dt

    (6.37) 

       1 1

2 2

j jst st

j j

d
x t X s e ds x t sX s e ds

j dt j

 

  
   

   
     (6.38) 

 

Example 6.18:       
2

3 2

2
2td

x t e u t
dt

    

   

     

          

3

3 2 2

2 2
3 2 2

2

1
,  with ROC Re 3

3
1

2 ,  with ROC Re 3
3

2 ,  with ROC Re 3
3

t

t s

t s

e u t s
s

e u t e s
s

d s
x t e u t X s e s

dt s



  

  

  


   


     








 

■ 

 

Example 6.19:    
3 2

2

2 9 4 10
,  with Re 1

3 4

s s s
X s s

s s

  
  

 
 

2 3 2

3 2

2

2

                  2 3

3 4 2 9 4 10

                 2 6 8         

                      3 12 10

                       3  9 12

                                    3 2

s

s s s s s

s s s

s s

s s

s



    

 

  

  


 

   

           1 4

1 2
2 3 ,  with Re 1

1 4

2 3 2t t

X s s s
s s

x t t t e u t e u t  

     
 

     
 

■ 
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Note: 

 The ROC of  sX s includes the ROC of  X s and may be larger if 

 X s has a first order pole at 0s  which is cancelled by the 

multiplication by s. 

 

7. Differentiation in the s-domain 

   ,  with ROCx t X s R      (6.39) 

   
,  with ROC

dX s
tx t R

ds
        (6.40) 

    stX s x t e dt
 


        (6.41) 

    stdX s
tx t e dt

ds

 


         (6.42) 

 

 

8. Integration in the time domain 

   ,  with ROCx t X s R       (6.43) 

      , with ROC containing Re 0
t

x d X s s R s 


     (6.44) 

     
t

x d u t x t 


         (6.45) 

   

   

1,  with ROC Re 0

1
,  with ROC Re

Let 0.

at

u t s s

e u t s a
s a

a





  

        



    (6.46) 

     ,  with ROCx t X s R       (6.47) 

 1
( ) ( ), with ROC containing Re{ } 0

t
x d X s R s

s
 


      (6.48) 

 

9. The initial and final value theorems 

( ) 0x t   for t< 0 and ( )x t  contains no impulses or higher-order 

singularities at the origin. 

   
   

0

0 lim The initial value theorem

lim lim The final value theorem
s

t s

x sX s

x t sX s





 

 







   (6.49) 
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Proof: 

Expanding x(t) as a Taylor series at t = 0 , 

     1( ) (0 ) (0 ) (0 ) ( )
!

n
n t

x t x x t x u t
n

   
     
 

   (6.50) 

where x(n)(0+) denotes the nth derivative of x(t) evaluated at 0t  . 

1
( )u t

s
        (6.51) 

2

1
( )tu t

s
        (6.52) 

  
1

( )
!

n

n

t
u t

n s
       (6.53) 

              1

2

1 1 1
0 0 0n

n
x t x x x X s

s s s
            (6.54) 

           1

1

1 1
0 0 0n

n
sX s x x x

s s
  

          (6.55) 

   lim 0 The initial value theorem
s

sX s x 


      (6.56) 

Let us consider the limit of the integral 
 

0

stdx t
e dt

dt

   as s approach 0. We 

have 

         
00 00

lim lim 0st

s t

dx t dx t
e dt dt x t x t x

dt dt  

   

 
       (6.57) 

Also, 

     

     
       

0 00 0 0

00 0

0 0

lim lim

lim

lim 0 0 lim

st
st st

s s

st st

s

s s

dx t de
e dt x t e x t dt

dt dt

x t e x t s e dt

x sX s x sX s

 



  

 

  



 

 

 
    
 

    

       

 

  (6.58) 

   
0

lim lim The final value theorem
t s

x t sX s
 

      (6.59) 
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6-6 Analysis and Characterization of LTI Systems Using the Laplace Transform 

 x t  h t  y t

 X s  H s  Y s

     Y s H s X s
 

■ Figure 6.10 Block diagram of a system. 

 H s : the system function or transfer function 

s j ,  H j  is the frequency response of the LTI system. 

For a causal system,   0h t  for t< 0 (Fig. 6.11). 

  h t is a right-sided signal. 

