EE3610 Signals and Systems Fall 2011
Chapter 4 Fourier Analysis for Discrete-Time Signals and Systems

4-1 Eigenfunctions and Eigenvalues of Discrete-Time LTI Systems

x[n]=z y[n]

—»  h[n]  —>

m Figure 4.1 Discrete-time LTI system with input X[n] = 2", where z is a complex
number.

sl =x{n]bln]= X, [kJs{n-K]= X, [z
= z”Z:’:Wh[k]z’k =2"H (2)

= y[n]=H(z)x[n] (4.2)

(4.1)

where H(Z):Zw h[k]z’k is the eigenvalue associated with the

k=—0

eigenfunction z".

Note:
Q

x[n]=> az; > y[n]=>aH (Zk)ZQ (superposition property)  (4.3)
k

k

@ In this chapter, we restrict ourself to the case of z" with |Z|=1, i.e., the

complex exponentials of the form /",

4-2 Fourier Series Representation of Periodic Discrete-Time Signals:
Discrete-Time Fourier Series (DTFS)

1. Discrete-time Fourier series representation

Harmonically related discrete-time complex exponentials:
@[n]:e Nok=0, £1, £2,... 4.4)
where fundamental frequency = Q, =27z/N

fundamental period =N

There are only N different signals in the set of ¢, [n], k=0, 1, +2,....

ikeN)2Zn 3T

(e NT=e N g [n] =4, [n], ris an integer.)
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If x[n] is periodic with period N, then the discrete-time Fourier series

representation of X[n] is

.27
n

x[n]= > adgn]= > ae N (4.5)
k=<N> k=<N>
where k =< N > means K varies over a range of N successive integers, e.g.,
0,1, 2,3,..., N—1
1,23 4,..,N

2,3,4,5...,N+1

Note: Discrete-time Fourier series coefficients are the sampled values of the

discrete-time Fourier transform.

2. Determination of the discrete-time Fourier series coefficients

If x[n] is periodic with period N and its Fourier series representation is

27
x[n]= > akeJkWn (4.6)
k=<N>
1 -k
then a, =— > x[nle "N .
n=<N>
Proof:
.27
x[n]= > ae N (4.7)
k=<N>
—jrz—”n jkz—”n —jrz—”n
dox[nle N =>] > ae N e N
n=<N> n=<N>\ k=<N> (48)
_ Z Z a ej(k—r)%[n _ Z a Z ej(k—r)%[n
n=<N>k=<N> “ k=<N> kn:<N>
N , k=mN
N-1 ik i "
...znzoe N —J]—|e N (4.9)
1—ej% - , otherwise
ik-n®n [N, k=r+mN
’ = 4.10
n:<ZN>e {O , otherwise ( )
Thus,
—J'rzln 1 _jrzln
> x[n]e "N :Nar:arzﬁ > x[n]e "™ (4.11)
n=<N> n=<N>
[]
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Note:
@ The discrete-time Fourier series coefficients are often referred to as the

spectral coefficients of x[n].
@ a =3,y

3 3 a8 8, a8 ...

nine

N=5

m Figure 4.2 The discrete-time Fourier series ax will repeat periodically
with period N.

@ The discrete-time Fourier series representation is a finite series with N
terms. (Only N successive elements of the ax sequence are used in the

Fourier series representation.)

%
#

m Figure 4.3 The discrete-time Fourier series are only N distinct terms
that are periodic with period N.
Example 4.1: x[n]=sin(Q,n), period = 27/Q,
Three situations:

27/Q), is an integer. o
i i ) = periodic
27/Q), is aratio of integers.

27/Q), is an irrational number. = aperiodic

27 om
(1) 27z/90=|\|:>x[n]=sin(%”n)=2ij,(elN —e N j

L2
x[n]= > ae N’
k=<N>
=a =—anda, ——L_
2]

and the remaining coefficients are zero.
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(2) 27/Q,=m/N,mand N have no common factors.

= Q, =2zm/N
. 2 . 2
= x[n] =sin 2mnn =L_ e N _g "N
N 2]
1
:>am:—_ andafm:——_
J 2)

A =a,,;
a, =

Example 4.2: Discrete-time periodic square wave

10 T

_Nl 0 N1 N
For k=0, £ N, £2N.,...

1 S N QY 2
a, :Wn;‘)x[n]e ﬁzn:—Nl
_ikZ" (m—
L5 O )
L2
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o 2N, +1 .
. | 1-]e N sin 2ﬂk(N1+]/N
_ 1 e 2

.27 - :
N e N sin(277k/(2N))
For k=0, +N, £2N.,..., akzzN’il”.
Note: Discrete-time counterpart of the sinc function is of the form

sin(8x)/sin(x).
The coefficients ax for 2N; + 1 = 5 are sketched for N = 10.

Na,, N =10

4r / \ — % Na / \ ]

sin(rk/2)/sin(mk/10)

(. /
27/ \ / \\

:/ \x@ /T\K 1/ |
T U

2 0 2 4 ° i ’ ’
k
sin((2N1 +1)Q/2)|
N =
= Na, sin(Q/z) ‘Q=2”k/’\‘ |

3. Approximation of a discrete-time periodic signal using a truncated Fourier

series
N 2z

2 N ]

2 Zk: N &8 , N is even
— N —
x[n]= > ae = - . 4.12)

k=<N> — jk==n .

Zleake , N is odd

L2

A=Y ae" v, M<N/2 or M<(N=1)2 (@413
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(1)

2)

When M — N/2 or (N—l)/2 , the approximation of x[n] by
R[n] is shown in Fig. 4.4, where x[n] is a square wave. There are
no convergence issues and no Gibbs phenomenon.

