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Chapter 4  Fourier Analysis for Discrete-Time Signals and Systems 
 

4-1 Eigenfunctions and Eigenvalues of Discrete-Time LTI Systems 

 h n
  nx n z  y n

 

■ Figure 4.1 Discrete-time LTI system with input x[n] = zn, where z is a complex 

number. 
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  (4.1) 

     y n H z x n           (4.2) 

where     k

k
H z h k z

 


  is the eigenvalue associated with the 

eigenfunction zn. 

 

Note: 

   

       n n
k k k k k

k k

x n a z y n a H z z     (superposition property) (4.3) 

 In this chapter, we restrict ourself to the case of zn with 1z  , i.e., the 

complex exponentials of the form j ne  . 

 

4-2 Fourier Series Representation of Periodic Discrete-Time Signals: 

Discrete-Time Fourier Series (DTFS) 

1. Discrete-time Fourier series representation 

Harmonically related discrete-time complex exponentials: 

 
2

,  0,  1,  2,
jk n

N
k n e k



         (4.4) 

where fundamental frequency = 0 2 N   

where fundamental period = N 

There are only N different signals in the set of  ,  0,  1,  2,k n k     . 

(
  2 2

j k N n jk n
N Ne e
 


 ,    k k Nrn n    , r is an integer.) 
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If x[n] is periodic with period N, then the discrete-time Fourier series 

representation of x[n] is  

   
2

jk n
N

k k k
k N k N

x n a n a e



   

        (4.5) 

where k N   means k varies over a range of N successive integers, e.g., 

0,  1,  2,  3, ,  1

1,  2,  3,  4, ,  

2,  3,  4,  5, ,  1

N

N

N




 










 

Note: Discrete-time Fourier series coefficients are the sampled values of the 

discrete-time Fourier transform. 

 

2. Determination of the discrete-time Fourier series coefficients 

If x[n] is periodic with period N and its Fourier series representation is 
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Proof: 
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Thus,  
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r r
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       (4.11) 

■ 
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Note: 

 The discrete-time Fourier series coefficients are often referred to as the 

spectral coefficients of x[n]. 

 k k Na a   

5N 

0a 1a 2a 3a 4a 5a 6a 

 
■ Figure 4.2 The discrete-time Fourier series ak will repeat periodically 

with period N. 

 The discrete-time Fourier series representation is a finite series with N 

terms. (Only N successive elements of the ak sequence are used in the 

Fourier series representation.) 

N
N

N

sequenceka

 

■ Figure 4.3 The discrete-time Fourier series are only N distinct terms 

that are periodic with period N.  

Example 4.1:    0sinx n n  , period = 02   

Three situations: 

0

0

0

2  is an integer.
periodic

2  is a ratio of integers.

2  is an irrational number.  aperiodic
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and the remaining coefficients are zero. 
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1

2 j

1

2 j


k
0 1 2 3

4
5 6

12
3

For 5N   

(2) 02 m N   , m and N have no common factors. 
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and the remaining coefficients are zero. 
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For 5 and 3N m 

   ■ 

Example 4.2: Discrete-time periodic square wave 
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Note: Discrete-time counterpart of the sinc function is of the form 

   sin sinx x . 

The coefficients ak for 2N1 + 1 = 5 are sketched for N = 10. 
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3. Approximation of a discrete-time periodic signal using a truncated Fourier 

series 
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  (4.12) 
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  , 2M N  or  1 2M N    (4.13) 
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(1) When 2M N  or  1 2N  , the approximation of  x n  by 

 x̂ n  is shown in Fig. 4.4, where  x n  is a square wave. There are 

no convergence issues and no Gibbs phenomenon. 

(Gibbs phenomenon: it exists in the continuous-time case and the 

ripples in the discontinuity do not disappear with the increasing terms 

of summation.) 

 

■ Figure 4.4 Partial sums of Eq. (4.13) for the periodic square wave 

with N = 9 and 2N1+1 = 5: (a) M = 1; (b) M = 2; (c) M = 3; (d) M = 4. 

 

(2) In general, there are no convergence issues with the discrete-time 

Fourier series. (  Any discrete-time periodic sequence x[n] is 

completely specified by a finite number of parameters, namely the 

values of the sequence over one period.) 
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4.   
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superposition property
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4-3 Fourier Transform of Aperiodic Discrete-Time Signals: Discrete-Time 

Fourier Transform (DTFT) 

1. Consider a general aperiodic sequence  x n  which is of finite duration. 

From this aperiodic sequence, we can construct a periodic sequence  x n  

for which  x n  is of one period. 

