Chapter 4 Fourier Analysis for Discrete-Time Signals and Systems

4-1 Eigenfunctions and Eigenvalues of Discrete-Time LTI Systems

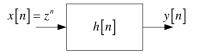


Figure 4.1 Discrete-time LTI system with input $x[n] = z^n$, where z is a complex number.

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k}$$

= $z^n \sum_{k=-\infty}^{\infty} h[k] z^{-k} = z^n H(z)$ (4.1)

$$\Rightarrow y[n] = H(z)x[n] \tag{4.2}$$

where $H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}$ is the eigenvalue associated with the eigenfunction z^{n} .

Note:

0

$$x[n] = \sum_{k} a_{k} z_{k}^{n} \rightarrow y[n] = \sum_{k} a_{k} H(z_{k}) z_{k}^{n} \quad \text{(superposition property)} \quad (4.3)$$

• In this chapter, we restrict ourself to the case of z^n with |z|=1, i.e., the complex exponentials of the form $e^{j\Omega n}$.

4-2 Fourier Series Representation of Periodic Discrete-Time Signals: Discrete-Time Fourier Series (DTFS)

1. Discrete-time Fourier series representation

Harmonically related discrete-time complex exponentials:

$$\phi_k[n] = e^{jk\frac{2\pi}{N}n}, \ k = 0, \ \pm 1, \ \pm 2,...$$
 (4.4)

where fundamental frequency = $\Omega_0 = 2\pi/N$

fundamental period = N

There are only *N* different signals in the set of $\phi_k[n]$, $k = 0, \pm 1, \pm 2, \dots$

$$(\because e^{j(k+N)\frac{2\pi}{N}n} = e^{jk\frac{2\pi}{N}n}, \quad \because \phi_k[n] = \phi_{k+Nr}[n], r \text{ is an integer.})$$

If x[n] is periodic with period N, then the discrete-time Fourier series representation of x[n] is

$$x[n] = \sum_{k=} a_k \phi_k[n] = \sum_{k=} a_k e^{jk\frac{2\pi}{N}n}$$
(4.5)

where $k = \langle N \rangle$ means k varies over a range of N successive integers, e.g.,

$$\begin{array}{c}
0, 1, 2, 3, \dots, N-1 \\
1, 2, 3, 4, \dots, N \\
2, 3, 4, 5, \dots, N+1 \\
\vdots
\end{array}$$

Note: Discrete-time Fourier series coefficients are the sampled values of the discrete-time Fourier transform.

2. Determination of the discrete-time Fourier series coefficients If x[n] is periodic with period N and its Fourier series representation is

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$
(4.6)

then $a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk \frac{2\pi}{N}n}.$

Proof:

$$x[n] = \sum_{k=} a_k e^{jk\frac{2\pi}{N}n}$$
(4.7)

$$\sum_{n=} x[n] e^{-jr\frac{2\pi}{N}n} = \sum_{n=} \left(\sum_{k=} a_k e^{jk\frac{2\pi}{N}n} \right) e^{-jr\frac{2\pi}{N}n}$$

$$= \sum_{n=} \sum_{k=} a_k e^{j(k-r)\frac{2\pi}{N}n} = \sum_{k=} a_k \sum_{n=} e^{j(k-r)\frac{2\pi}{N}n}$$
(4.8)

$$:: \sum_{n=0}^{N-1} e^{jk\frac{2\pi}{N}n} = \begin{cases} N & , k = mN \\ \frac{1 - \left(e^{j\frac{2\pi}{N}}\right)^{N}}{1 - e^{j\frac{2\pi}{N}}} = 0 \\ 1 - e^{j\frac{2\pi}{N}} & , \text{ otherwise} \end{cases}$$
(4.9)

$$\therefore \sum_{n < N >} e^{j(k-r)\frac{2\pi}{N}n} = \begin{cases} N, \ k = r + mN\\ 0 \ \text{, otherwise} \end{cases}$$
(4.10)

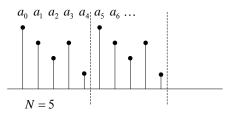
Thus,

$$\sum_{n=\langle N\rangle} x[n] e^{-jr\frac{2\pi}{N}n} = Na_r \Longrightarrow a_r = \frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-jr\frac{2\pi}{N}n}$$
(4.11)

Note:

The discrete-time Fourier series coefficients are often referred to as the spectral coefficients of x[n].

$$\bullet \quad a_k = a_{k+N}$$



- **Figure 4.2** The discrete-time Fourier series a_k will repeat periodically with period *N*.
- The discrete-time Fourier series representation is a finite series with N terms. (Only N successive elements of the ak sequence are used in the Fourier series representation.)

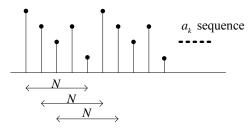


Figure 4.3 The discrete-time Fourier series are only N distinct terms that are periodic with period N.

Example 4.1: $x[n] = \sin(\Omega_0 n)$, period = $2\pi/\Omega_0$

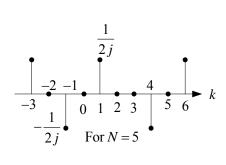
Three situations:

 $\begin{cases} 2\pi/\Omega_0 \text{ is an integer.} \\ 2\pi/\Omega_0 \text{ is a ratio of integers.} \end{cases} \Rightarrow \text{ periodic} \\ 2\pi/\Omega_0 \text{ is an irrational number.} \Rightarrow \text{ aperiodic} \end{cases}$

(1)
$$2\pi/\Omega_0 = N \Rightarrow x[n] = \sin\left(\frac{2\pi}{N}n\right) = \frac{1}{2j}\left(e^{j\frac{2\pi}{N}n} - e^{-j\frac{2\pi}{N}n}\right)$$

 $x[n] = \sum_{k=} a_k e^{jk\frac{2\pi}{N}n}$
 $\Rightarrow a_1 = \frac{1}{2j} \text{ and } a_{-1} = -\frac{1}{2j}$

and the remaining coefficients are zero.



(2) $2\pi/\Omega_0 = m/N$, *m* and *N* have no common factors.

$$\Rightarrow \Omega_0 = 2\pi m/N$$

$$\Rightarrow x[n] = \sin\left(\frac{2\pi m}{N}n\right) = \frac{1}{2j} \left(e^{jm\frac{2\pi}{N}n} - e^{-jm\frac{2\pi}{N}n}\right)$$

$$\Rightarrow a_m = \frac{1}{2j} \text{ and } a_{-m} = -\frac{1}{2j}$$

and the remaining coefficients are zero.

Example 4.2: Discrete-time periodic square wave

For $k \neq 0, \pm N, \pm 2N, \dots$

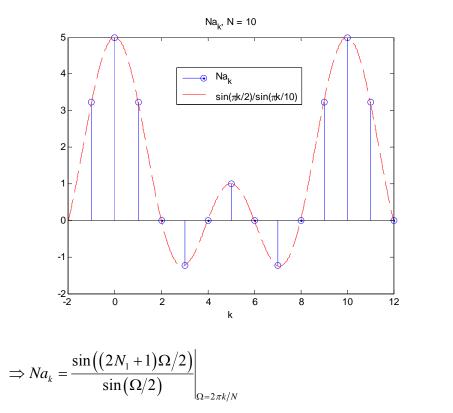
$$a_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk \frac{2\pi}{N}n} = \frac{1}{N} \sum_{n = -N_{1}}^{N_{1}} e^{-jk \frac{2\pi}{N}n}$$
$$= \frac{1}{N} \sum_{m=0}^{2N_{1}} e^{-jk \frac{2\pi}{N}(m-N_{1})} (m = n + N_{1})$$
$$= \frac{1}{N} e^{jk \frac{2\pi}{N}N_{1}} \sum_{m=0}^{2N_{1}} e^{-jk \frac{2\pi}{N}m}$$

$$=\frac{1}{N}e^{jk\frac{2\pi}{N}N_{l}}\left(\frac{1-\left(e^{-jk\frac{2\pi}{N}}\right)^{2N_{l}+1}}{1-e^{-jk\frac{2\pi}{N}}}\right)=\frac{1}{N}\cdot\frac{\sin\left(2\pi k\left(N_{l}+\frac{1}{2}\right)/N\right)}{\sin\left(2\pi k/(2N)\right)}$$

For $k = 0, \pm N, \pm 2N, \dots, a_k = \frac{2N_1 + 1}{N}$.

Note: Discrete-time counterpart of the sinc function is of the form $sin(\beta x)/sin(x)$.

The coefficients a_k for $2N_1 + 1 = 5$ are sketched for N = 10.