(Gibbs phenomenon: it exists in the continuous-time case and the

ripples in the discontinuity do not disappear with the increasing terms
of summation.)

xinl W=

18 - Q 9 18 n
ial
| M =2

18 -8 I ] T
inl
¥ [nj M =3

-18 —a Q O 18 n -
lch
x[n] =4

18 ~f 0 a 18 n

(d)

m Figure 4.4 Partial sums of Eq. (4.13) for the periodic square wave
withN=9 and 2N;+1 =5: (a)M=1;(b)M=2; (c) M=3; (d) M =4.

In general, there are no convergence issues with the discrete-time
Fourier series. (- Any discrete-time periodic sequence X[Nn] is
completely specified by a finite number of parameters, namely the

values of the sequence over one period.)
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4.
'kz—”n 'kz—”n
x[n]= > ae M —y[n]= >, akH(j%JeJ N (4.14)
k=<N> k=<N> N

27k . ~k¥n i - -

where H| j :Z h[n]e NTol.ele is an eigenfunction
N " superposition property
Example 4.3:
a|<1

{h[n]:a”u[n],

x[n]=cos(2zn/N)

1 _j2rk
= — ae N <1
l—oceiJT
1 27 i 1 27 -iEn
= ylnl= (i e e gH (iR e
27 2z
=l 1 2 elW” % 1 27 _JW u
1-ce " l—ae' N

4-3 Fourier Transform of Aperiodic Discrete-Time Signals: Discrete-Time
Fourier Transform (DTFT)

1. Consider a general aperiodic sequence x[n] which is of finite duration.
From this aperiodic sequence, we can construct a periodic sequence i[n]

for which x[n] is of one period.
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N — o= x[n] - X[n]

(b)
m Figure 4.5 (a) Finite duration signal x[n]; (b) periodic signal X[n]

constructed to be equal to x[n] over one period.

Discrete-time Fourier series representation of X[n] is

K[n]= > ae (4.15)

k=<N>

1 B “k*n

a,=— >, %[nle "M (4.16)

N k=<N>
- x[n]=%[n] for |n|<N, (4.17)

1 —n, S TELE [ _k2Eq

.'.akzﬁzn?le[n]e N :Wzn}wx[n]e N (4.18)

Defining the envelope of Na, as X (ejQ ) , we have

X ()=, x[n]e™ (4.19)
Na, = X (ejQ )‘szk {or a, :ﬁx (eijﬂk D (4.20)

The coefficients ayx are proportional to equally spaced samples of the

envelope function X (ejQ ), where the sample spacing is equal to 27/N .

= X[n]= z %X( j(kQO))eijOn “21)
k=<N>
where €, :2_”
N2
. (4.22)
>~([n] :ik_ZN X (ej(kQO))eijOnQO

As N > o, )?[n] - x[n] , and the above equation becomes a representation
of x[n] and the summation operator becomes the integration.
(Q, > dQ, kQ, - Q)
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Discrete-time Fourier transform pair

x[n]:i 2”X(ejQ)ejQ”dQ (synthesis equation) (4.23)

X (ejQ) = z:;m X[n]e’jQ” (analysis equation) (4.24)
X (ejQ) is referred to as the discrete-time Fourier transform of x[n] (or
spectrum).

2. Explanation of the concept of spectrum x[n] is a linear combination of

complex exponentials infinitesimally close in frequency and with amplitudes
X (e!)(dey/27).

3. The convergence of the discrete-time Fourier transform is guaranteed if

x[n] is absolutely summable or if the sequence has finite energy, i.c.,

> [x[n]<eo (4.25)
or
> K] < (4.26)

4. The major differences between the continuous-time Fourier transform and the
discrete-time Fourier transform:

(1) The discrete-time Fourier transform is periodic, and the
continuous-time Fourier transform is aperiodic except for some special
cases. (for example, the periodic impulse train)

(2)  The discrete-time Fourier transform has a finite interval of integration
in the synthesis equation, while the continuous-time Fourier transform

has an infinite interval of integration in the synthesis equation.

x(t)=i iX(ja))e"“’tda) x[n]=i 2ﬂX(eJQ)ejg”dQ w27

X(jo)=[ xe“dt  X(e?)=37  x[n]e

—00
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Example 4.4: x[n]=a", [a|<1

X (ejQ) _ Z:’:_w X[n]e—an _ z::_w a\n\e-jgn _ z:zo ale i 4 z;i_w g "e N
=Y, Ay (ae)" (m=-n)

I SR G 1-a’
l—ae® (1-ae® 1-2acosQ+a’

x[nj=d", a=0.5

o0&+ .
06+ .
0.4+ .
0.2t T T 1

[ ooy O ':P ? ? ':P LI (VR R Y i)

am 8 B 4 2 0 2 4 B g 10

n
3
2+ 4
(&
=

1+ 4

D 1 1 1 1 1

-3 2 1 0 1 2 3

! lized b
{normalized by m) -
Example 4.5:
L |n[<N
x[n] = (rectangular pulse)
0, [n|>N,

X(el)=d " e =" "0 e N (m=n+N,)

1 — 10N+
—eloN, ZZNI g-iom _ qion,
m=0 l_e—JQ

_ejQN, e—jQ(2N1+1)/2 ejQ(2N1+1)/2_e—jQ(2N1+1)/2 - sin(Q(2N1 +1)/2)
B g i2 g2 _gmi02 B sin (Q/2)
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KEn

L1 (narmalized by m

“Discrete-time counterpart of the sinc function”: periodic with period 27 .

Example 4.6: Let x[n]=4[n], then X (ejQ) =>"

N=—o0

S[nle " =1

1 Wn  A—jWn :L .
7W —jzﬂn(e e ) ”nsm(Wn)

Let )A<[n]:i ! ejQ”dQ:i._ieanW _
2 W 27 jn

The approximation of x[n] by k[n] is shown in the figure below. As
W — 7z, X[n]— x[n] with no Gibbs phenomenon.
Note: There are no convergence problems in the discrete-time Fourier

transform synthesis equation.