 The ROC is the entire region in the s-plane to the right of the rightmost pole. 

Note: 

 Anticausal system  h t  

Its ROC is the region in the s-plane to the left of the leftmost pole. 

 An ROC to the right of the rightmost pole does not guarantee that the system 

is causal, only that the impulse response is right-sided. 

 The Fourier transform of the impulse response for a stable LTI system exists. 

 For a stable system, the ROC of H(s) must include the j -axis (Fig. 

6.12). 

 For a causal and stable LTI system with a rational system function, all poles 

must lie in the left half of the s-plane. 

causal  ROC is to the right of the rightmost pole. 

stable ROC must include the j -axis. 





j

j





j

j

 
■ Figure 6.11 The relationship between the locations of poles and the impulse 

response in a causal system. (a) A pole in the left half of the s-plane corresponds 

to an exponentially decaying impulse response. (b) A pole in the right half of the 

s-plane corresponds to an exponentially increasing impulse response. The system 

is unstable in this case. 
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j

j





j

j





 
■ Figure 6.12 The relationship between the locations of poles and the impulse 

response in a stable system. (a) A pole in the left half of the s-plane corresponds to 

a right-sided impulse response. (b) A pole in the right half of the s-plane 

corresponds to an left-sided impulse response. In this case, the system is 

noncausal. 

 

Example 6.20:        1
,  Re 1

1
th t e u t H s s

s
    


 

 causal and stable   

        

Example 6.21:    ,  Re 1
1

se
H s s

s
  


 

   

     

     

1

1

1
,  Re 1

1

1 ,  Re 1
1

1 ,  zero for 1 but not for 0

t

s
t

t

e u t s
s

e
e u t s

s

h t e u t t t



 

 

  


   


     



  

 not causal but is stable.         

Example 6.22:     
1

1 2

s
H s

s s




 
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Example 6.23: Inverse Laplace transform with stability and causality constraints 

  2 1

3 2
H s

s s
 

 
 

If the system is stable, then the pole at s = 3 contributes a right-sided term to the 

 impulse response, while the pole at s = 2 contributes a left-sided term. 

     3 22 t th t e u t e u t    

If the system is causal, then both poles must contribute right-sided terms to the 

impulse response  

     3 22 t th t e u t e u t      

■ 

1. System characterized by linear constant-coefficient differential equations 

   

       

0 0

0 0

                                 

k k
N M

k kk kk k

N Mk k
k kk k

d y t d x t
a b

dt dt

a s Y s b s X s

 

 





 

 
       (6.60) 

   
 

 
 

0

0

M k
kk

N k
kk

b sY s
H s

X s a s





  



     (6.61) 

The system function has zeros at the solutions of 

0
0

M k
kk

b s


        (6.62) 

and poles at the solutions of 

0
0

N k
kk

a s


        (6.63) 

Note: 

 With additional information such as stability or causality of the system, 

the ROC can be inferred and the corresponding impulse response can be 

obtained. 

 

Example 6.24: 

     

       

3

1
3

3

dy t
y t x t

dt

sY s Y s X s H s
s

 

    


 

If the system is causal, the ROC is  Re 3s   , and the corresponding 

impulse response is 

   3th t e u t  
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If the system is noncausal, then the ROC is  Re 3s   , and the 

corresponding impulse response is 

   3th t e u t          

 

2. System function for interconnections of LTI systems 

(1) Parallel interconnection 

 
 

1

1

h t

H s

 
 

2

2

h t

H s

 x t  y t

 

■ Figure 6.13 Parallel connection of two LTI systems. 

           1 2 1 2h t h t h t H s H s H s       (6.64) 

 

(2) Cascade interconnection 

 
 

1

1

h t

H s

 
 

2

2

h t

H s

 y t x t

 

■ Figure 6.14 Series connection of two LTI systems. 

           1 2 1 2h t h t h t H s H s H s       (6.65) 

 

(3) Feedback interconnection 

 
 

1

1

h t

H s

 
 

2

2

h t

H s

 x t  y t
 1x t

 2x t 2y t

 1y t

 

■ Figure 6.15 Feedback interconnection of two LTI systems. 