3. Approximation of a discrete-time periodic signal using a truncated Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n} = \begin{cases} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} a_k e^{jk\frac{2\pi}{N}n}, N \text{ is even} \\ \sum_{k=-\frac{N-1}{2}}^{\frac{N-1}{2}} a_k e^{jk\frac{2\pi}{N}n}, N \text{ is odd} \end{cases}$$
(4.12)

$$\hat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk \frac{2\pi}{N}n}, \quad M < N/2 \quad \text{or} \quad M < (N-1)/2$$
(4.13)

(1) When M→N/2 or (N-1)/2, the approximation of x[n] by x̂[n] is shown in Fig. 4.4, where x[n] is a square wave. There are no convergence issues and no Gibbs phenomenon.
(Gibbs phenomenon: it exists in the continuous-time case and the ripples in the discontinuity do not disappear with the increasing terms of summation.)

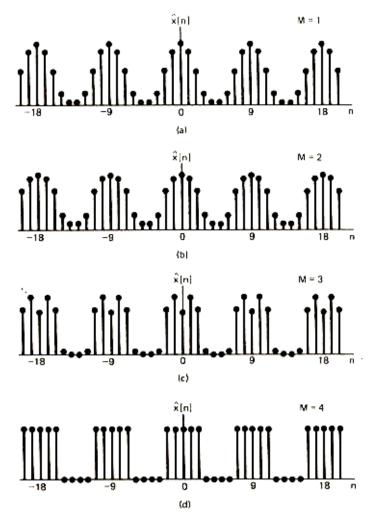


Figure 4.4 Partial sums of Eq. (4.13) for the periodic square wave with N = 9 and $2N_1+1 = 5$: (a) M = 1; (b) M = 2; (c) M = 3; (d) M = 4.

(2) In general, there are no convergence issues with the discrete-time Fourier series. (:: Any discrete-time periodic sequence x[n] is completely specified by a finite number of parameters, namely the values of the sequence over one period.)

$$x[n] = \sum_{k < N >} a_k e^{jk\frac{2\pi}{N}n} \to y[n] = \sum_{k < N >} a_k H\left(j\frac{2\pi k}{N}\right) e^{jk\frac{2\pi}{N}n}$$
(4.14)
where $H\left(j\frac{2\pi k}{N}\right) = \sum_{n=-\infty}^{\infty} h[n] e^{-jk\frac{2\pi}{N}n} \cdot \left(\because \begin{cases} e^{jk\frac{2\pi}{N}n} & \text{is an eigenfunction} \\ \text{superposition property} \end{cases} \right)$

Example 4.3:

$$\begin{cases} h[n] = \alpha^{n} u[n], \ |\alpha| < 1 \\ x[n] = \cos(2\pi n/N) \end{cases}$$

$$x[n] = \frac{1}{2} \left(e^{j\frac{2\pi}{N}n} + e^{-j\frac{2\pi}{N}n} \right)$$

$$H\left(j\frac{2\pi k}{N}\right) = \sum_{n=0}^{\infty} \alpha^{n} e^{-jk\frac{2\pi}{N}n} = \sum_{n=0}^{\infty} \left(\alpha e^{-j\frac{2\pi k}{N}} \right)^{n}$$

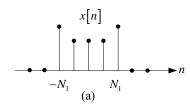
$$= \frac{1}{1 - \alpha e^{-j\frac{2\pi k}{N}}} \left(\because \left| \alpha e^{-j\frac{2\pi k}{N}} \right| < 1 \right)$$

$$\Rightarrow y[n] = \frac{1}{2} H\left(j\frac{2\pi}{N}\right) e^{j\frac{2\pi}{N}n} + \frac{1}{2} H\left(-j\frac{2\pi}{N}\right) e^{-j\frac{2\pi}{N}n}$$

$$= \frac{1}{2} \left(\frac{1}{1 - \alpha e^{-j\frac{2\pi}{N}}} \right) e^{j\frac{2\pi}{N}n} + \frac{1}{2} \left(\frac{1}{1 - \alpha e^{j\frac{2\pi}{N}}} \right) e^{-j\frac{2\pi}{N}n}$$

4-3 Fourier Transform of Aperiodic Discrete-Time Signals: Discrete-Time Fourier Transform (DTFT)

1. Consider a general aperiodic sequence x[n] which is of finite duration. From this aperiodic sequence, we can construct a periodic sequence $\tilde{x}[n]$ for which x[n] is of one period.



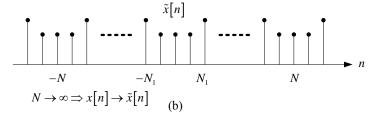


Figure 4.5 (a) Finite duration signal x[n]; (b) periodic signal $\tilde{x}[n]$ constructed to be equal to x[n] over one period.

Discrete-time Fourier series representation of $\tilde{x}[n]$ is

$$\tilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$
(4.15)

$$a_{k} = \frac{1}{N} \sum_{k=} \tilde{x}[n] e^{-jk\frac{2\pi}{N}n}$$
(4.16)

$$\therefore x[n] = \tilde{x}[n] \quad \text{for} \quad |n| \le N_1 \tag{4.17}$$

$$\therefore a_{k} = \frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} x[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk\frac{2\pi}{N}n}$$
(4.18)

Defining the envelope of Na_k as $X(e^{j\Omega})$, we have

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
(4.19)

$$Na_{k} = X\left(e^{j\Omega}\right)\Big|_{\Omega = \frac{2\pi k}{N}} \left(\text{ or } a_{k} = \frac{1}{N} X\left(e^{j\frac{2\pi}{N}k}\right) \right)$$
(4.20)

The coefficients a_k are proportional to equally spaced samples of the envelope function $X(e^{j\Omega})$, where the sample spacing is equal to $2\pi/N$.

$$\Rightarrow \tilde{x}[n] = \sum_{k = \langle N \rangle} \frac{1}{N} X\left(e^{j(k\Omega_0)}\right) e^{jk\Omega_0 n}$$
(4.21)

where $\Omega_0 = \frac{2\pi}{N}$.

$$\therefore N = \frac{2\pi}{\Omega_0}$$

$$\therefore \tilde{x}[n] = \frac{1}{2\pi} \sum_{k = \langle N \rangle} X(e^{j(k\Omega_0)}) e^{jk\Omega_0 n} \Omega_0$$
(4.22)

As $N \to \infty$, $\tilde{x}[n] \to x[n]$, and the above equation becomes a representation of x[n] and the summation operator becomes the integration. $(\Omega_0 \to d\Omega, k\Omega_0 \to \Omega)$ Discrete-time Fourier transform pair

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega \quad \text{(synthesis equation)} \tag{4.23}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \quad \text{(analysis equation)} \tag{4.24}$$

 $X(e^{j\Omega})$ is referred to as the discrete-time Fourier transform of x[n] (or spectrum).

- 2. Explanation of the concept of spectrum x[n] is a linear combination of complex exponentials infinitesimally close in frequency and with amplitudes $X(e^{j\Omega})(d\Omega/2\pi)$.
- 3. The convergence of the discrete-time Fourier transform is guaranteed if x[n] is absolutely summable or if the sequence has finite energy, i.e.,

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right| < \infty \tag{4.25}$$

or

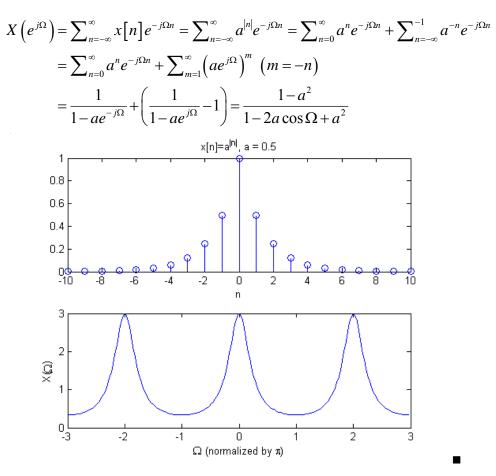
$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 < \infty \tag{4.26}$$

- 4. The major differences between the continuous-time Fourier transform and the discrete-time Fourier transform:
 - The discrete-time Fourier transform is periodic, and the continuous-time Fourier transform is aperiodic except for some special cases. (for example, the periodic impulse train)
 - (2) The discrete-time Fourier transform has a finite interval of integration in the synthesis equation, while the continuous-time Fourier transform has an infinite interval of integration in the synthesis equation.