03 04
a2 _ 03
0z
0.1 -
T 0.1
o R W@é ({)% v 0 i, , B 00,
2 & O wems O AP B o0
a1 : . o : . .
20 0 o 10 20 10 10 2n
@ ()
0.6 08
04 p 08
04
02 ,
2 2 02
0 ,-QWQ QL@,@,\ o [ ¢ ¢
o owemz]® & e ow:swaf"-"é) (LOOVO\”
e 10 ] 10 20 % 0 0 10 20
© (ch
1 1
0.s I 0s
5 R d N o
a4 ha
8 a0 ] [G] 20 8 0 0 10 0
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4-4 Periodic Signals and the Discrete-Time Fourier Transform

1.

2.

Fourier series coefficients as samples of the Fourier transform of one period

Let X[n] be a periodic signal with period N, and let x[n] represent one

period of X[n],i.e.,

%[n], M <n<M +N -1
x[n]= . (4.28)
0 , otherwise
where M is arbitrary. Then
iK2E
Na, = X (e N ) (4.29)

where ayx is the discrete-time Fourier series coefficients of )?[n] and

X (ejQ) is the discrete-time Fourier transform of x[n] .

= Nay correspond to samples of the Fourier transform of one period.
When M is varied, X (ejQ) is changed. But the values of X (ejQ) at the

sample frequencies 27k/N do not depend on M.
Example 4.7:

Let X[n]=>" &[n—kN],
n=<N>
Let x[n]=6[n] (ie.M=0). Then, X,(e'*)=1.

Let x,[n]=8[n—N] (i.c.,0<M<N). Then, X, (ejQ) _eion

Clearly, Xl(ejg);ﬁ Xz(ejQ). However, at the set of sample frequencies
Q=27k/N, Xl(ejQ) and Xz(ejﬂ) are identical. n

The discrete-time Fourier transform for periodic signals

Consider the signal

x[n]=e’*" (4.30)
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X (eJQ) = Z:]O —00 X[n]e_JQn = Z::—ooeJQone_JQn

_ Z @an _o (4.31)
We consider the discrete-time Fourier transform
X ()= 275(Q-Q,-2xl) (4.32)
Then the inverse discrete-time Fourier transform X (ejg) is
1 . )
x[n]=— 278 (Q-Q, —271)e’*"dQ
[n] 27 an':-w ( ‘ ) (4.33)

=W — I (O =Q + 271, with | =T)
.+ Any interval of length includes exactly one impulse in the summation.
y g y p

More generally, if X[n] is the sum of an arbitrary set of complex exponentials,

1.€.,
x[n]=be’" +b,e" +... 4 by elw" (4.34)

then

X(e)=bY 225(Q-Q,-27l)+b,y " 275(Q-Q,-2xl) w39)
35
++by > 275(Q-Q,, —27l)

Note:

@ e/ is periodic when 27/Q, =m/N is a rational number or integer.
@ x[n]=be!*" +b,e!™" +...+b,e!™" is periodic only when all of the
27/Q; =m/N are rational numbers or integers.

@ If x[n] is a periodic sequence with period N, then x[n] can be

represented as

i i2G5n iN-DCEn
x[n]=a,+ae N +ae +ee+ay e

(eJQ) aoz 272'5 Q-2xl +az 27[5(9—%—27[@

+..-+aN_IZ|°°_w27r§(Q—(N —1)%—%]
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2ra, =2ra_y 2ra, 2ra, =2ra,
27 0 27
(a)
2ra, =2rxa_y,, 278, 2ra, = 2ray,,
2 2z 27
%) e (5 G
27 2
_(N_l)i) 2z ( N—l—”)
(-v-n% : (N-1)2
v v
2ray_, =27a (© 2ra 27ay
2ra 2ra, 2ra
IZ;IEIN+1 ( 27a, WZ/Z&N+l
U UL AL
27 (d) Vo 27
2ra ., 2ra, 2ray_,

m Figure 4.6 Fourier transform of a discrete-time periodic signal. (a) the
first summation on the right-hand side of Eq. (4.37); (b) the second
summation on the right-hand side of Eq. (4.37); (c) the final summation
on the right-hand side of Eq. (4.37); (d) the entire expression of X(Q).

3. The discrete Fourier transform (DFT)
Let

x[n] =0, outside the interval 0<n<N, -1 (4.38)
X[n]=x[n], 0<n<N -1 (4.39)

where X[n] is periodic with period Nand N > N,.

x[n] l l X[n] {
0 N, -1 0 N,-1N-1

m Figure 4.7 A nonperiodic signal x[n] with finite duration and periodic

signal X[n] with period N.
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The Fourier series representation of X[n] is

.27
[n]= > akeJkWn (4.40)
k=<N>
where
1 5 ka1 N-1 -k
a,=— > X[nle "N ==>""'x[n]e N (4.41)
N k=<N> N n=0

Let X [k]=Na,. Then we can define the N-point discrete Fourier transform

(DFT) of x[n] as

XK= x[n]e "N k=012, N =1 oo DFT (4.42)
with
x[n]=ﬁzs_olx[k]ejk2’“ﬂn N=0,12,...,N—1 - Inverse DFT  (4.43)
Note:

@ The original finite duration signal can be reconstructed from its DFT.

@ The length of DFT is chosen approximately so that fast algorithms can
easily be used for the computation. (Fast Fourier Transform algorithms)
For example, a power of 2 (2" =N ) is often chosen as a transform
length.

4-5 Properties of the Discrete-Time Fourier Transform
1. Periodicity

The discrete-time Fourier transform is always periodic in Q with period

2r .

X(e)=3"" x[n]e
1 o) jon (4.44)

x[n]:gzﬂx(e )e’"dQ

2. Linearity

X [n]«T—> X, (ejQ) (4.45)
X, [n]«Z> X, (e) (4.46)
alxl[n]+b2x2[n]<i>alxl(ejQ)+b2X2(ejQ) (4.47)
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3.