1N

 x n

1N
n

(a)
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1N

 x n

1N
n

NN

   N x n x n  
(b)  

■ Figure 4.5 (a) Finite duration signal  x n ; (b) periodic signal  x n  

constructed to be equal to  x n  over one period. 

 

Discrete-time Fourier series representation of  x n  is  
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         (4.16) 

   x n x n   for 1n N         (4.17) 
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       (4.18) 

Defining the envelope of kNa  as  jX e  , we have 
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    (4.20) 

The coefficients ak are proportional to equally spaced samples of the 

envelope function  jX e  , where the sample spacing is equal to 2 N . 
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        (4.21) 

where 0

2

N
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    (4.22) 

As N  ,    x n x n , and the above equation becomes a representation 

of  x n  and the summation operator becomes the integration.  

 0 0,  d k      
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Discrete-time Fourier transform pair 

   
2

1

2
j j nx n X e e d


    (synthesis equation)      (4.23) 

    j j n

n
X e x n e

  


  (analysis equation)          (4.24) 

 jX e   is referred to as the discrete-time Fourier transform of  x n  (or 

spectrum). 

 

2. Explanation of the concept of spectrum  x n  is a linear combination of 

complex exponentials infinitesimally close in frequency and with amplitudes 

  2jX e d   . 

 

3. The convergence of the discrete-time Fourier transform is guaranteed if 

 x n  is absolutely summable or if the sequence has finite energy, i.e., 

 
n

x n



        (4.25) 

or 
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n
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        (4.26) 

 

4. The major differences between the continuous-time Fourier transform and the 

discrete-time Fourier transform: 

(1) The discrete-time Fourier transform is periodic, and the 

continuous-time Fourier transform is aperiodic except for some special 

cases. (for example, the periodic impulse train) 

(2) The discrete-time Fourier transform has a finite interval of integration 

in the synthesis equation, while the continuous-time Fourier transform 

has an infinite interval of integration in the synthesis equation. 
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Example 4.4:   ,  1nx n a a   
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“Discrete-time counterpart of the sinc function”: periodic with period 2 . 

■ 

Example 4.6: Let    x n n , then     1j j n

n
X e n e  


   

Let
  

     1 1 1 1 1
ˆ sin

2 2 2

W Wj n j n jWn jWn

WW
x n e d e e e Wn

jn j n n   
  


       

The approximation of  x n  by  x̂ n  is shown in the figure below. As 

W  ,    x̂ n x n  with no Gibbs phenomenon. 

Note: There are no convergence problems in the discrete-time Fourier 

transform synthesis equation. 

■ 
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4-4 Periodic Signals and the Discrete-Time Fourier Transform 

1. Fourier series coefficients as samples of the Fourier transform of one period 

Let  x n  be a periodic signal with period N, and let  x n  represent one 

period of  x n , i.e., 

   ,  1

, otherwise0

M n M Nx n
x n

   
 



    (4.28) 

where M is arbitrary. Then 

2
jk

N
kNa X e

 
  

 
      (4.29) 

where ak is the discrete-time Fourier series coefficients of  x n  and 

 jX e   is the discrete-time Fourier transform of  x n . 

 Nak correspond to samples of the Fourier transform of one period. 

When M is varied,  jX e   is changed. But the values of  jX e   at the 

sample frequencies 2 k N  do not depend on M. 

Example 4.7: 

Let    
k

x n n kN


  , 

 
21 1jk n
N

k
n N

a x n e
N N




 

    

Let    1x n n  (i.e., M = 0). Then,  1 1jX e   . 

Let    2x n n N   (i.e., 0 < M < N). Then,  2
j j NX e e   . 

Clearly,    1 2
j jX e X e  . However, at the set of sample frequencies 

 2 k N  ,  1
jX e   and  2

jX e   are identical.     ■ 

 

2. The discrete-time Fourier transform for periodic signals 

Consider the signal 

  0j nx n e          (4.30) 
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    (4.31) 

We consider the discrete-time Fourier transform 

   02 2j

l
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        (4.32) 

Then the inverse discrete-time Fourier transform  jX e   is 
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    (4.33) 

(  Any interval of length includes exactly one impulse in the summation.) 

More generally, if x[n] is the sum of an arbitrary set of complex exponentials, 

i.e., 

  1 2
1 2

Mj n j n j n
Mx n b e b e b e         (4.34) 

then 
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 (4.35) 

Note: 

 0j ne   is periodic when 02 m N    is a rational number or integer. 

   1 2
1 2

Mj n j n j n
Mx n b e b e b e       is periodic only when all of the 

2 i m N    are rational numbers or integers. 