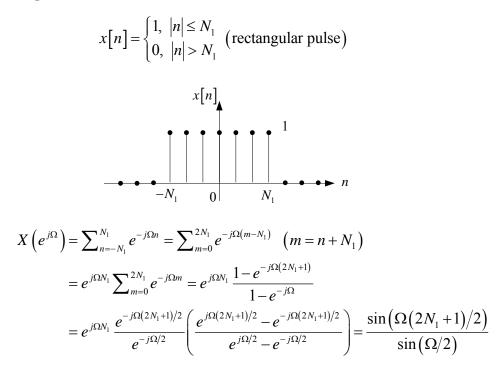
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$$

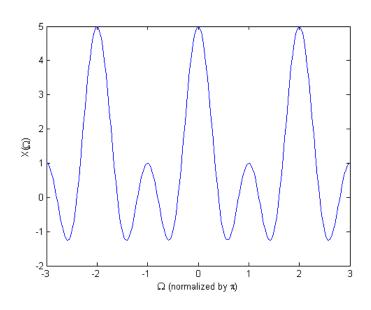
$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \qquad X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$
(4.27)

Example 4.4: $x[n] = a^{|n|}, |a| < 1$



Example 4.5:





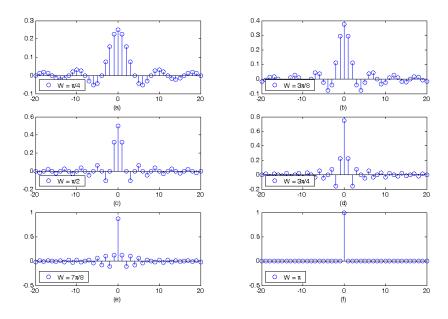
"Discrete-time counterpart of the sinc function": periodic with period 2π .

Example 4.6: Let $x[n] = \delta[n]$, then $X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\Omega n} = 1$

Let
$$\hat{x}[n] = \frac{1}{2\pi} \int_{-W}^{W} e^{j\Omega n} d\Omega = \frac{1}{2\pi} \cdot \frac{1}{jn} e^{j\Omega n} \Big|_{-W}^{W} = \frac{1}{j2\pi n} \left(e^{jWn} - e^{-jWn} \right) = \frac{1}{\pi n} \sin(Wn)$$

The approximation of x[n] by $\hat{x}[n]$ is shown in the figure below. As $W \to \pi$, $\hat{x}[n] \to x[n]$ with no Gibbs phenomenon.

Note: There are no convergence problems in the discrete-time Fourier transform synthesis equation.



4-4 Periodic Signals and the Discrete-Time Fourier Transform

Fourier series coefficients as samples of the Fourier transform of one period 1.

Let $\tilde{x}[n]$ be a periodic signal with period N, and let x[n] represent one

period of $\tilde{x}[n]$, i.e.,

$$x[n] = \begin{cases} \tilde{x}[n], \ M \le n \le M + N - 1\\ 0 \quad \text{, otherwise} \end{cases}$$
(4.28)

where M is arbitrary. Then

$$Na_k = X\left(e^{jk\frac{2\pi}{N}}\right) \tag{4.29}$$

where a_k is the discrete-time Fourier series coefficients of $\tilde{x}[n]$ and $X(e^{j\Omega})$ is the discrete-time Fourier transform of x[n].

 \Rightarrow *Na_k* correspond to samples of the Fourier transform of one period.

When M is varied, $X(e^{j\Omega})$ is changed. But the values of $X(e^{j\Omega})$ at the sample frequencies $2\pi k/N$ do not depend on *M*. Example 4.7:

Let
$$\tilde{x}[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$$
,
 $a_k = \frac{1}{N} \sum_{n=} \tilde{x}[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N}$
Let $x_1[n] = \delta[n]$ (i.e., $M = 0$). Then, $X_1(e^{j\Omega}) = 1$.
Let $x_2[n] = \delta[n-N]$ (i.e., $0 < M < N$). Then, $X_2(e^{j\Omega}) = e^{-j\Omega N}$.
Clearly, $X_1(e^{j\Omega}) \neq X_2(e^{j\Omega})$. However, at the set of sample frequencies
 $\Omega = 2\pi k/N$, $X_1(e^{j\Omega})$ and $X_2(e^{j\Omega})$ are identical.

The discrete-time Fourier transform for periodic signals 2. Consider the signal

$$x[n] = e^{j\Omega_0 n} \tag{4.30}$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} e^{j\Omega_0 n}e^{-j\Omega n}$$

= $\sum_{n=-\infty}^{\infty} e^{-j(\Omega-\Omega_0)n} = ?$ (4.31)

We consider the discrete-time Fourier transform

$$X(e^{j\Omega}) = \sum_{l=-\infty}^{\infty} 2\pi\delta(\Omega - \Omega_0 - 2\pi l)$$
(4.32)

Then the inverse discrete-time Fourier transform $X(e^{j\Omega})$ is

$$x[n] = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{\infty} 2\pi \delta (\Omega - \Omega_0 - 2\pi l) e^{j\Omega n} d\Omega$$

= $e^{j\Omega_0 n + j2\pi m} = e^{j\Omega_0 n} (\Omega = \Omega_0 + 2\pi r, \text{ with } l = r)$ (4.33)

(:: Any interval of length includes exactly one impulse in the summation.) More generally, if x[n] is the sum of an arbitrary set of complex exponentials, i.e.,

$$x[n] = b_1 e^{j\Omega_1 n} + b_2 e^{j\Omega_2 n} + \dots + b_M e^{j\Omega_M n}$$
(4.34)

then

$$X(e^{j\Omega}) = b_1 \sum_{l=-\infty}^{\infty} 2\pi \delta (\Omega - \Omega_1 - 2\pi l) + b_2 \sum_{l=-\infty}^{\infty} 2\pi \delta (\Omega - \Omega_2 - 2\pi l) + \dots + b_M \sum_{l=-\infty}^{\infty} 2\pi \delta (\Omega - \Omega_M - 2\pi l)$$

$$(4.35)$$

Note:

• $e^{j\Omega_0 n}$ is periodic when $2\pi/\Omega_0 = m/N$ is a rational number or integer.

- $x[n] = b_1 e^{j\Omega_1 n} + b_2 e^{j\Omega_2 n} + \dots + b_M e^{j\Omega_M n}$ is periodic only when all of the $2\pi/\Omega_i = m/N$ are rational numbers or integers.
- If x[n] is a periodic sequence with period N, then x[n] can be represented as

$$x[n] = a_0 + a_1 e^{j\frac{2\pi}{N}n} + a_2 e^{j2(\frac{2\pi}{N})n} + \dots + a_{N-1} e^{j(N-1)(\frac{2\pi}{N})n}$$
(4.36)

$$X\left(e^{j\Omega}\right) = a_0 \sum_{l=-\infty}^{\infty} 2\pi\delta\left(\Omega - 2\pi l\right) + a_1 \sum_{l=-\infty}^{\infty} 2\pi\delta\left(\Omega - \frac{2\pi}{N} - 2\pi l\right) + \dots + a_{N-1} \sum_{l=-\infty}^{\infty} 2\pi\delta\left(\Omega - (N-1)\frac{2\pi}{N} - 2\pi l\right)$$

$$(4.37)$$

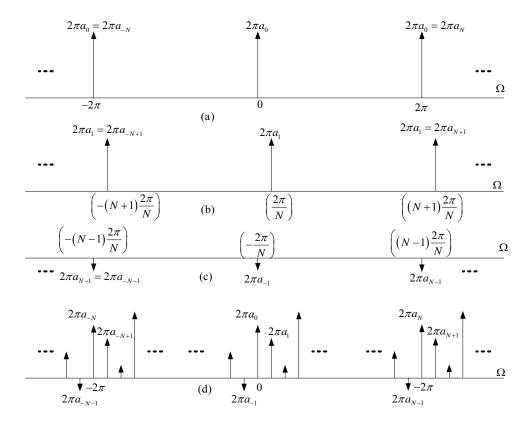


Figure 4.6 Fourier transform of a discrete-time periodic signal. (a) the first summation on the right-hand side of Eq. (4.37); (b) the second summation on the right-hand side of Eq. (4.37); (c) the final summation on the right-hand side of Eq. (4.37); (d) the entire expression of $X(\Omega)$.

3. The discrete Fourier transform (DFT) Let

$$x[n] = 0$$
, outside the interval $0 \le n \le N_1 - 1$ (4.38)

$$\tilde{x}[n] = x[n], \ 0 \le n \le N - 1 \tag{4.39}$$

where $\tilde{x}[n]$ is periodic with period N and $N \ge N_1$.