Symmetry properties

If x[n] isa real-valued sequence, then

D K )

) Re{x (eJQ)} - Re{x (e‘“”)}: even function
3) Im{x (e )} - —Im{x (ej(‘g))}: odd function
@ [ (o)

(5) ZX(e")=—-2X(e!)

6) % [n]«ZoRe{X (e

(7 % [n]«Z— ] Im{X (e )}
Time shifting and frequency shifting

If x[n]«Z—>X (eiQ),then
x[n—n,]«Z>e X (ejQ)
e!*"x[n]«Z— X(e“Q‘QO))

i 2”X(ej(QQO))eandQ—i 2”X(ejQ) J(+Qy)

1 .
el | X eJQ el Mg Q) = e!™"x[n]

2792

Differencing and Summation

x[n]«Z—>X (e*)

(1) x[n]=-x[n-1]«T>(1-2)X ()

@ y[n]=>"  x[m]=x[n]*u[n]:

y[n]+c—y[n-1]-c=x[n]=Y (e!)(1-e"*)=X (e')
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(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)
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=Y (em) = 1—;10 X (ejQ). This is partly correct!

S0l X (@) eax (o) Ty s(@-2m)

This term reflects the dc or average
value that can result from summation.

(17>27Y 6(Q-27k))

(4.61)
Note:

@ Average value (or dc value) is %X (ej'o) = %Zn x[m].

m=—o0

Example 4.8:

x[n]=
ufn]=2,_, s[m]«>
[

su[n]+c—uf[n- ]—c:5[n]

s[n ](—)X( ):1

- F{u[n]} = 1—;‘19 +g(e')

where ¢ (ejQ) accounts for the dc value of u[n].

u[n]:(u[n]—%—%é[n]jJr%Jr%é[n]
oadpe oo 1] oven part, ug [1]
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F {u,[n]) :g{u[n]}_%zﬂzf_%a(g_zﬂk)_—

+g(e‘Q) ﬂz 5(Q-27zk)-

e
( _lj+g(elg) 2y 5(Q-27k)
|

1- cosQ+Js1nQ 2

1- cosQ—jst_l o) oc 3
Eyowrs 2j+g(e )-7y.,  5(Q-27k)

=—2__st:(1)§2 (e’Q) ﬁz Q 27rk

- oF {uo [n]} is purely imaginary.
(eJQ) ﬂz 5(Q—27k)

v L XM ]

g'{z } = g'{x[n } 9'{ } (convolution property)

x(elg)[1 T Q—27rk)}

B 1_:,—19 X (e")+xX (e) >,  5(Q-27k)

(X(e') is periodic with period 27.) ]

6. Time and frequency scaling

x[n]«Z— X (eiQ) (4.62)
(1) x[-n]«Z>X (ej(’Q))

S e =X nlet (m=-n)
“X e

(4.63)

2) x(at)«T—> |;| X (j :j: continuous-time case

In the discrete-time case, the corresponding property is quite different.
If a is an integer, x[an] consists only of part of x[n]. What

happens if a is not an integer?
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Let k be a positive integer, and define

x[n/k] , if n is a multiple of k
X [N]= L , (4.64)
0 , if nis not a multiple of k
x[n] sl
[ ] [ ]
11T
3-2-110123 S54-32-1 1012 345

m Figure 4.8 The signal X(z)[n] obtained from x[n] by inserting

one zero between successive values of the original signal.

X (€") =200 %o [n]e ™™

= X [rk]e e (x(k) [n]=0 whenn= rk) (4.65)
X e x (o)

X [n]«<Z> X (') (4.66)

%/_J
periodic with period 27/k

7. Differentiation in frequency

X[n]«Z>X(e?)=3" x[n]e™ (4.67)

dX (ejQ) ® H - jQn H dX (ejQ) ® -jQn
5 =—> " jnx[n]e " = JT—Zn:_w”X[”]e (4.68)

dXx (e’
= nx[n]«Z— ] d(;; ) (4.69)
8. Parseval’s relation
For aperiodic signal:

x[n]«Z>X (") (4.70)
- =L Ix(e®)d 4.71
> |x[n] =), (e )‘ Q (4.71)
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For periodic signals:

x[n]:k:zh:I akejkWn (4.72)
1
LS ol - 3 @7
n=<N> k=<N>
Proof:
© © * o 1 * j jQn
(1) zn:_w‘x[n]‘z =>" x[n]x [n]=zn:_wx[n]g X (e“’)e“Q dQ

=1, X" (ejg)(zzl_w x[n]e‘jg” )dQ

1 s
=37 X (1) X (e =2 [

(elﬂ)‘ dQ (4.74)

LS ] T e
= a (ﬁ > x[n]ejkz’“ﬁnjz > aa, (4.75)
:k<ZN>|ak|2
|
9. Convolution property
If y[n]=x[n]*h[n], then
Y (e)=X(e")H (e) (4.76)
where X(e"g):g{x[n]}, H(ejQ)zg{h[n]},and Y(eiQ)zg{y[n]}.
Proof:
y[n]=>." _ x[m]h[n—m] 4.77)
Y(‘ajgz):g’{y[”]}ZZ:):,@DV[”]E"“n
=2 2am o X[m]N[n—m
_Zm __x[m] Zn h[n m]e " (4.78)
X[m]H (e¥)e " =H (e!)> " x[m]e "

—H<mem>x<eﬁ K (6 H (e)
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(1)  Periodic convolution
Consider the periodic convolution of two sequences % [n] and X,[n]
which are periodic with the same period N. The periodic convolution
of %[n] and X,[n] is defined as
J[n]=%[n]® %[n]
= % A[mlx[n-m) )

m=<N>

where §[n] is also periodic with period N.

’
L o
e
e
e
e
e
o
e
L o
e
e
e
e
e
o
’
L o
e
e
e
e
e
——
\J
3

it

(Circular shift)

e——  ————— | —————— — —

- ————————————————— = — =

m Figure 4.9 Procedure in forming the periodic convolution of two

periodic sequences.