 If  x n  is a periodic sequence with period N, then  x n  can be 

represented as 
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(a)

(b)

(c)

(d)

■ Figure 4.6 Fourier transform of a discrete-time periodic signal. (a) the 

first summation on the right-hand side of Eq. (4.37); (b) the second 

summation on the right-hand side of Eq. (4.37); (c) the final summation 

on the right-hand side of Eq. (4.37); (d) the entire expression of X(). 

 

3. The discrete Fourier transform (DFT) 

Let  

  0x n  , outside the interval 10 1n N      (4.38) 

   ,  0 1x n x n n N         (4.39) 

where  x n  is periodic with period N and 1N N . 

0 1 1N 

 x n

0 1 1N 

 x n

1N 

 

 

■ Figure 4.7 A nonperiodic signal  x n  with finite duration and periodic 

signal  x n  with period N. 
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The Fourier series representation of  x n  is 
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where 
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     (4.41) 

Let   kX k Na . Then we can define the N-point discrete Fourier transform 

(DFT) of  x n  as 
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with 
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1
    0,1,2, , 1 Inverse DFT
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(4.43) 

Note: 

 The original finite duration signal can be reconstructed from its DFT. 

 The length of DFT is chosen approximately so that fast algorithms can 

easily be used for the computation. (Fast Fourier Transform algorithms) 

For example, a power of 2 ( 2m N ) is often chosen as a transform 

length. 

 

4-5 Properties of the Discrete-Time Fourier Transform 

1. Periodicity 

The discrete-time Fourier transform is always periodic in   with period 

2 . 
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    (4.44) 

 

2. Linearity 

    1 1
jx n X e F       (4.45) 

        2 2
jx n X e F       (4.46) 

       1 1 2 2 1 1 2 2
j ja x n b x n a X e b X e   F    (4.47) 
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3. Symmetry properties 

If  x n  is a real-valued sequence, then 

(1)    * ( )                                                                       (4.48)j jX e X e   

(2)      ( )Re Re : even function                                   (4.49)j jX e X e   

(3)      ( )Im Im : odd function                                (4.50)j jX e X e    

(4)    ( )                                                                       (4.51)j jX e X e   

(5)    ( )                                                                  (4.52)j jX e X e     

(6)     Re                                                                (4.53)j
ex n X e F  

(7)     Im                                                             (4.54)j
ox n j X e F  

4. Time shifting and frequency shifting 

If    jx n X e F , then 

   0
0

j n jx n n e X e   F      (4.55) 

   0 0( )j n je x n X e F      (4.56) 

     

   

00

0 0

( ) '

2 2

'

2

1 1

2 2
1

2

j nj j n j

j n j nj j n

X e e d X e e d

e X e e d e x n

 



 



   

  

  

  

 


  

(4.57) 

5. Differencing and Summation 

   jx n X e F       (4.58) 

(1)        1 1                                             (4.59)j jx n x n e X e     F
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 (4.60)  
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. This is partly correct! 
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Note: 

 Average value (or dc value) is    01 1

2 2
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m
X e x m
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where  jg e   accounts for the dc value of u[n]. 
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F F F

 (X( je  ) is periodic with period 2.)      ■ 

 

6. Time and frequency scaling 

   jx n X e F       (4.62) 

(1)    ( )jx n X e  F  
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x n e x m e m n

x m e

   
 

  



   



 


  (4.63) 

(2)   1
x at X j

a a

   
 

F : continuous-time case 

In the discrete-time case, the corresponding property is quite different. 

If a  is an integer,  x an  consists only of part of  x n . What 

happens if a  is not an integer? 
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Let k be a positive integer, and define 

      ,  if  is a multiple of 

,  if  is not a multiple of 0k

n kx n k
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n k


 


   (4.64) 

n n

 x n  (2)x n

-3  -2  -1   0  1  2  3 -5  -4  -3  -2  -1    0  1  2   3 4  5  

■ Figure 4.8 The signal  (2)x n  obtained from  x n  by inserting 

one zero between successive values of the original signal. 
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 (4.65) 

     ( )

periodic with period 2
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7. Differentiation in frequency 
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8. Parseval’s relation 

For aperiodic signal:  

      jx n X e F                   (4.70) 
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x n X e d


 


       (4.71) 
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For periodic signals: 

 
2

jk n
N

k
k N

x n a e


 

         (4.72) 

  2 21
k

n N k N

x n a
N    

       (4.73) 

Proof: 

(1)          2 * *

2

1

2
j j n

n n n
x n x n x n x n X e e d


     
  