             2 2 2 2 1 2Y s H s X s H s Y s H s Y s      (6.66) 

           
         

1 1 1 2

1 1 2

Y s H s X s H s X s Y s

H s X s H s H s Y s

    
 

    (6.67) 

 
     

   
1

1 21

Y s H s
H s

X s H s H s
  


     (6.68) 
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3. Butterworth filters 

 
   

 2 2

2 2

1 1

1 1
N N

c c

B B j
j j

 
   

  
 

 

 (6.69) 

     2 *B j B j B j        (6.70) 

Restricting the impulse response of the Butterworth filter to be real, we have 

   *B j B j         (6.71) 

     2
1 1

N

cB j B j j j           (6.72) 

   
s j

B s B j





         (6.73) 

     2
1 1

N

cB s B s s j           (6.74) 

The poles of    B s B s  are the solutions of 

 2
1 0

N

cs j         (6.75) 

   1 2
1

N

p cs j          (6.76) 

 2 1
,  ,   is an integer

2 2p c p

k
s s k

N

 


       (6.77) 

 2 1

2 2

k
j

N
p cs e

 


  

 
           (6.78) 

The positions of the poles of    B s B s  for N = 1, 2, 3, and 6 are shown in 

Fig. 6.16. 

c

1N 

c

2N 

4



c

3N 

3



c

6N 

6



Re

Im Im

Im Im

ReRe

Re

c c

c
c

 

■ Figure 6.16 Position of    B s B s the poles of for N = 1, 2, 3, and 6. 
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(1) The poles of    B s B s  occurs in pairs, so that if there is a pole at 

ps s , then there is also a pole at ps s  . 

(2) To construct  B s , we choose one pole from each pair of poles. 

(3) If we restrict the system to be stable and causal, then the poles of 

 B s  should be in the left-half plane. 

(4)  2

0
1

s
B s


  

 1:  c

c

N B s
s




 


         (6.79) 

 
2 2

2 2

4 4

2 :  
2

c c

j j
c c

c c

N B s
s s

s e s e
 

 
 

 


  
    

   
  

 (6.80) 

 
 

3 3

3 2 2 3

3 3

3 :  
2 2

c c

j j c c c
c c c

N B s
s s s

s s e s e
 

 
  

  


  
    

    
    

(6.81) 

The corresponding differential equations for the above three cases are: 

     1:  c c

dy t
N y t x t

dt
           (6.82) 

       
2

2 2
22 :  2 c c c

d y t dy t
N y t x t

dt dt
          (6.83) 

         
3 2

2 3 3
3 23 :  2 2c c c c

d y t d y t dy t
N y t x t

dt dt dt
         (6.84) 

 
       c

c c
c

Y s
X s sY s Y s

s X s

  


   


   (6.85) 

 
         

2
2 2 2

2 2
2

2
c

c c c

c c

Y s
X s s Y s sY s Y s

X ss s

   
 

    
 

 

(6.86) 

 
 

         

3

3 2 2 3

3 3 2 2 3

2 2

2 2

c

c c c

c c c c

Y s

s s s X s

X s s Y s s Y s sY s Y s


  

   


  

    

  (6.87) 
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6-7 The Unilateral Laplace Transform 

1. The unilateral Laplace transform of  x t  is defined as 

   
0

sts x t e dt


        (6.88) 

The bilateral Laplace transform 

    stX s x t e dt
 

      (6.89) 

when   0x t  for t< 0, the unilateral and bilateral Laplace transforms are 

identical. 

Note: 

 The ROC for the unilateral Laplace transform is always a right-half 

plane (causal). 

 

Example 6.25: 

     

 
 

 

1

1 !

1
,  Re

n
at

n

t
x t e u t

n

s s a
s a






  




 

Example 6.26: 

     

   

          

 

1

1

0 0

1

,  Re

1

,  Re

a t

s

a t s a tst a a at st

a

x t e u t

e
X s s a

s a

s e u t e dt e e dt e e u t e dt

e
s a

s a

 

 

         





 

  


   

  


  

 

The unilateral and bilateral Laplace transforms are distinctly different.  

 

2. Most of the properties of the unilateral Laplace transform are the same as for 

the bilateral Laplace transform. 