For periodic convolution, the counterpart of the convolution property

can be expressed in terms of the Fourier series coefficients.

Let
%[n]= D ae’™  (Q,=27z/N) (4.80)
k=<N>
%[n]= D belr (4.81)
k=<N>
y[n]= D ce’ (4.82)
k=<N>
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Then
¢, = Na,b,
Proof:
slnl= ¥ &[n]x[n-m]
C, = ﬁngl\;> y[n]e e

=ﬁ S R [m]%,[n-mpke

n=<N>m=<N>

= > Xl[m]ﬁ D % [n—m]e ke

m=<N> n=<N>

= 3 R[m ¥ g [n]ete
m=<N> N n'=<N>

= > % [m]e**™, = Napb,
m=<N>

Fall 2011

(4.83)

(4.84)

(4.85)

(2) Let x[n] and x,[n] be two finite-duration sequences, and suppose

that

X,[n] =0, outside the interval 0<n<N, -1

X,[n] =0, outside the interval 0<n<N, -1

(4.86)

(4.87)

Let y[n]=x[n]*x,[n] (aperiodic convolution). Then we can find

y[n] =0, outside the interval 0<n<N, +N, -2

(4.88)

Choose N >N, +N,—-1 and define signals X[n] and X,[n] that

are periodic with period N and such that

%[n]=x[n], 0<n<N-1

%,[n]=x[n], 0<n<N-1

(4.89)

(4.90)

Let §[n]=%[n]®X,[n] (periodic convolution), then we obtain

y[n]=9[n], 0<n<N-1.
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= The periodic convolution Y[n] equals the aperiodic convolution
y[n] over one period.
An algorithm for the calculation of the aperiodic convolution of X [n]

and x,[n]:

(a) Calculate the DFTs X, (k) and X,(k) of %[n] and %,[n].
(b) Multiply these DFTs together to obtain the DFT of y[n]:

Y (k) =X, (k)- X, (k) (4.91)
(c) Calculate the inverse DFT of Y (k). The result is the desired

convolution Y [n] .

.27
n

(%, (k)= Na, = S nle N k=012, ,N-1  (492)

27
n

%, (k)=Nb, =Y [n]e "N k=012, ,N-1  (493)

Y (k)=Nc, =N’ahb, =X (k)-X,(k),k=0,12,....N -1 (4.94)

1 iy 4

L[] :WZE_‘;Y(k)e‘kN”, n=0,12,. N-1 (4.95)
Example 4.9:
n[n]=auln]e- T H () = — 5
)=l X (e°) = g
)= H ()X )= i)
If a=p,
V(") 1—02-19 ' 1—ﬂBe-iQ
A-—% g-_P
a- a-p
=)= auln)s 2o
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If a=p,
).
Y(ejg)z(l—ale‘jgj =éejgd%(l—ale‘jgj
a”u[n]@ﬁ
na"u[n] 2> ,%(#]
(n+1)a™'u[n+1]«Z— je’* ddQ(l—aleij

(time shifting property, X[n—n, ]« Z—e "X (ejg))
y[n]=L(n+1)a"u[n+1]
(24
=(n+1)a"u[n+1]
=(n+1)a"u[n] (~"n=-1, n+1=0)

Example 4.10:

LO<LN<N-1

0, otherwise

Lot x[n] =[]

(i) Find §,[n]=%[n]®%[n] via DFT: %[n]=%[n] is
periodic with period N. %[n] is equal to X,[n] for

0<n<N-1.

.2 —
K=K (-3 e

0, otherwise

0, otherwise

ﬂ(k):il(k)gz(k):{w, k=0

L2
Y'l[n]ZﬁZkN;;ﬂ(k)ejan =N, 0<n<N-1
(i) Find yz[n]: Xl[n]*xz[n] via DFT:

Since 2N >(N + N —1), we use 2N-point DFT and IDFT
for calculating y,[n].

.27
X, (k)= X, (k) =" e "Nk =0,1,2,... 2N -1
Y, (k) =X, (k)X,(k), k=0,1,2,...,2N -1

27
jk=n

Vo [n] === 3, (k)e" N, 0<n<aN -1 .
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10. Modulation property

y[n]=x[n]x,[n] (4.96)
X [n]«Z> X, (&) (4.97)
X, [n]«Z> X, () (4.98)
y[n]«Z-Y (&) (4.99)
. 1 . o 1 . .
:>Y(e’9)=g X (e) X, (e 9>)de=gxl(elﬂ)® Xz(em)(4.100)
(periodic convolution)
Proof:
V(R =X ynle ™ =X x[nlx[n]e * @101
1 .
xl[n]:g %, (e")e""de (4.102)
. . 1 N o o
.-,Y(eJQ):zn__mxz[n]{g N, Xl(ew)eﬂ9 d@}e jo
_ 0\(3 -i(@-o)n
- X () (X % [n]e 0 do (4.103)
1 | o
=g e X (6) X (1) d6
|
4-6 Duality
1. Discrete-time Fourier series
27
x[n]= > akeJkWn (4.104)
k=<N>
1 ~k%Zn
8 = D x[n]e "N (4.105)
n=<N>
. 2z
f[m]:ﬁ > g[r]e_JmWr (4.106)
r=<N>

(1) Letm=Kk and r = n, the sequence f [k] corresponds to the Fourier

series coefficients of the signal g[n], i.e.,
L2

g[n]«7— f [k]=ﬁn_ZN: g[nje "' (4.107)
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(2) Letm=nandr=-k the sequence f[m] becomes

f[n]=ﬁ > g[-k]e" " (4.108)
f [n]@ﬁg (K] (4.109)

(ﬁ g[-k] corresponds to the Fourier series coefficients of f[n].)
If
x[n]«Z—a, (also periodic) (4.110)

There are some notes about it
Note:
@ The duality property implies that the Fourier series coefficients for the

.. 1 . .
periodic sequence ay are the values WX[—n] (i.e., are proportional to

the original reversed in time).