       

    
     

*

2

2
*

2 2

1

2
1 1

   (4.74)
2 2

j j n

n

j j j

X e x n e d

X e X e d X e d



 



 

  


  

 

   



 
 

(2)      2 *1 1

n N n N

x n x n x n
N N   

    

 

 

2
*

2
* *

2

1

1
   

jk n
N

k
n N k N

jk n
N

k k k
k N n N k N

k
k N

x n a e
N

a x n e a a
N

a







   



     

 



 
  

 



 

  



     (4.75) 

■ 

9. Convolution property 

If      y n x n h n  , then 

     j j jY e X e H e        (4.76) 

where     jX e x n  F ,     jH e h n  F , and     jY e y n  F . 

Proof: 

     
m

y n x m h n m



      (4.77) 

      
   

   
       

       

j j n

n

j n

n m

j n

m n

j j m j j m

m m

j j j j

Y e y n y n e

x m h n m e

x m h n m e

x m H e e H e x m e

H e X e X e H e

  


   
 

   
 

      
 

   

 

 

 

 

 


 
 
 

F

  (4.78) 
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(1) Periodic convolution 

Consider the periodic convolution of two sequences  1x n  and  2x n  

which are periodic with the same period N. The periodic convolution 

of  1x n  and  2x n  is defined as 

     
   

1 2

1 2
m N

y n x n x n

x m x n m
 



 
  

 


     (4.79) 

where  y n  is also periodic with period N. 

 2x m

 1x m

 2x m

 2 1x m

 Circular shift

m

m

m

m

 

■ Figure 4.9 Procedure in forming the periodic convolution of two 

periodic sequences. 

 

For periodic convolution, the counterpart of the convolution property 

can be expressed in terms of the Fourier series coefficients. 

Let  

   0
1 0 2jk n

k
k N

x n a e N

 

       (4.80) 

    
  0

2
jk n

k
k N

x n b e 

 

         (4.81) 

       
  0jk n

k
k N

y n c e 

 

                              (4.82) 
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Then 

k k kc Na b       (4.83) 

Proof: 

     1 2
m N

y n x m x n m
 

        (4.84) 

 

   

   

     

 

0

0

0

0

0

1 2

1 2

1 2

1

1

1

1

1

jk n
k

n N

jk n

n N m N

jk n

m N n N

jk n m

m N n N

jk m
k k k

m N

c y n e
N

x m x n m e
N

x m x n m e
N

x m x n e
N

x m e b Na b

 

 

 

   

 

   

  

   

 

 



 

 



 



 

 

 





 

 

 



  (4.85) 

■ 

(2) Let  1x n  and  2x n  be two finite-duration sequences, and suppose 

that 

 1 0x n  , outside the interval 10 1n N     (4.86) 

 2 0x n  , outside the interval 20 1n N     (4.87) 

Let       1 2y n x n x n   (aperiodic convolution). Then we can find 

  0y n  , outside the interval 1 20 2n N N     (4.88) 

Choose 1 2 1N N N    and define signals  1x n  and  2x n  that 

are periodic with period N and such that 

   1 1x n x n , 0 1n N        (4.89) 

   2 2x n x n , 0 1n N        (4.90) 

Let      1 2y n x n x n    (periodic convolution), then we obtain 

   y n y n  , 0 1n N   . 
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 The periodic convolution  y n  equals the aperiodic convolution 

 y n  over one period. 

An algorithm for the calculation of the aperiodic convolution of  1x n  

and  2x n : 

(a) Calculate the DFTs  1X k  and  2X k  of  1x n  and  2x n . 

(b) Multiply these DFTs together to obtain the DFT of  y n : 

     1 2Y k X k X k         (4.91) 

(c) Calculate the inverse DFT of  Y k . The result is the desired 

convolution  y n . 

   
2

1

1 10
,  0,1,2, , 1

jk nN N
k n

X k Na x n e k N





       (4.92) 

   
2

1

2 20
,  0,1,2, , 1

jk nN N
k n

X k Nb x n e k N





       (4.93) 

     2
1 2 , 0,1,2, , 1k k kY k Nc N a b X k X k k N          (4.94) 

   
2

1

0

1
, 0,1,2, , 1

jk nN N
k

y n Y k e n N
N





        (4.95) 

 

Example 4.9: 

      1

1
n j

j
h n u n H e

e





   


F  

     

        

1

1

1

1 1

n j
j

j j j

j j

x n u n X e
e

Y e H e X e
e e




 


 

  
   

  


 
 

F

 

 

If   ,  

 

     