 

3. Differentiation property of the unilateral Laplace transform 

         
 

00 0
0

Integration by parts

st st stdx t
e dt x t e s x t e dt s s x

dt  

         
  (6.90) 

 s is the unilateral Laplace transform of  x t . 
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Similarly, 

       
       

       

2
1

20 0

1

12

0

0 0

0 0

st std x t dx t
e dt s e dt x

dt dt

s s s x x

s s sx x

 

   

 

 

 

    

  

 




   (6.91) 

The general form for the differentiation property is 

 
     

   

1 2

1 2

0 0

2 1

0

0

u

n n
n

n nn
t t

n

n n

t

d d
s s x t s x t

dt dtd
x t

dt d
s x t s x

dt

 



 

 
 

  



 


  





  (6.92) 

where the subscript u in u denotes the unilateral transform. 

Example 6.27: ( ) ( )atx t e u t  

Apply the product rule for differentiation to obtain the derivative of  x t , 

0t  : 

        1at atd d a s
x t e u t ae u t t

dt dt s a s a
     

 
  

Using Eq. (6.90), 

  1
0u

d s
x t s

dt s a s a
  

 
       

■ 

 

4. Integration property 

 
   

0

u
t x d s

x d
s s

 
 






   

     (6.93) 

Proof: Let    
t

y t x d 


  . Then, 

   

     

     
0

0

d
y t x t

dt

s s y s

x ds
s

s s

 








 

  

 




 

■ 
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5. A primary use of the unilateral Laplace transform is in obtaining the solution 

of linear constant-coefficient differential equations with nonzero initial 

conditions. 

Example 6.28: 
           2

2

0
3 2 ,  0 3,  5

dyd y t dy t
y t x t y

dt dt dt


       

Let    2x t u t . Then we obtain 

             12 2
0 0 3 3 0 2s s sy y s s y s

s
           

       
3 4 2

1 2 1 2

s
s

s s s s s


 

   
  

where  s  is the unilateral Laplace transform of  y t . 

     21 1 3
1 3

1 2
t ts y t e e u t

s s s
           

    

■ 

 

 

6-8 Structures for Continuous-Time Filters 

In Section 2-8 block diagram were employed to show the structure of 

continuous-time filter implementations as described by the corresponding 

differential (or integral) equations. The structure corresponding directly to the 

general differential equation in Eq. (6.60), with 1Na  , was called the direct form 

and is shown in Fig. 6.17 for M N , with 1 / s  denoting each integrator. Note 

that this structure consists effectively of the cascade of two subsystems.  

 

■ Figure 6.17 General continuous-time direct-form structure. 
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The first subsystem implements the differential equation 

0

( ) ( )N kN

kN k
k

d v t d x t
b

dt dt

 ,                    (6.94) 

while the second subsystem realizes the differential equation 

0

( ) ( )k NN

k k N
k

d y t d v t
a

dt dt

 ,                    (6.95) 

with 1Na  . Calling these subsystems 1( )H s  and 2 ( )H s , respectively, we thus 

have 

1 2( ) ( ) ( ) ( ) / ( )H s H s H s B s A s  ,                (6.96) 

where 

0
1

( )
( )

N
k

k
k

N N

b s
B s

H s
s s

 


      
(6.97) 

and 

2

0

( )
( )

N N

N
k

k
k

s s
H s

A s a s


 


      

(6.98) 

As noted in Section 2-8, the direct form in Fig. 6.17 is not canonical because the 

number of integrators (2N) is not minimum. Reversing the order of 1( )H s  and 

2 ( )H s and eliminating the N redundant integrators, we produce the canonical 

direct-form-II, as shown in Fig. 6.18 Note that, in addition to N integrators, this 

canonical form includes 2N+1 multipliers (amplifiers), in general, for an Nth-order 

filter with M = N. 

 
■ Figure 6.18 General continuous-time direct-form-II. 
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Direct-form-II implementations of the first-order LPF and HPF from  

1
( )

1 /
b

b b

H s
s s


 

 
 

,                       (6.99) 

and 

( )
b

s
H s

s 



,                          (6.100) 

are shown in Fig. 6.19 Note that the signs of the feedback multipliers ( )b  and 

the corresponding terms in the denominators of ( )H s  are different, as opposed 

to the feedforward coefficients ( b and 1) and the corresponding numerator terms. 

 

 
■ Figure 6.19 First-order LPF and HPF direct-form-II structures. 