@ The duality property implies that every property of the discrete-time
Fourier series has a dual.

Example 4.11:

]
2. Discrete-time Fourier transform and continuous-time Fourier series
1 . .
x[n]==—— X(e’Q)eJQ”dQ
27 P27 Discrete-time Fourier transform (4.111)

X (ejQ) =>" x[nJe’™"
x(t) = me a el

1 _ Continuous-time Fourier series (4.112)
8 = x(t)e M 'dt
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Let f (u) represent a periodic function of a continuous variable with period

27 ,and let g[m] be a discrete sequence related to f (u) by
f(uy=>" g[m]e " (4.113)

() u=Q andm=n: f (ejQ) is the discrete-time Fourier transform of
g[n].ie.,
g[n]«Z— f (&) (4.114)

(2) u=t and m=—k: g[-k] is the Fourier series coefficients of f(t),

i.e.,
f(t)«Z>g[k] (o, =27/T,=1) (4.115)

Note:

@ Since X (e‘n) is a periodic function of a continuous variable, we can
expand it in a Fourier series with @, =1 (T,=27) and Q, rather than
t, as the continuous variable.
= From the duality relationship, we can conclude that the Fourier series

coefficients of X (ejQ) will be the original sequence x[n] reversed in

order.
X[n]«Z— X (%)« x[k] (4.116)
1
o py % (T)x, (t-7)dr "> ab, (4.117)
><[”]>’[“]<L>2L X (") X, (e )de (4.118)
72' T

@ Summary of Fourier series and transform expressions (See Table 4.1)
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Table 4.1 Summary of Fourier series and transform expressions

Continuous-time

Time domain Frequency domain
Courier X(t) = k;ﬁ a el a, = % ITO x(t)e *'dt
Series continuous time discrete frequency
periodic in time aperiodic in frequency
_ X(t) = ij X (jw)e'dew X(jo)= j°° x(t)e I*dt
Fourier 2 Y= —o
Transform continuous time continuous frequency
aperiodic in time aperiodic in frequency

Discrete-time

Time domain Frequency domain
j 1 —jk(2z/N)n
_ xin]= > aeke vr a,=— > x[nJe KN
Fourier k§> “ “ ngN:>
Series discrete time <:Ea@:> discrete frequency
periodic in time periodic in frequency
1 (o QN A jOt iQ c —jon
_ xn]=—1_ X(e")e™dQ XE€e")=> xnle’’
Fourier 27 j—w nzz_w
Transform discrete time continuous frequency
aperiodic in time periodic in frequency
: duality

4-7 The Polar Representation of Discrete-Time Fourier Transforms

x[n]«Z>X (") (4.119)

X () =[x (" )‘e‘“(em) (4.120)

where ‘X (ejQ )‘ and /X (ejg) are the magnitude and phase of X (ejg).

1. Both \x(eiﬂ)\ and ") are periodic with period 27 .

2. ‘X (ejQ )‘ contains the information about the relative magnitudes of the
complex exponentials that make up x[n] .

3. Z£X (ejQ) provides a description of the relative phases of the different
complex exponentials in the Fourier transform x[n] . A change in the phase

function of X (ejQ) may lead to a distortion of the signal X(t) .
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(1)

2)

Linear phase: the phase shift at frequency Q is a linear function of Q.

x[n]«Z— X (e‘“)
_ _ ) ) (4.121)
= X(e’Q)e’"‘Q :‘X (e‘Q)‘e‘(‘X(Q)WQ) «Zsx[n+m]

x[n] — g™ —» x[n+m]

m Figure 4.10 Illustration of the linear phase system.

“No distortion occurs.” The output is simply a shifted version of the
input.

Nonlinear phase: the phase shift at frequency Q is a nonlinear
function of Q.

j,n

Example 4.12: x[n]=e'*"+e

q[n] - x[n]

Xi[n] — ejglnele + ejﬂznejZQ2

% [n+1] % [n+2]

“Distortion occurs.” The delays of different frequency elements may
be different. ]

4. LTI systems

X () —H(eM)—» Y(e)

m Figure 4.11 The representation of an LTI system in frequency domain.

Y(e)=H(e*) X (e) (4.122)

where H (ejQ) is the frequency response.

‘Y (ejg)‘:‘H(ejQ)HX(ejQ)‘ (4.123)

2Y (%)= ZH (e")+ 2X (&) (4.124)

Note: The magnitude of the frequency response of an LTI system is

sometimes referred to as the gain of the system.

5. Graphical representation of the discrete-time Fourier transform

Plotting ZH (e"Q in radians for —7<Q <7

Plotting ‘H (e"Q )‘ in decibels (20log,,

H (eiQ)‘)for r<Q<x
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If the signal (or function) h[n] is real, we actually need plot H (ejQ) only

for 0<Q<7. For —z<Q<0, we can calculate H (ejQ) using the
relations
‘H (e’ )‘ - ‘H G )‘ (4.125)

ZH (ej(-")):—m (eiﬂ) (4.126)

4-8 The Frequency Response of Systems Characterized by Linear Constant—
Coefficient Difference Equations

1. Calculation of the frequency and impulse responses
N M
Zk:oaky[n_k]:Zk=0bkx[n_k] (4.127)

Assume that the Fourier transforms of x[n] , y[n] , and the system impulse

response h[n] all exist.

x[n]«Z>X (") (4.128)

y[n]«Z—Y (&) (4.129)

<
—_
(9]
el
SN—

h[n]«-Z—H ()= X (o) (4.130)
=2 oae V() =3 be "X (e) (4.131)
iQ M —jka
—H (ejQ)= Y (e ) _ b’ “4.132)