1 1

,  

j
j j

n n

A B
Y e

e e

A B

y n u n u n
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If   , 

 

 

 

   

    
     

   
   

0

2

1

0

1

1 1

1 1

1

1
1

1

1
1 1

1

time shifting property, 

1
1 1

1 1

1  

j j
j j

n
j

n
j

n j
j

j n j

n

n

n

j d
Y e e

e d e

u n
e

d
n u n j

d e

d
n u n je

d e

x n n e X e

y n n u n

n u n

n u n

  

















 
   

 

 

 
 

  



            




     
       

 

  

  

 

F

F

F

F

 1,  1 0n n   

 

■ 

Example 4.10: 

Let    1 2

1, 0 1

0, otherwise

n N
x n x n

  
  


. 

(i) Find      1 1 2y n x n x n    via DFT:    1 2x n x n   is 

periodic with period N.  1x n  is equal to  2x n  for 

0 1n N   . 

   

     

   

2
1

1 2 0

2

1 1 2

2
1

1 10

, 0

0, otherwise

0,

otherwise0,

1
,  0 1

jk nN N
n

jk nN N
k

N k
X k X k e

kN
Y k X k X k

y n Y k e N n N
N














   




  


    





 

  



 

(ii) Find      2 1 2y n x n x n   via DFT: 

Since 2 ( 1)N N N   , we use 2N-point DFT and IDFT 

for calculating y2[n]. 

   
     

2
2 1 2

1 2 0

2 1 2

,  0,1,2, ,2 1

,  0,1,2, ,2 1

jk nN N
n

X k X k e k N

Y k X k X k k N





   

  

  

   

 

   
2

2 1 2
2 20

1
,  0 2 1

2

jk nN N
k

y n Y k e n N
N





        ■ 
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10. Modulation property 

     1 2y n x n x n                         (4.96) 

     1 1
jx n X e F       (4.97) 

         2 2
jx n X e F       (4.98) 

     jy n Y e F       (4.99) 

         
 

( )
1 2 1 22

1 1

2 2
periodic convolution

j j j j jY e X e X e d X e X e 




 
      

(4.100) 

Proof: 

       1 2
j j n j n

n n
Y e y n e x n x n e

     
 

      (4.101) 

   1 12

1

2
j j nx n X e e d 





         (4.102) 

     

      
   

2 12

1 22

( )
1 22

1

2

1
            

2
1

            
2

j j j n j n

n

j nj

n

j j

Y e x n X e e d e

X e x n e d

X e X e d

 







 












  


  





    
 





 





   (4.103) 

■ 

4-6 Duality 

1. Discrete-time Fourier series 

 
2

jk n
N

k
k N

x n a e


 

         (4.104) 

 
21 jk n
N

k
n N

a x n e
N




 

        (4.105) 

   
21 jm r
N

r N

f m g r e
N




 

       (4.106) 

(1) Let m = k and r = n, the sequence  f k  corresponds to the Fourier 

series coefficients of the signal  g n , i.e., 

     
21 jk n
N

n N

g n f k g n e
N




 

  F    (4.107) 
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(2) Let m = n and r = k, the sequence  f m  becomes 

   
21 jk n
N

k N

f n g k e
N



 

       (4.108) 

   1
f n g k

N
 F       (4.109) 

(  1
g k

N
  corresponds to the Fourier series coefficients of  f n .) 

If 

   also periodickx n aF     (4.110) 

There are some notes about it  

Note: 

 The duality property implies that the Fourier series coefficients for the 

periodic sequence ak are the values  1
x n

N
  (i.e., are proportional to 

the original reversed in time). 

 The duality property implies that every property of the discrete-time 

Fourier series has a dual. 

 

Example 4.11: 

 

 

0
2

0

2

jk n
N

k

jM n
N

k M

x n n a e

e x n a










 


 

F

F

 

   

   

k k
r N

l k l
l N

x r y n r Na b

x n y n a b

 


 

  










F

F
 

■ 

2. Discrete-time Fourier transform and continuous-time Fourier series 

   
   

2

1

2
j j n

j j n

n

x n X e e d

X e x n e


 

  


  

 




 Discrete-time Fourier transform (4.111) 

 

 

0

0

0
0

1

jk t
kk

jk t
k T

x t a e

a x t e dt
T











 









      Continuous-time Fourier series (4.112) 
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Let  f u  represent a periodic function of a continuous variable with period 

2 , and let  g m  be a discrete sequence related to  f u  by 

    jum

m
f u g m e

 


       (4.113) 

(1) u   and m = n:  jf e   is the discrete-time Fourier transform of 

 g n , i.e., 

   jg n f e F       (4.114) 

(2) u t  and m k  :  g k  is the Fourier series coefficients of  f t , 

i.e., 

     0 02 1f t g k T    F     (4.115) 

Note: 

 Since  jX e   is a periodic function of a continuous variable, we can 

expand it in a Fourier series with  0 01 2T    and  , rather than 

t, as the continuous variable. 