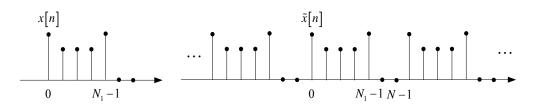


Figure 4.7 A nonperiodic signal x[n] with finite duration and periodic signal $\tilde{x}[n]$ with period N.

The Fourier series representation of $\tilde{x}[n]$ is

$$\tilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk\frac{2\pi}{N}n}$$
(4.40)

where

$$a_{k} = \frac{1}{N} \sum_{k=\langle N \rangle} \tilde{x}[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n}$$
(4.41)

Let $X[k] = Na_k$. Then we can define the *N*-point discrete Fourier transform (DFT) of x[n] as

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n} \qquad k = 0, 1, 2, \dots, N-1 \dots \text{DFT}$$
(4.42)

with

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{jk \frac{2\pi}{N}n} \quad n = 0, 1, 2, \dots, N-1 \text{ where DFT} \quad (4.43)$$

Note:

- The original finite duration signal can be reconstructed from its DFT.
- The length of DFT is chosen approximately so that fast algorithms can easily be used for the computation. (Fast Fourier Transform algorithms) For example, a power of 2 (2^m = N) is often chosen as a transform length.

4-5 Properties of the Discrete-Time Fourier Transform

1. Periodicity

The discrete-time Fourier transform is always periodic in Ω with period 2π .

$$\begin{cases} X\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} \\ x[n] = \frac{1}{2\pi} \int_{2\pi} X\left(e^{j\Omega}\right)e^{j\Omega n} d\Omega \end{cases}$$
(4.44)

2. Linearity

$$x_1[n] \xleftarrow{\boldsymbol{\sigma}} X_1(e^{j\Omega}) \tag{4.45}$$

$$x_2[n] \longleftrightarrow X_2(e^{j\Omega}) \tag{4.46}$$

$$a_1 x_1[n] + b_2 x_2[n] \longleftrightarrow a_1 X_1(e^{j\Omega}) + b_2 X_2(e^{j\Omega})$$

$$(4.47)$$

3. Symmetry properties

If x[n] is a real-valued sequence, then

(1)
$$X\left(e^{j\Omega}\right) = X^*\left(e^{j(-\Omega)}\right)$$
 (4.48)

(2)
$$\operatorname{Re}\left\{X\left(e^{j\Omega}\right)\right\} = \operatorname{Re}\left\{X\left(e^{j(-\Omega)}\right)\right\}$$
: even function (4.49)

(3)
$$\operatorname{Im}\left\{X\left(e^{j\Omega}\right)\right\} = -\operatorname{Im}\left\{X\left(e^{j(-\Omega)}\right)\right\}$$
: odd function (4.50)

(4)
$$\left| X\left(e^{j\Omega}\right) \right| = \left| X\left(e^{j(-\Omega)}\right) \right|$$
 (4.51)

(5)
$$\angle X(e^{j\Omega}) = -\angle X(e^{j(-\Omega)})$$
 (4.52)

(6)
$$x_e[n] \longleftrightarrow \operatorname{Re}\left\{X\left(e^{j\Omega}\right)\right\}$$
 (4.53)

(7)
$$x_o[n] \longleftrightarrow j \operatorname{Im} \left\{ X\left(e^{j\Omega}\right) \right\}$$
 (4.54)

4. Time shifting and frequency shifting

If
$$x[n] \xleftarrow{\boldsymbol{\sigma}} X(e^{j\Omega})$$
, then
 $x[n-n_0] \xleftarrow{\boldsymbol{\sigma}} e^{-j\Omega n_0} X(e^{j\Omega})$
(4.55)

$$e^{j\Omega_0 n} x[n] \longleftrightarrow X(e^{j(\Omega - \Omega_0)})$$
 (4.56)

$$\frac{1}{2\pi} \int_{2\pi} X\left(e^{j(\Omega-\Omega_0)}\right) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{2\pi} X\left(e^{j\Omega'}\right) e^{j(\Omega'+\Omega_0)n} d\Omega'$$

$$= e^{j\Omega_0 n} \frac{1}{2\pi} \int_{2\pi} X\left(e^{j\Omega'}\right) e^{j\Omega' n} d\Omega' = e^{j\Omega_0 n} x[n]$$

$$(4.57)$$

5. Differencing and Summation

$$x[n] \longleftrightarrow X(e^{j\Omega}) \tag{4.58}$$

(1)
$$x[n] - x[n-1] \xleftarrow{\boldsymbol{\sigma}} (1 - e^{-j\Omega}) X(e^{j\Omega})$$
 (4.59)

(2)
$$y[n] = \sum_{m=-\infty}^{n} x[m] = x[n] * u[n]$$
:
 $y[n] + c - y[n-1] - c = x[n] \Rightarrow Y(e^{j\Omega})(1 - e^{-j\Omega}) = X(e^{j\Omega})$ (4.60)

$$\Rightarrow Y(e^{j\Omega}) = \frac{1}{1 - e^{-j\Omega}} X(e^{j\Omega}). \text{ This is partly correct!}$$

$$\sum_{m=-\infty}^{n} x[m] \xleftarrow{\boldsymbol{\varphi}} \frac{1}{1 - e^{-j\Omega}} X(e^{j\Omega}) + \underbrace{\pi X(e^{j\Omega}) \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)}_{\text{This term reflects the dc or average value that can result from summation.}}_{\text{Value that can result from summation.}} (1 \xleftarrow{\boldsymbol{\varphi}} 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k))$$

$$(4.61)$$

Note:

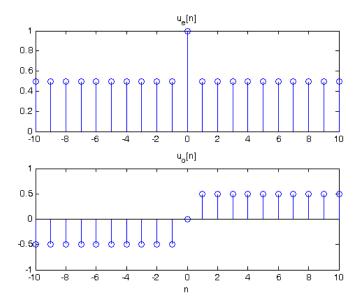
• Average value (or dc value) is
$$\frac{1}{2} X(e^{j\cdot 0}) = \frac{1}{2} \sum_{m=-\infty}^{n} x[m]$$
.

Example 4.8:

$$x[n] = \delta[n] \xleftarrow{\boldsymbol{\sigma}} X(e^{j\Omega}) = 1$$
$$u[n] = \sum_{m=-\infty}^{n} \delta[m] \xleftarrow{\boldsymbol{\sigma}} \frac{1}{1 - e^{-j\Omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$$
$$\because u[n] + c - u[n-1] - c = \delta[n]$$
$$\therefore \boldsymbol{\sigma} \{u[n]\} = \frac{1}{1 - e^{-j\Omega}} + g(e^{j\Omega})$$

where $g(e^{j\Omega})$ accounts for the dc value of u[n].

$$u[n] = \underbrace{\left(u[n] - \frac{1}{2} - \frac{1}{2}\delta[n]\right)}_{\text{odd part, } u_o[n]} + \underbrace{\frac{1}{2} + \frac{1}{2}\delta[n]}_{\text{even part, } u_e[n]}$$



$$\begin{aligned} \boldsymbol{\mathcal{F}}\left\{u_{o}\left[n\right]\right\} &= \boldsymbol{\mathcal{F}}\left\{u\left[n\right]\right\} - \frac{1}{2}2\pi\sum_{k=-\infty}^{\infty}\delta\left(\Omega - 2\pi k\right) - \frac{1}{2} \\ &= \frac{1}{1 - e^{-j\Omega}} + g\left(e^{j\Omega}\right) - \pi\sum_{k=-\infty}^{\infty}\delta\left(\Omega - 2\pi k\right) - \frac{1}{2} \\ &= \left(\frac{1}{1 - \cos\Omega + j\sin\Omega} - \frac{1}{2}\right) + g\left(e^{j\Omega}\right) - \pi\sum_{k=-\infty}^{\infty}\delta\left(\Omega - 2\pi k\right) \\ &= \left(\frac{1 - \cos\Omega - j\sin\Omega}{2 - 2\cos\Omega} - \frac{1}{2}\right) + g\left(e^{j\Omega}\right) - \pi\sum_{k=-\infty}^{\infty}\delta\left(\Omega - 2\pi k\right) \\ &= \frac{-j\sin\Omega}{2 - 2\cos\Omega} + g\left(e^{j\Omega}\right) - \pi\sum_{k=-\infty}^{\infty}\delta\left(\Omega - 2\pi k\right) \end{aligned}$$

 $:: \boldsymbol{\sigma} \{u_o[n]\}$ is purely imaginary.

$$\therefore g(e^{j\Omega}) = \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$$

$$\therefore \sum_{m=-\infty}^{n} x[m] = x[n] * u[n]$$

$$\mathbf{\mathcal{F}} \left\{ \sum_{m=-\infty}^{n} x[m] \right\} = \mathbf{\mathcal{F}} \left\{ x[n] \right\} \cdot \mathbf{\mathcal{F}} \left\{ u[n] \right\} \text{ (convolution property)}$$

$$\therefore \qquad = X \left(e^{j\Omega} \right) \left[\frac{1}{1 - e^{-j\Omega}} + \pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k) \right]$$

$$= \frac{1}{1 - e^{-j\Omega}} X \left(e^{j\Omega} \right) + \pi X \left(e^{j\Omega} \right) \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)$$

 $(X(e^{j\Omega})$ is periodic with period 2π .)