X(e") Xlaet

Example 4.13: y[n]—%y[n —1] +%y[n —2]=2x[n]
V(€)= Te (@) Je iy () =2x (e7)

Y (ejg)(l—%e‘“ +%e‘mj =2X (&)

Y(ejg) ~ 2
X (ejg) ) j-3gioy Lo
4 8

:H(ejg)z
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Y i 1 i i
& H(e")= —=l+ae @ +a’e 4., [a|<]

1-ae
h[n]=4&[n]+as[n-1]+a’s[n—-2]+---=a"u[n]

@ au[n]«T>

1—ae '®’ al<l

2
i G
2 4
1

x[n]:(zjn u[n]«Z— X (&)= 1

Example 4.14: H (e?)=

(e) e ()
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B, = (1 —lij (v) __ 2 S =8
2 V=V, =2 ( 1 j
2 [——v
4 V=2
—4 -2 8

o1 jad (1
° X(elg)_m_gepd_ﬂ(l—aemj

euln)= '1—aIeJ'Q

na"u[n]«Z— j%(l—ale‘jgj

(n+1)a™u[n+1] 2 jem%(l_;e_m]

(n+1)anu[n+1]<L>i'ep%(l_;e_p]= (l_aijg)z
1

= (n+1)a"u[n]«Z >(1—ae‘j9)2

( (n+1)a"u[n+1]=0 whenn = —1)

2. Cascade- and parallel-form structures
(1) Cascade form

H (eiﬂ) _ bOHE:l(l-i_'ukeijQ)
aOH:':l(ane‘jQ)

where g, and 7, may be complex, but they then appear in
complex-conjugate pairs.

(4.133)

Let M=N . Multiplying out (1+ﬂke_m)(1+/‘;e_m) and

(1 +17,e7° )(1 + n;e‘jg) , we obtain
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L+ (+ a4 ) +|u [ e =14 Be @+ ge ™ (4134)

and
1+ (nk + 77:)6*"9 + |7 |2 e =1+, +a, e (4.135)

|2 are all real.

where (/,zk+,u:), ,ukz, (ﬂk +77:),and |77k
P -iQ -j20 N-2P -jQ

H (ejQ) - &' H':?_l(l-i_ﬁlke—JQ +ﬂ2ke—1'2Q)Hl:\l_12Q(1+ﬂke—fQ) (4.136)
Eh) 1_[k=1(1+051keJ +a,e’’ )szl (1+77keJ )

where the coefficients are all real.

Note:

@ The frequency response of any LTI system described by a linear
constant coefficient difference equation can be written as the
product of first- and second-order terms.

@ The LTI system can be realized as the cascade of first- and

second-order LTI systems.

(a) Realization of a second-order LTI system

oy _LtBe g e V(e
H(e")= 1+aite‘jg+az:e‘jm T X (e)

(4.137)

Y(e9)[ 1+ o +an e =X (&) 1+ B,e "+ B,e77 | (4.138)

y{n] {1+ y[n-2]=x{n] + Ax{n-1]+ Aux(n-2] 4.139)

y[n]=-a, y[n—1]-ayy[n-2]+x[n]+ B x[n—1]+ By X[n-2]

w[n]

x[n] —»%@—b y[n]

S
e |
Y
S
| P

m Figure 4.12 Realization of a second-order LTI system with

(4.140)

direct form Il for cascade structure.

(b) The first-order terms can also be realized using the second-order
structure with f,, and «,, equal to zero.
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(2) Parallel form
H(e")= +Z

Adding the pairs involving complex conjugate 7, ’s, we obtain

oy b Q r,+r.e° N9 A
H(e!)="N4 Ok 1k — — X (4.142
( ) aN zk:l 1+alke—]Q +a2ke—12§2 zk:l 1+77ke—]Q ( )

. ‘1+77e e (4.141)

where all the coefficients are real.
We can realize the LTI system using a parallel interconnection of first-
and second-order LTI systems.
o+ e
1+, +a,e

Realization of H (ejQ) -

1 T,

x[n] —

removing thls part

m Figure 4.13 Realization of a second-order LTI system with direct
form II for parallel structure.

4-9 First-Order and Second-Order Systems
1.  First-order systems

Consider the first-order causal LTI system described by the difference

equation
y[n]-ay[n-1]=x[n], |a| <1 (4.143)
oy 1 4.144
H(e ) 1-ae ™ (4.144)
h[n]=a"u[n]------impulse response (4.145)

n+1

s[n] = h[n] *u[n] = z::oak = ll_aa u[n] ------ step response (4.146)

(1)  The magnitude of “a@” plays a role similar to that of the time constant

7 of a continuous-time first-order system. (See Fig. 4.14)
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2)

Unlike its continuous-time analog, the first-order discrete-time system

can play oscillatory behavior when a<0.

Note:

For a>0, the system amplifies low frequencies and attenuates high
frequencies. (See Fig. 4.16)
For a<O0, the system amplifies high frequencies and attenuates low

frequencies. (See Fig. 4.17)

{low frequencies: Q2 near 0.

high frequencies: Q near =+ 7.

1 max‘H (ejQ)

, -y/(1-1a)

H(el ): — _ (4.147)
1-ae min‘H(eJQ)‘:l/(1+|a|)
For |a| small, 1/(1+|a|) and 1/(1—|a|) are close.

= The graph of ‘H (ejQ )‘ is relatively flat. (See Fig. 4.16)

For |a| near 1, 1/(1+|a|) and 1/(1—|a|) differ significantly.