 From the duality relationship, we can conclude that the Fourier series 

coefficients of  jX e   will be the original sequence  x n  reversed in 

order. 

     jx n X e x k  F F      (4.116) 

       1 22

1

2 k kx x t d a b


  


  F       (4.117) 

       ( )
1 22

1

2
j jx n y n X e X e d 





 F    (4.118) 

 Summary of Fourier series and transform expressions (See Table 4.1) 
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Table 4.1 Summary of Fourier series and transform expressions 

 
Continuous-time 

Time domain Frequency domain 

Fourier 

Series 

0( ) jk t
k

k

x t a e 




   

continuous time 

periodic in time 

0

0
0

1
( ) jk t

k T
a x t e dt

T
   

discrete frequency 

aperiodic in frequency 

Fourier 

Transform 

1
( ) ( )

2
j tx t X j e d 





   

continuous time 

aperiodic in time 

( ) ( ) j tX j x t e dt
 


   

continuous frequency 

aperiodic in frequency 

 

 
Discrete-time 

Time domain Frequency domain 

Fourier 

Series 

(2 )[ ] jk N n
k

k N

x n a e 

 

   

discrete time 

periodic in time 

(2 )1
[ ] jk N n

k
n N

a x n e
N



 

   

discrete frequency 

periodic in frequency 

Fourier 

Transform 

1
[ ] ( )

2
j j tx n X e e d


  


 

discrete time 

aperiodic in time 

( ) [ ]j j n

n

X e x n e


  



   

continuous frequency 

periodic in frequency 
*    : duality  

 

 

4-7 The Polar Representation of Discrete-Time Fourier Transforms 

   jx n X e F         (4.119) 

          jj X ej jX e X e e
           (4.120) 

where  jX e   and  jX e   are the magnitude and phase of  jX e  . 

1. Both  jX e   and  jj X e
e


 are periodic with period 2 . 

2.  jX e   contains the information about the relative magnitudes of the 

complex exponentials that make up  x n . 

3.  jX e   provides a description of the relative phases of the different 

complex exponentials in the Fourier transform  x n . A change in the phase 

function of  jX e   may lead to a distortion of the signal  x t . 

duality

duality
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(1) Linear phase: the phase shift at frequency   is a linear function of . 

   
        

j

j X mj jm j

x n X e

X e e X e e x n m



     



   

F

F
  (4.121) 

 x n jme   x n m
 

■ Figure 4.10 Illustration of the linear phase system. 

 

“No distortion occurs.” The output is simply a shifted version of the 

input. 

(2) Nonlinear phase: the phase shift at frequency   is a nonlinear 

function of  . 

Example 4.12:  
   

1 2

1 2

j n j n

x n x n
x n e e    

 
   
1 1 2 2

1 2

2

1 2

j n j j n j

x n x n
x n e e e e   

 
    

“Distortion occurs.” The delays of different frequency elements may 

be different.           ■ 

 

4. LTI systems 

 jX e   jH e   jY e 

 

■ Figure 4.11 The representation of an LTI system in frequency domain. 

 

      j j jY e H e X e       (4.122) 

where  jH e   is the frequency response. 

        j j jY e H e X e       (4.123) 

           j j jY e H e X e          (4.124) 

Note: The magnitude of the frequency response of an LTI system is 

sometimes referred to as the gain of the system. 

 

5. Graphical representation of the discrete-time Fourier transform 

Plotting  jH e   in radians for       

Plotting  jH e   in decibels (  1020 log jH e  ) for       
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If the signal (or function)  h n  is real, we actually need plot  jH e   only 

for 0    . For 0    , we can calculate  jH e   using the 

relations 

         ( )j jH e H e         (4.125) 

        ( )j jH e H e          (4.126) 

 

 

4-8 The Frequency Response of Systems Characterized by Linear Constant– 

Coefficient Difference Equations 

1. Calculation of the frequency and impulse responses 

   
0 0

N M

k kk k
a y n k b x n k

 
        (4.127) 

Assume that the Fourier transforms of  x n ,  y n , and the system impulse 

response  h n  all exist. 

   jx n X e F       (4.128) 

   jy n Y e F       (4.129) 