6. Time and frequency scaling

$$x[n] \longleftrightarrow X(e^{j\Omega}) \tag{4.62}$$

(1)
$$x[-n] \xleftarrow{\boldsymbol{\mathcal{F}}} X(e^{j(-\Omega)})$$

 $\sum_{n=-\infty}^{\infty} x[-n]e^{-j\Omega n} = \sum_{m=-\infty}^{\infty} x[m]e^{j\Omega m} \quad (m=-n)$
 $= \sum_{m=-\infty}^{\infty} x[m]e^{-j(-\Omega)m}$
(4.63)

(2) $x(at) \longleftrightarrow \frac{\pi}{|a|} X\left(j\frac{\omega}{a}\right)$: continuous-time case

In the discrete-time case, the corresponding property is quite different. If *a* is an integer, x[an] consists only of part of x[n]. What happens if *a* is not an integer? Let *k* be a positive integer, and define

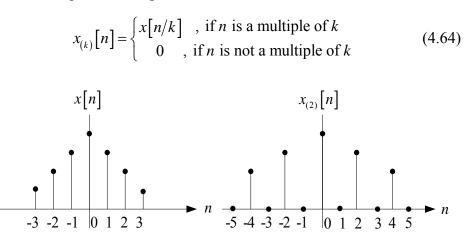


Figure 4.8 The signal $x_{(2)}[n]$ obtained from x[n] by inserting one zero between successive values of the original signal.

$$X_{(k)}\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} x_{(k)}[n]e^{-j\Omega n}$$

$$= \sum_{r=-\infty}^{\infty} x_{(k)}[rk]e^{-j\Omega rk} \qquad \left(x_{(k)}[n] \neq 0 \text{ when } n = rk\right) \quad (4.65)$$

$$= \sum_{r=-\infty}^{\infty} x[r]e^{-j(k\Omega)r} = X\left(e^{j(k\Omega)}\right)$$

$$x_{(k)}[n] \xleftarrow{\mathbf{F}} \underbrace{X\left(e^{j(k\Omega)}\right)}_{\text{periodic with period } 2\pi/k} \quad (4.66)$$

7. Differentiation in frequency

$$x[n] \longleftrightarrow X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
(4.67)

$$\frac{dX\left(e^{j\Omega}\right)}{d\Omega} = -\sum_{n=-\infty}^{\infty} jnx[n]e^{-j\Omega n} \Longrightarrow j\frac{dX\left(e^{j\Omega}\right)}{d\Omega} = \sum_{n=-\infty}^{\infty} nx[n]e^{-j\Omega n} \qquad (4.68)$$

$$\Rightarrow nx[n] \longleftrightarrow j \frac{dX(e^{j\Omega})}{d\Omega}$$
(4.69)

8. Parseval's relation For aperiodic signal:

$$x[n] \longleftrightarrow X(e^{j\Omega}) \tag{4.70}$$

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 = \frac{1}{2\pi} \int_{2\pi} \left| X\left(e^{j\Omega} \right) \right|^2 d\Omega$$
(4.71)

For periodic signals:

$$x[n] = \sum_{k=} a_k e^{jk\frac{2\pi}{N}n}$$
(4.72)

$$\frac{1}{N} \sum_{n < N >} \left| x[n] \right|^2 = \sum_{k < N >} \left| a_k \right|^2$$
(4.73)

Proof:

$$(1) \qquad \sum_{n=-\infty}^{\infty} |x[n]|^{2} = \sum_{n=-\infty}^{\infty} x[n] x^{*}[n] = \sum_{n=-\infty}^{\infty} x[n] \frac{1}{2\pi} \int_{2\pi} \int_{2\pi} X^{*} (e^{j\Omega}) e^{-j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi} X^{*} (e^{j\Omega}) \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} \right) d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi} X^{*} (e^{j\Omega}) X (e^{j\Omega}) d\Omega = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\Omega})|^{2} d\Omega \quad (4.74)$$

$$(2) \qquad \frac{1}{N} \sum_{n=} |x[n]|^{2} = \frac{1}{N} \sum_{n=} x[n] x^{*}[n]$$

$$= \frac{1}{N} \sum_{n=} x[n] \sum_{k=} a_{k}^{*} e^{-jk\frac{2\pi}{N}n}$$

$$= \sum_{k=} a_{k}^{*} \left(\frac{1}{N} \sum_{n=} x[n] e^{-jk\frac{2\pi}{N}n} \right) = \sum_{k=} a_{k} a_{k}^{*} \qquad (4.75)$$

$$= \sum_{k=} |a_{k}|^{2}$$

9. Convolution property

If y[n] = x[n] * h[n], then

$$Y(e^{j\Omega}) = X(e^{j\Omega})H(e^{j\Omega})$$
(4.76)

where $X(e^{j\Omega}) = \mathbf{\mathcal{F}}\{x[n]\}, H(e^{j\Omega}) = \mathbf{\mathcal{F}}\{h[n]\}, \text{ and } Y(e^{j\Omega}) = \mathbf{\mathcal{F}}\{y[n]\}.$

Proof:

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$
(4.77)

$$Y(e^{j\Omega}) = \mathcal{F}\left\{y[n]\right\} = \sum_{n=-\infty}^{\infty} y[n]e^{-j\Omega n}$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m]h[n-m]e^{-j\Omega n}$$

$$= \sum_{m=-\infty}^{\infty} x[m]\sum_{n=-\infty}^{\infty} h[n-m]e^{-j\Omega n}$$

$$= \sum_{m=-\infty}^{\infty} x[m]H(e^{j\Omega})e^{-j\Omega m} = H(e^{j\Omega})\sum_{m=-\infty}^{\infty} x[m]e^{-j\Omega m}$$

$$= H(e^{j\Omega})X(e^{j\Omega}) = X(e^{j\Omega})H(e^{j\Omega})$$

(4.78)

(1) Periodic convolution

Consider the periodic convolution of two sequences $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$ which are periodic with the same period *N*. The periodic convolution of $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$ is defined as

$$\tilde{y}[n] = \tilde{x}_1[n] \circledast \tilde{x}_2[n]$$

$$= \sum_{m = \langle N \rangle} \tilde{x}_1[m] \tilde{x}_2[n-m]$$
(4.79)

where $\tilde{y}[n]$ is also periodic with period *N*.

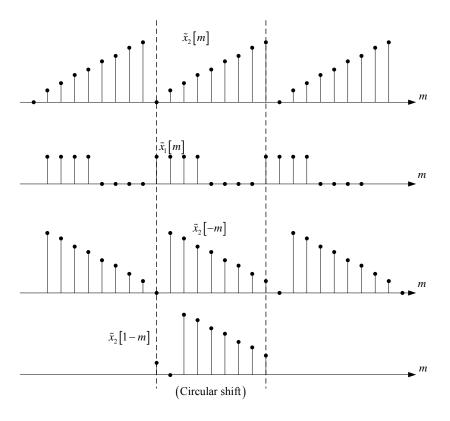


Figure 4.9 Procedure in forming the periodic convolution of two periodic sequences.