= The graph of ‘H (ejQ )‘ is more sharply peaked. (See Fig. 4.16)

=

10 20
(Wit

-10 0 10 20 3
n n

=

m Figure 4.14 Impulse response h[n] =a"u [n] of a first-order system.
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s[h]
21 o a=1/4
O a=12 |4
1 i 1 o
- 0 L —cmess
10 il 10 20 a0 10
1 =] 1 o]
o oa=-1/4 o oa=-12
0 U5 »
— —
40 il 10 20 a0 A0 il 10 20 0
4 s 10
0 oa=54 o a=78 pe
2 e 5
I:I ﬁ R T
110 il 10 20 a0 10 10 20 0
\O O a=-34 0O @=-7/8 §
0.5 0.5
0 m? —
A0 il 10 20 a0 A0 il 10 20 0
n n

m Figure 4.15 Step response S[n] of a first-order system.

20lag,,H ()|

angle H{LY)

m Figure 4.16 Magnitude and phase of the frequency response of Eq. (4.144)

for a first-order system. (a > 0)
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20 T T T T
fﬂl\ f‘\ —azqm| |
@ -
)
=
=3
o
]
.10 | 1 1 1 1
3 2 1 u] 1 2 3
L1 {normalized by m
2 — a=-14
a=-1/72
1L — - a=-34 e
& /”:‘\ /T‘t! — - a=78 |
T, S - ]
m < -
[=2] w1
5 g = ]
.2 | 1 1 1 1
3 2 1 u] 1 2 3

L1 {normalized by m

m Figure 4.17 Magnitude and phase of the frequency response of Eq. (4.144)

for a first-order system. (a < 0)

2. Second-order systems
Consider the second-order causal LTI system described by

y[n]-2rcos@y[n—1]+r’y[n-2]=x[n] (4.148)

with O<r<1 and 0<@0<r,

1 1

o B
: (ej )_ 1-2rcos G 1@ +r2712% [1—(rej9)e‘jg}[1—(re‘w)e‘iﬂ} (4.149)
(1) For 6#0orx, ret #re’? and
Q) _ A B
(e )_1—(rej9)e‘j9le—(re“”)e‘jQ (4:150)
io g 10
where A=—— and B=———.
2]sin@ 2]sin@
h[n]z[A(rew)nJrB(rejg)n}u[n]zr”—sm[(hn;l)e}u[n] (4.151)
S1
(2) For 6=0, re=re’ "’ =r and
- 1
H(e")=—5 4.152
( ) (l_reij)Z ( )
h[n]=(n+1)r"u[n] (4.153)
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(3) For O=rx, re’ =re’ " =—r

H (e’ =;_2 (4.154)
(¢) (1+re?)
h[n]=(n+1)(-r)"u[n] (4.155)

(The impulse response for second-order systems are plotted in Fig.

4.18 for a range of values of r and 6.)

Note:
@ The rate of decay of h[n] is controlled by r. The closer r is to 1, and
the slower the decay in h[n].

@ The value of 6 determines the frequency of oscillation.

0=0 = No oscillation.

(low frequency)

@ =m = Oscillations are rapid.
(high frequency)

m Figure 4.18 Impulse response of the second-order system of Eq. (4.148)
for a range of values of r and 6.
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@ The effect of different values of r and & can also be seen by examining

the step response.

S[n]:h[n]*u[n]: A 1—(re“9.) +B 1_(re—j6)”” u[n] (4.156)

1-rel? 1—-re ¥
For 6=0,
s[n]zl ! - ' ~r" + r (n+1)r“}u[n] (4.157)
(r-1) (r-1) r—1
For 0=,

s[n] :[ L T (ry+—" +1)(—r)n}u[n] (4.158)
(r+1) (r+1) r+1
The step response for a range of r and 6 is plotted in Fig. 4.19.

@ For any value of 6 other than zero, the impulse response has a damped
oscillatory behavior, and the step response exhibits ringing and
overshot.

@ The frequency response of the system is depicted in Fig. 4.20.

6 essentially controls the location of band that is amplified.
r determines how sharply peaked the frequency response is within the

band that is amplified.

@ Consider H (ejQ) of the form

- | ‘()
H(e")= - __— 4.159
(=) (I=de ™) (I-de ™) X(eP) (+.159)
where d; and d, are both real with |d1, d2|<1.
y[n]-(d, +d,)y[n-1]+dd,y[n-2]=x[n] (4.160)

Using the partial function expansion technique, H (ejQ) can be

expressed as
A B

H (em): o +1—dze"“ (4.161)
where A= q and B= d, )
dl_dz dz_dl
h[n]=(Ad; + Bd; )u[n] (4.162)
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l_dn+1 l_dn+1
=| A L B 2 4.163
L e e WAL

The system corresponds to a parallel interconnection of two first-order
systems. We can deduce most of its properties from our understanding

of the first-order systems.

@ We have only examined those first-order and second-order systems that
are stable and consequently have frequency response.
aj<1 , r<l, |d|<1, |d,|<1
[ S
first-order case second-order case
r=1:4 r=3/
2 4
6=0 4| J o
OBE: D(mi
o0 10 20 80 , 0
o
& = w4, W o
Wc:: ;i
{ B 10 20 g1 |
B =w2 s
0.5 0.5

m Figure 4.19 Step response of the second-order system of Eq. (4.148) for a

range of values of r and 6.
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B=0
3:' T T T T T
. ; — r=1/4 .
= 20t i | r=ie i i
=] ‘ ! —- r=534 fo
T
=
=
[=]
=
&l
L1 {normalized by m)
2 . . H— r=1/4 .
'\‘. /' == 1 =142 -
1 ,/h' o s rzma | Y
5
T
m
n
=
[

L1 {normalized by m)

m Figure 4.20 Magnitude and phase of the frequency response of the
second-order system of Eq. (4.148). (6=0)

B=n4
15 T T T T T
— r=14
— 10r : '\ : W--r=ti2 | - 4 .
= L . ;
&) AN A S L
T il
=
=3
[=]
]
&l
L1 {normalized by m)
2 T T T
— r=14
; ~ i | r=1e2 -
=}
T
m
o
=
i
_2 | | 1 | |
3 2 -1 0 1 2 3

L1 {normalized by m)

m Figure 4.20 (contd.) (6 = z/4)
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