     
 

j

j

j

Y e
h n H e

X e





 F      (4.130) 

   0 0

N Mjk j jk j
k kk k

a e Y e b e X e     
 

      (4.131) 

   
 

0

0

Mj jk
kj k

Nj jk
kk

Y e b e
H e

X e a e

  
 

  


   


     (4.132) 

Example 4.13:        3 1
1 2 2

4 8
y n y n y n x n      

       

   

   
 

2

2

2

3 1
2

4 8
3 1

1 2
4 8

2
3 1

1
4 8

j j j j j j

j j j j

j

j

j
j j

Y e e Y e e Y e X e

Y e e e X e

Y e
H e

X e e e
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2 4 2
1 11 1 1 11 1
2 42 4

1 1
4 2

2 4

j jj j

n n

e ee e

h n u n u n

      
  
       
  

        
   

 

Note: 

   2 21
1 ,  1

1
j j j

j
H e ae a e a

ae
    

      


  

         21 2 nh n n a n a n a u n          

   1
,  1

1
n

j
a u n a

ae  


F  

■ 

 

Example 4.14:   2
1 1

1 1
2 4

j

j j

H e
e e
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2

11 12 21
2

1 22

2

12

4

1 1
14 1
4

2

1 1
1 1

4 2

1 111 11
4 24

2
,  4,  2

1 1
1 1

4 2

1 2
1

14 1
2

n
j

j

j j j

j j

j jj

v v

x n u n X e
e

Y e H e X e

e e

B B B

e ee

Y v v v

v v

B v Y v



 

  

   

    

 

    
  

 
       
   

  
             

  
       
   

    
  

F
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2

11 1 2

4

4
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1
21 2 21 4 4 4

14 11 12 2

v v

v v

v
v

v
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B v v Y v

dv dv v v
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2 2

11 11 11
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21 2
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1 1 1 1 1
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1 8
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v Y v B v v Y v B B
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F
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F

F

F

 

    1 1 0 when 1nn u n n                               

■ 

2. Cascade- and parallel-form structures 

(1) Cascade form 

   
 

0 1

0 1

1

1

N j
kj k

M j
kk

b e
H e

a e





 
 

 










    (4.133) 

where k  and k  may be complex, but they then appear in 

complex-conjugate pairs. 

Let M N . Multiplying out   *1 1j j
k ke e       and 

  *1 1j j
k ke e      , we obtain 
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  2* 2 2
1 21 1j j j j

k k k k ke e e e                   (4.134) 

and 

  2* 2 2
1 21 1j j j j

k k k k ke e e e                   (4.135) 

where  *
k k  , 

2

k ,  *
k k  , and 

2

k  are all real. 

     
   

22
1 21 10

22
0 1 21 1

1 1

1 1

P N Pj j j
k k kj k k

Q N Qj j j
k k kk k

e e eb
H e

a e e e

  

  

     
  

     
 

  
 

  

 
 

(4.136) 

where the coefficients are all real. 

 

Note: 

 The frequency response of any LTI system described by a linear 

constant coefficient difference equation can be written as the 

product of first- and second-order terms. 

 The LTI system can be realized as the cascade of first- and 

second-order LTI systems. 

(a) Realization of a second-order LTI system 

   
 

2
1 2

2
1 2

1

1

jj j
j k k

j j j
k k

Y ee e
H e

e e X e

 
 

   


    

 
 

 
  (4.137) 

   2 2
1 2 1 21 1j j j j j j
k k k kY e e e X e e e                        (4.138) 

           1 2 1 21 2 1 2k k k ky n y n y n x n x n x n            (4.139) 

           
 

1 2 1 21 2 1 2k k k k

w n

y n y n y n x n x n x n            


(4.140) 

1

1k

2k

 x n  y n

1k

2k

1

 

■ Figure 4.12 Realization of a second-order LTI system with 

direct form II for cascade structure. 

(b) The first-order terms can also be realized using the second-order 
structure with 2k  and 2k  equal to zero. 
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(2) Parallel form 

  11

Nj N k
jk

N k

b A
H e

a e


 
 

             (4.141) 

Adding the pairs involving complex conjugate k ’s, we obtain 

  20 1
21 1

1 21 1

j
Q N Qj N k k k

j j jk k
N k k k

b r r e A
H e

a e e e  

 


      


  

     (4.142) 

where all the coefficients are real. 

We can realize the LTI system using a parallel interconnection of first- 

and second-order LTI systems. 

Realization of   0 1
2

1 21

j
j k k

j j
k k

r r e
H e

e e 

 


   




 
 

1

1k

2k

 x n  y n

1kr

2kr

0kr

removing this part  

■ Figure 4.13 Realization of a second-order LTI system with direct 

form II for parallel structure. 