For periodic convolution, the counterpart of the convolution property can be expressed in terms of the Fourier series coefficients. Let

$$\tilde{x}_1[n] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} \qquad \left(\Omega_0 = 2\pi/N\right) \tag{4.80}$$

$$\tilde{x}_2[n] = \sum_{k=} b_k e^{jk\Omega_0 n}$$
(4.81)

$$\tilde{y}[n] = \sum_{k=\langle N \rangle} c_k e^{jk\Omega_0 n} \tag{4.82}$$

$$c_k = Na_k b_k \tag{4.83}$$

Proof:

$$\tilde{y}[n] = \sum_{m = \langle N \rangle} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m]$$
(4.84)
$$c_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} \tilde{y}[n] e^{-jk\Omega_{0}n}$$
$$= \frac{1}{N} \sum_{n = \langle N \rangle} \sum_{m = \langle N \rangle} \tilde{x}_{1}[m] \tilde{x}_{2}[n-m] e^{-jk\Omega_{0}n}$$
$$= \sum_{m = \langle N \rangle} \tilde{x}_{1}[m] \frac{1}{N} \sum_{n = \langle N \rangle} \tilde{x}_{2}[n-m] e^{-jk\Omega_{0}n}$$
(4.85)
$$= \sum_{m = \langle N \rangle} \tilde{x}_{1}[m] \frac{1}{N} \sum_{n' = \langle N \rangle} \tilde{x}_{2}[n'] e^{-jk\Omega_{0}(n'+m)}$$
$$= \sum_{m = \langle N \rangle} \tilde{x}_{1}[m] e^{-jk\Omega_{0}m} b_{k} = Na_{k}b_{k}$$

(2) Let $x_1[n]$ and $x_2[n]$ be two finite-duration sequences, and suppose that

$$x_1[n] = 0$$
, outside the interval $0 \le n \le N_1 - 1$ (4.86)

$$x_2[n] = 0$$
, outside the interval $0 \le n \le N_2 - 1$ (4.87)

Let $y[n] = x_1[n] * x_2[n]$ (aperiodic convolution). Then we can find

$$y[n] = 0$$
, outside the interval $0 \le n \le N_1 + N_2 - 2$ (4.88)

Choose $N \ge N_1 + N_2 - 1$ and define signals $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$ that are periodic with period N and such that

$$\tilde{x}_{1}[n] = x_{1}[n], \quad 0 \le n \le N - 1$$
(4.89)

$$\tilde{x}_2[n] = x_2[n], \ 0 \le n \le N - 1$$
 (4.90)

Let $\tilde{y}[n] = \tilde{x}_1[n] \circledast \tilde{x}_2[n]$ (periodic convolution), then we obtain

$$y[n] = \tilde{y}[n], \quad 0 \le n \le N - 1.$$

 \Rightarrow The periodic convolution $\tilde{y}[n]$ equals the aperiodic convolution y[n] over one period.

An algorithm for the calculation of the aperiodic convolution of $x_1[n]$ and $x_2[n]$:

- (a) Calculate the DFTs $\tilde{X}_1(k)$ and $\tilde{X}_2(k)$ of $\tilde{x}_1[n]$ and $\tilde{x}_2[n]$.
- (b) Multiply these DFTs together to obtain the DFT of y[n]:

$$\tilde{Y}(k) = \tilde{X}_1(k) \cdot \tilde{X}_2(k) \tag{4.91}$$

(c) Calculate the inverse DFT of $\tilde{Y}(k)$. The result is the desired convolution $\tilde{y}[n]$.

$$\tilde{X}_{1}(k) = Na_{k} = \sum_{n=0}^{N-1} x_{1}[n]e^{-jk\frac{2\pi}{N}n}, \ k = 0, 1, 2, \dots, N-1$$
 (4.92)

$$\tilde{X}_{2}(k) = Nb_{k} = \sum_{n=0}^{N-1} x_{2}[n]e^{-jk\frac{2\pi}{N}n}, \ k = 0, 1, 2, \dots, N-1$$
(4.93)

$$\tilde{Y}(k) = Nc_k = N^2 a_k b_k = \tilde{X}_1(k) \cdot \tilde{X}_2(k), \ k = 0, 1, 2, \dots, N-1 \quad (4.94)$$

$$\left[\tilde{y}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{Y}(k) e^{jk \frac{2\pi}{N}n}, n = 0, 1, 2, \dots, N-1 \right]$$
(4.95)

Example 4.9:

$$h[n] = \alpha^{n} u[n] \xleftarrow{\boldsymbol{\varphi}} H(e^{j\Omega}) = \frac{1}{1 - \alpha e^{-j\Omega}}$$
$$x[n] = \beta^{n} u[n] \xleftarrow{\boldsymbol{\varphi}} X(e^{j\Omega}) = \frac{1}{1 - \beta e^{-j\Omega}}$$
$$Y(e^{j\Omega}) = H(e^{j\Omega}) X(e^{j\Omega}) = \frac{1}{(1 - \alpha e^{-j\Omega})(1 - \beta e^{-j\Omega})}$$

If $\alpha \neq \beta$,

$$Y(e^{j\Omega}) = \frac{A}{1 - \alpha e^{-j\Omega}} + \frac{B}{1 - \beta e^{-j\Omega}}$$
$$A = \frac{\alpha}{\alpha - \beta}, B = \frac{\beta}{\alpha - \beta}$$
$$\Rightarrow y[n] = \frac{\alpha}{\alpha - \beta} \alpha^{n} u[n] + \frac{\beta}{\alpha - \beta} \beta^{n} u[n]$$

If
$$\alpha = \beta$$
,

$$Y(e^{j\Omega}) = \left(\frac{1}{1-\alpha e^{-j\Omega}}\right)^{2} = \frac{j}{\alpha}e^{j\Omega}\frac{d}{d\Omega}\left(\frac{1}{1-\alpha e^{-j\Omega}}\right)$$

$$\alpha^{n}u[n] \xleftarrow{\boldsymbol{\sigma}} \frac{1}{1-\alpha e^{-j\Omega}}$$

$$n\alpha^{n}u[n] \xleftarrow{\boldsymbol{\sigma}} j\frac{d}{d\Omega}\left(\frac{1}{1-\alpha e^{-j\Omega}}\right)$$

$$(n+1)\alpha^{n+1}u[n+1] \xleftarrow{\boldsymbol{\sigma}} je^{j\Omega}\frac{d}{d\Omega}\left(\frac{1}{1-\alpha e^{-j\Omega}}\right)$$

$$(\text{time shifting property, } x[n-n_{0}] \xleftarrow{\boldsymbol{\sigma}} e^{-j\Omega n_{0}} X(e^{j\Omega}))$$

$$y[n] = \frac{1}{\alpha}(n+1)\alpha^{n+1}u[n+1]$$

$$= (n+1)\alpha^{n}u[n+1]$$

$$= (n+1)\alpha^{n}u[n] \quad (\because n = -1, n+1 = 0)$$

Example 4.10:

Let
$$x_1[n] = x_2[n] = \begin{cases} 1, 0 \le n \le N-1 \\ 0, \text{ otherwise} \end{cases}$$
.

(i) Find $\tilde{y}_1[n] = \tilde{x}_1[n] \circledast \tilde{x}_2[n]$ via DFT: $\tilde{x}_1[n] = \tilde{x}_2[n]$ is periodic with period N. $\tilde{x}_1[n]$ is equal to $\tilde{x}_2[n]$ for $0 \le n \le N - 1$. $\tilde{X}_1(k) = \tilde{X}_2(k) = \sum_{n=0}^{N-1} e^{-jk\frac{2\pi}{N}n} = \begin{cases} N, & k = 0\\ 0, \text{ otherwise} \end{cases}$ $\tilde{Y}_1(k) = \tilde{X}_1(k)\tilde{X}_2(k) = \begin{cases} N^2, & k = 0\\ 0, \text{ otherwise} \end{cases}$ $\tilde{y}_1[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{Y}_1(k) e^{jk\frac{2\pi}{N}n} = N, \ 0 \le n \le N - 1 \end{cases}$

(ii) Find $y_2[n] = x_1[n] * x_2[n]$ via DFT:

Since 2N > (N + N - 1), we use 2*N*-point DFT and IDFT for calculating $y_2[n]$.

$$\tilde{X}_{1}(k) = \tilde{X}_{2}(k) = \sum_{n=0}^{2N-1} e^{-jk\frac{2\pi}{2N}n}, \ k = 0, 1, 2, \dots, 2N-1$$
$$\tilde{Y}_{2}(k) = \tilde{X}_{1}(k)\tilde{X}_{2}(k), \ k = 0, 1, 2, \dots, 2N-1$$
$$y_{2}[n] = \frac{1}{2N} \sum_{k=0}^{2N-1} \tilde{Y}_{2}(k) e^{jk\frac{2\pi}{2N}n}, \ 0 \le n \le 2N-1$$

$$y[n] = x_1[n]x_2[n]$$
 (4.96)

$$x_1[n] \xleftarrow{\boldsymbol{\varphi}} X_1(e^{j\Omega}) \tag{4.97}$$

$$x_2[n] \xleftarrow{\boldsymbol{\sigma}} X_2(e^{j\Omega}) \tag{4.98}$$

$$y[n] \xleftarrow{\boldsymbol{\mathcal{F}}} Y(e^{j\Omega}) \tag{4.99}$$

$$\Rightarrow Y(e^{j\Omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\Omega-\theta)}) d\theta = \frac{1}{2\pi} X_1(e^{j\Omega}) \circledast X_2(e^{j\Omega})$$
(periodic convolution)
(10)