 

There are many other structures (canonical and otherwise) that are useful for 

implementing continuous-time (analog) filters. These structures have various 

desirable properties such as modularity, reduced sensitivity to component 

variation, and/or suitability for integrated-circuit realization. Although we will 

consider only active filter implementations in this section, passive-circuit 

realizations are possible. Two basic modulator structures are the parallel form and 

cascade form. To derive the parallel form, we expand ( )H s  in the partial-fraction 

expansion (assuming no multiple poles) 

1

( )
N

k
N

k k

r
H s b

s s

 
 ,                      (6.101) 

where 0Nb   if M <N. This form for H(s) implies a parallel combination of N 

first-order filters. In general, the poles ks  and reduces kr  are complex-valued, 

complex multipliers would be required in the corresponding implementation. In 

particular, assuming that ( )h t  is real-valued, H(s) can be written as  

1 2 1

( )
L N

k k k
N

k k Lk k k

r r r
H s b

s s s s s s




  

 
       

  ,            (6.102) 
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where ks , k=1,…,L ( / 2L N ) are complex-valued and ks , k=2L+1,…,N, are 

real-valued. To avoid the unnecessary complication of complex multipliers, we 

combine the terms in the first summation to obtain  

1 0
2

1 2 11 0

( )
L N

k k k
N

k k Lk k k

s r
H s b

s s s s

 
   


  

    ,               (6.103) 

where 

2
1 0

1 0

2Re{ } | |
.

2 Re{ } 2Re{ }
k k k k

k k k k k

s s

r s r

 
  

 
 

 

Hence all of the coefficients in Eq. (6.103) are real-valued. Using direct-form-II 

networks to realize each of the terms in Eq. (6.103), we produce parallel form II, 

which is shown in Fig. 6.20 for N odd and L=(N-1)/2. Note that the parallel form 

is also canonical since it has N integrators and 2N-1 multipliers, in general, for M 

= N. If several poles are real-valued (that is, if N-2L ≥ 2), some or all of the 

associated first-order terms in Eq. (6.103) are often combined into second-order 

terms to produce additional second-order sections in the parallel form, which 

increases the modularity of the corresponding circuit realization. 

 
■ Figure 6.20 Nth-order parallel-form-II structure for N odd. 

 

To obtain the cascade form, we instead factor the numerator and denominator of 

( )H s  into products of first-order terms of the form  
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1

1

( )
( )

( )

M

k
k

M N

k
k

s v
H s b

s s













.      (6.104) 

Assuming that 1Na  , as before. (Multiple poles and/or zeros are allowed.) This 

form for H(s) implies a cascade combination of first-order subfilters, but again 

complex-valued poles ks  and/or zeros kv  would necessitate complex 

multipliers. Therefore we rewrite H(s) as  

1 2 1

1 2 1

( )( ) ( )
( )

( )( ) ( )

K M

k k k
k k K

M L N

k k k
k k L

s v s v s v
H s b

s s s s s s



  



  

  


  

 

 
,               (6.105) 

where ,kv k=1,…,K (K ≤ M/2), and ,ks k=1,…,L (L ≤ N/2), are complex-valued 

and ,kv k = 2K+1,…,M, and ,ks k = 2L+1,…,N, are real-valued. The complex 

factors are then combined to produce 

2
1 0

1 2 1

2
1 0

1 2 1

( ) ( )
( )

( ) ( )

K M

k k k
k k K

M L N

k k k
k k L

s s s v
H s b

s s s s

 

 

  

  

  


  

 

 
,              (6.106) 

where 

2
1 0

2
1 0

2Re{ } | |
.

2 Re{ } | |
k k k k

k k k k

s s

r v

 
 

  
    

Therefore, since all of the coefficients in this expression are real-valued, H(s) can 

be implemented as a cascade of first- and second-order sections with real 

multipliers. Again, if there are several real-valued poles and/or zeros (i.e., if 

N-2L≥2 and/or M- 2K≥ 2), the corresponding factors are usually combined in pairs 

to produce additional second-order sections. Realizing the resulting first- and 

second-order sections using direct-form-II networks, we produce cascade form II, 

shown in Fig. 6.21 for M = N (odd) and L=(N-1)/2. Note that the cascade form is 

also, in general, canonical. 

 
■ Figure 6.21 Nth-order cascade-form-II structure for N odd. 
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