 

 

 

4-9 First-Order and Second-Order Systems 

1. First-order systems 

Consider the first-order causal LTI system described by the difference 

equation 

     1 ,  1y n ay n x n a         (4.143) 

  1

1
j

j
H e

ae


 


      (4.144) 

    impulse responsenh n a u n     (4.145) 

       
1

0

1
step response

1

n
n k

k

a
s n h n u n a u n

a






   

   (4.146) 

(1) The magnitude of “a” plays a role similar to that of the time constant 

  of a continuous-time first-order system. (See Fig. 4.14) 
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(2) Unlike its continuous-time analog, the first-order discrete-time system 

can play oscillatory behavior when 0a  . 

Note: 

 For 0a  , the system amplifies low frequencies and attenuates high 

frequencies. (See Fig. 4.16) 

For 0a  , the system amplifies high frequencies and attenuates low 

frequencies. (See Fig. 4.17) 

low frequencies:  near 0.

high frequencies:  near .


  
 

   

 
   
   

max 1 11
 

1 min 1 1

j

j
j j

H e a
H e

ae H e a




  

     

   (4.147) 

For a  small,  1 1 a  and  1 1 a  are close. 

 The graph of  jH e   is relatively flat. (See Fig. 4.16) 

For a  near 1,  1 1 a  and  1 1 a  differ significantly. 

 The graph of  jH e   is more sharply peaked. (See Fig. 4.16) 

 

 

■ Figure 4.14 Impulse response    nh n a u n  of a first-order system. 
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■ Figure 4.15 Step response s[n] of a first-order system. 

 

 

 

■ Figure 4.16 Magnitude and phase of the frequency response of Eq. (4.144) 

for a first-order system. (a > 0) 
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■ Figure 4.17 Magnitude and phase of the frequency response of Eq. (4.144) 

for a first-order system. (a < 0) 

 

2. Second-order systems 

Consider the second-order causal LTI system described by 

       22 cos 1 2y n r y n r y n x n        (4.148) 

with  0 1r   and 0    , 
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(1) For 0 or   , j jre re   and 
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(2) For 0  , j jre re r    and 
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(3) For   , j jre re r     
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      (4.154) 

      1
n

h n n r u n         (4.155) 

(The impulse response for second-order systems are plotted in Fig. 

4.18 for a range of values of r and  .) 

 

Note: 

 The rate of decay of  h n  is controlled by r. The closer r is to 1, and 

the slower the decay in  h n . 

 The value of   determines the frequency of oscillation. 

 low frequency
0    No oscillation. 

 high frequency
    Oscillations are rapid. 

 

 

■ Figure 4.18 Impulse response of the second-order system of Eq. (4.148) 

for a range of values of r and  . 
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 The effect of different values of r and   can also be seen by examining 

the step response. 
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For 0  ,  
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For   , 
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The step response for a range of r and   is plotted in Fig. 4.19. 

 For any value of   other than zero, the impulse response has a damped 

oscillatory behavior, and the step response exhibits ringing and 

overshot. 

 The frequency response of the system is depicted in Fig. 4.20. 

  essentially controls the location of band that is amplified. 

r determines how sharply peaked the frequency response is within the 

band that is amplified. 

 Consider  jH e   of the form 
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   (4.159) 

where d1 and d2 are both real with 1 2,  1d d  . 

         1 2 1 21 2y n d d y n d d y n x n         (4.160) 

Using the partial function expansion technique,  jH e   can be 

expressed as 

 
1 21 1
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1 1

1 2

1 2

1 1

1 1

n nd d
s n A B u n

d d

   
    

    (4.163) 

The system corresponds to a parallel interconnection of two first-order 

systems. We can deduce most of its properties from our understanding 

of the first-order systems. 

 We have only examined those first-order and second-order systems that 

are stable and consequently have frequency response. 

 1 2

first-order case second-order case

1 ,  1,  1,  1a r d d   


 

 

 

 

 

■ Figure 4.19 Step response of the second-order system of Eq. (4.148) for a 

range of values of r and  . 
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■ Figure 4.20 Magnitude and phase of the frequency response of the 

second-order system of Eq. (4.148). ( 0  ) 

 

 

 

■ Figure 4.20 (contd.) ( 4  ) 
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■ Figure 4.20 (contd.) ( 2  ) 

 

 

 

■ Figure 4.20 (contd.) ( 3 4  ) 
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■ Figure 4.20 (contd.) (  ) 
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