(periodic convolution)

Proof:

$$Y(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} x_1[n]x_2[n]e^{-j\Omega n}$$
(4.101)

$$\therefore x_1[n] = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) e^{j\theta n} d\theta$$
(4.102)

$$\therefore Y(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x_2[n] \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) e^{j\theta n} d\theta \right\} e^{-j\Omega n}$$
$$= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left(\sum_{n=-\infty}^{\infty} x_2[n] e^{-j(\Omega-\theta)n} \right) d\theta$$
$$= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\Omega-\theta)}) d\theta$$
(4.103)

4-6 Duality

1. Discrete-time Fourier series

$$x[n] = \sum_{k=} a_k e^{jk\frac{2\pi}{N}n}$$
(4.104)

$$a_{k} = \frac{1}{N} \sum_{n = } x[n] e^{-jk\frac{2\pi}{N}n}$$
(4.105)

$$f[m] = \frac{1}{N} \sum_{r=} g[r] e^{-jm\frac{2\pi}{N}r}$$
(4.106)

(1) Let m = k and r = n, the sequence f[k] corresponds to the Fourier

series coefficients of the signal g[n], i.e.,

$$g[n] \longleftrightarrow f[k] = \frac{1}{N} \sum_{n = \langle N \rangle} g[n] e^{-jk \frac{2\pi}{N}n}$$
(4.107)

(2) Let m = n and r = -k, the sequence f[m] becomes

$$f[n] = \frac{1}{N} \sum_{k = \langle N \rangle} g[-k] e^{jk \frac{2\pi}{N}n}$$
(4.108)

$$f[n] \xleftarrow{\boldsymbol{\varphi}} \frac{1}{N} g[-k] \tag{4.109}$$

 $\left(\frac{1}{N}g\left[-k\right]\right]$ corresponds to the Fourier series coefficients of f[n].)

If

$$x[n] \xleftarrow{\boldsymbol{\sigma}} a_k \text{ (also periodic)}$$
 (4.110)

There are some notes about it Note:

- The duality property implies that the Fourier series coefficients for the periodic sequence a_k are the values $\frac{1}{N}x[-n]$ (i.e., are proportional to the original reversed in time).
- The duality property implies that every property of the discrete-time Fourier series has a dual.

Example 4.11:

$$\begin{cases} x[n-n_0] \longleftrightarrow a_k e^{-jk\frac{2\pi}{N}n_0} \\ e^{jM\frac{2\pi}{N}n} x[n] \longleftrightarrow a_{k-M} \end{cases}$$
$$\begin{cases} \sum_{r=\langle N \rangle} x[r] y[n-r] \longleftrightarrow Na_k b_k \\ x[n] y[n] \longleftrightarrow \sum_{l=\langle N \rangle} a_l b_{k-l} \end{cases}$$

2. Discrete-time Fourier transform and continuous-time Fourier series

$$\begin{cases} x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega \\ X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n} \end{cases}$$
Discrete-time Fourier transform (4.111)
$$\begin{cases} x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \\ a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt \end{cases}$$
Continuous-time Fourier series (4.112)

Let f(u) represent a periodic function of a continuous variable with period 2π , and let g[m] be a discrete sequence related to f(u) by

$$f(u) = \sum_{m=-\infty}^{\infty} g[m] e^{-jum}$$
(4.113)

(1) $u = \Omega$ and m = n: $f(e^{j\Omega})$ is the discrete-time Fourier transform of g[n], i.e.,

$$g[n] \xleftarrow{\boldsymbol{\sigma}} f\left(e^{j\Omega}\right) \tag{4.114}$$

(2) u = t and m = -k: g[-k] is the Fourier series coefficients of f(t), i.e.,

$$f(t) \xleftarrow{\boldsymbol{\sigma}} g[-k] \quad (\omega_0 = 2\pi/T_0 = 1) \tag{4.115}$$

Note:

• Since $X(e^{j\Omega})$ is a periodic function of a continuous variable, we can expand it in a Fourier series with $\omega_0 = 1$ $(T_0 = 2\pi)$ and Ω , rather than *t*, as the continuous variable.

 \Rightarrow From the duality relationship, we can conclude that the Fourier series coefficients of $X(e^{j\Omega})$ will be the original sequence x[n] reversed in order.

$$x[n] \xleftarrow{\boldsymbol{\sigma}} X(e^{j\Omega}) \xleftarrow{\boldsymbol{\sigma}} x[-k]$$
(4.116)

0

$$\frac{1}{2\pi} \int_{2\pi} x_1(\tau) x_2(t-\tau) d\tau \xleftarrow{\boldsymbol{\varphi}} a_k b_k \tag{4.117}$$

$$x[n]y[n] \xleftarrow{\boldsymbol{\varphi}} \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\Omega-\theta)}) d\theta$$
(4.118)

• Summary of Fourier series and transform expressions (See Table 4.1)

	Continuous-time	
	Time domain	Frequency domain
Fourier	$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$a_{k} = \frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\omega_{0}t} dt$
Series	continuous time	discrete frequency
	periodic in time	aperiodic in frequency
Fourier	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
Transform	continuous time duality continuous frequency	
	aperiodic in time	aperiodic in frequency

Table 4.1 Summary of Fourier series and transform expressions

	Discrete-time	
	Time domain	Frequency domain
Fourier Series	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \qquad a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$ discrete time duality discrete frequency	
	periodic in time	periodic in frequency
Fourier	$x[n] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(e^{j\Omega}) e^{j\Omega t} d\Omega$	$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$
Transform	discrete time	continuous frequency
	aperiodic in time	periodic in frequency

: duality

4-7 The Polar Representation of Discrete-Time Fourier Transforms

$$x[n] \longleftrightarrow X(e^{j\Omega}) \tag{4.119}$$

$$X\left(e^{j\Omega}\right) = \left|X\left(e^{j\Omega}\right)\right|e^{j\angle X\left(e^{j\Omega}\right)}$$
(4.120)

where $|X(e^{j\Omega})|$ and $\angle X(e^{j\Omega})$ are the magnitude and phase of $X(e^{j\Omega})$. 1. Both $|X(e^{j\Omega})|$ and $e^{j\angle X(e^{j\Omega})}$ are periodic with period 2π .

- $|X(e^{j\Omega})|$ contains the information about the relative magnitudes of the 2. complex exponentials that make up x[n].
- $\angle X(e^{j\Omega})$ provides a description of the relative phases of the different 3. complex exponentials in the Fourier transform x[n]. A change in the phase function of $X(e^{j\Omega})$ may lead to a distortion of the signal x(t).

(1) Linear phase: the phase shift at frequency Ω is a linear function of Ω .

$$x[n] \longleftrightarrow X(e^{j\Omega})$$

$$\Rightarrow X(e^{j\Omega})e^{jm\Omega} = |X(e^{j\Omega})|e^{j(\angle X(\Omega) + m\Omega)} \longleftrightarrow x[n+m]$$

$$x[n] \longrightarrow e^{jm\Omega} x[n+m]$$
(4.121)

Figure 4.10 Illustration of the linear phase system.

"No distortion occurs." The output is simply a shifted version of the input.

(2) Nonlinear phase: the phase shift at frequency Ω is a nonlinear function of Ω .

Example 4.12:
$$x[n] = e_{x_1[n]}^{j\Omega_1 n} + e_{x_2[n]}^{j\Omega_2 n}$$

 $x'[n] = e_{x_1[n+1]}^{j\Omega_1 n} e_{x_2[n+2]}^{j\Omega_1} + e_{x_2[n+2]}^{j\Omega_2 n} e_{x_2[n+2]}^{j2\Omega_2}$

"Distortion occurs." The delays of different frequency elements may be different.

4. LTI systems

$$X\left(e^{j\Omega}\right) \longrightarrow H\left(e^{j\Omega}\right) \longrightarrow Y\left(e^{j\Omega}\right)$$

Figure 4.11 The representation of an LTI system in frequency domain.

$$Y(e^{j\Omega}) = H(e^{j\Omega})X(e^{j\Omega})$$
(4.122)

where $H(e^{j\Omega})$ is the frequency response.

$$\left|Y\left(e^{j\Omega}\right)\right| = \left|H\left(e^{j\Omega}\right)\right|\left|X\left(e^{j\Omega}\right)\right|$$
(4.123)

$$\angle Y(e^{j\Omega}) = \angle H(e^{j\Omega}) + \angle X(e^{j\Omega})$$
(4.124)

Note: The magnitude of the frequency response of an LTI system is sometimes referred to as the gain of the system.

5. Graphical representation of the discrete-time Fourier transform Plotting $\angle H(e^{j\Omega})$ in radians for $-\pi \le \Omega \le \pi$ Plotting $|H(e^{j\Omega})|$ in decibels $(20\log_{10}|H(e^{j\Omega})|)$ for $-\pi \le \Omega \le \pi$ If the signal (or function) h[n] is real, we actually need plot $H(e^{j\Omega})$ only

for $0 \le \Omega \le \pi$. For $-\pi \le \Omega \le 0$, we can calculate $H(e^{j\Omega})$ using the relations

$$\left|H\left(e^{j(-\Omega)}\right)\right| = \left|H\left(e^{j\Omega}\right)\right| \tag{4.125}$$

$$\angle H\left(e^{j(-\Omega)}\right) = -\angle H\left(e^{j\Omega}\right) \tag{4.126}$$

4-8 The Frequency Response of Systems Characterized by Linear Constant– Coefficient Difference Equations

1. Calculation of the frequency and impulse responses

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
(4.127)

Assume that the Fourier transforms of x[n], y[n], and the system impulse response h[n] all exist.

$$x[n] \longleftrightarrow X(e^{j\Omega})$$
(4.128)

$$y[n] \xleftarrow{\boldsymbol{\sigma}} Y(e^{j\Omega}) \tag{4.129}$$

$$h[n] \xleftarrow{\boldsymbol{\sigma}} H(e^{j\Omega}) = \frac{Y(e^{j\Omega})}{X(e^{j\Omega})}$$
(4.130)

$$\Rightarrow \sum_{k=0}^{N} a_k e^{-jk\Omega} Y(e^{j\Omega}) = \sum_{k=0}^{M} b_k e^{-jk\Omega} X(e^{j\Omega})$$
(4.131)

$$\Rightarrow H\left(e^{j\Omega}\right) = \frac{Y\left(e^{j\Omega}\right)}{X\left(e^{j\Omega}\right)} = \frac{\sum_{k=0}^{M} b_k e^{-jk\Omega}}{\sum_{k=0}^{N} a_k e^{-jk\Omega}}$$
(4.132)

Example 4.13: $y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$

$$Y(e^{j\Omega}) - \frac{3}{4}e^{-j\Omega}Y(e^{j\Omega}) + \frac{1}{8}e^{-j2\Omega}Y(e^{j\Omega}) = 2X(e^{j\Omega})$$
$$Y(e^{j\Omega})\left(1 - \frac{3}{4}e^{-j\Omega} + \frac{1}{8}e^{-j2\Omega}\right) = 2X(e^{j\Omega})$$
$$\Rightarrow H(e^{j\Omega}) = \frac{Y(e^{j\Omega})}{X(e^{j\Omega})} = \frac{2}{1 - \frac{3}{4}e^{-j\Omega} + \frac{1}{8}e^{-j2\Omega}}$$

Note:

$$H\left(e^{j\Omega}\right) = \frac{1}{1 - ae^{-j\Omega}} = 1 + ae^{-j\Omega} + a^{2}e^{-j2\Omega} + \cdots, |a| < 1$$
$$h[n] = \delta[n] + a\delta[n-1] + a^{2}\delta[n-2] + \cdots = a^{n}u[n]$$
$$a^{n}u[n] \xleftarrow{\mathbf{F}} \frac{1}{1 - ae^{-j\Omega}}, |a| < 1$$

Example 4.14:
$$H(e^{j\Omega}) = \frac{2}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)}$$

 $x[n] = \left(\frac{1}{4}\right)^{n} u[n] \longleftrightarrow X(e^{j\Omega}) = \frac{1}{1 - \frac{1}{4}e^{-j\Omega}}$
 $Y(e^{j\Omega}) = H(e^{j\Omega})X(e^{j\Omega}) = \frac{2}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)^{2}\left(1 - \frac{1}{2}e^{-j\Omega}\right)}$
 $= \frac{B_{11}}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)} + \frac{B_{12}}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)^{2}} + \frac{B_{21}}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)}$
 $Y(v) = \frac{2}{\left(1 - \frac{1}{4}v\right)^{2}\left(1 - \frac{1}{2}v\right)}, v_{1} = 4, v_{2} = 2$
 $B_{12} = \left(1 - \frac{1}{4}v\right)^{2}Y(v)\Big|_{v=v_{1}=4} = \frac{2}{1 - \frac{1}{2}v}\Big|_{v=v_{1}=4} = -2$
 $B_{11} = -v_{1}\frac{d}{dv}\left[\left(1 - \frac{1}{4}v\right)^{2}Y(v)\right]\Big|_{v=v_{1}=4} = -4\frac{d}{dv}\left(\frac{2}{1 - \frac{1}{2}v}\right)\Big|_{v=4} = 4\frac{2\cdot\frac{1}{2}}{\left(1 - \frac{1}{2}v\right)^{2}}\Big|_{v=4} = -4$

$$\begin{split} \left(\left(1 - \frac{1}{4}v\right)^2 Y(v) = B_{11} \left(1 - \frac{1}{4}v\right) \xrightarrow{\frac{d}{dv}} \frac{d}{dv} \left(1 - \frac{1}{4}v\right)^2 Y(v) = -\frac{1}{4} B_{11} = -\frac{1}{v_1} B_{11} \right) \\ B_{21} = \left(1 - \frac{1}{2}v\right) Y(v) \bigg|_{v=v_2=2} = \frac{2}{\left(1 - \frac{1}{4}v\right)^2} \bigg|_{v=2} = 8 \\ \Rightarrow Y\left(e^{j\Omega}\right) = \frac{-4}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)} + \frac{-2}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)^2} + \frac{8}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)} \\ \Rightarrow y[n] = -4\left(\frac{1}{4}\right)^n u[n] - 2(n+1)\left(\frac{1}{4}\right)^n u[n] + 8\left(\frac{1}{2}\right)^n u[n] \\ \bullet \quad X\left(e^{j\Omega}\right) = \frac{1}{\left(1 - \alpha e^{-j\Omega}\right)^2} = \frac{j}{\alpha}e^{j\Omega}\frac{d}{d\Omega}\left(\frac{1}{1 - \alpha e^{-j\Omega}}\right) \\ \alpha^n u[n] \xleftarrow{\boldsymbol{\sigma}} \frac{1}{1 - \alpha e^{-j\Omega}} \\ n\alpha^n u[n] \xleftarrow{\boldsymbol{\sigma}} \frac{j}{d}\frac{d}{d\Omega}\left(\frac{1}{1 - \alpha e^{-j\Omega}}\right) \\ (n+1)\alpha^{(n+1)}u[n+1] \xleftarrow{\boldsymbol{\sigma}} \frac{j}{\alpha}e^{j\Omega}\frac{d}{d\Omega}\left(\frac{1}{1 - \alpha e^{-j\Omega}}\right) \\ (n+1)\alpha^n u[n+1] \xleftarrow{\boldsymbol{\sigma}} \frac{j}{\alpha}e^{j\Omega}\frac{d}{d\Omega}\left(\frac{1}{1 - \alpha e^{-j\Omega}}\right) = \frac{1}{\left(1 - \alpha e^{-j\Omega}\right)^2} \\ \Rightarrow (n+1)\alpha^n u[n] \xleftarrow{\boldsymbol{\sigma}} \frac{1}{(1 - \alpha e^{-j\Omega})^2} \\ (\because (n+1)\alpha^n u[n+1] = 0 \text{ when } n = -1) \end{split}$$

- 2. Cascade- and parallel-form structures
 - (1) Cascade form

$$H(e^{j\Omega}) = \frac{b_0 \prod_{k=1}^{N} (1 + \mu_k e^{-j\Omega})}{a_0 \prod_{k=1}^{M} (1 + \eta_k e^{-j\Omega})}$$
(4.133)

where μ_k and η_k may be complex, but they then appear in complex-conjugate pairs.

Let
$$M = N$$
. Multiplying out $(1 + \mu_k e^{-j\Omega})(1 + \mu_k^* e^{-j\Omega})$ and $(1 + \eta_k e^{-j\Omega})(1 + \eta_k^* e^{-j\Omega})$, we obtain

$$1 + \left(\mu_{k} + \mu_{k}^{*}\right)e^{-j\Omega} + \left|\mu_{k}\right|^{2}e^{-j2\Omega} = 1 + \beta_{1k}e^{-j\Omega} + \beta_{2k}e^{-j2\Omega}$$
(4.134)

and

$$1 + (\eta_k + \eta_k^*) e^{-j\Omega} + |\eta_k|^2 e^{-j2\Omega} = 1 + \alpha_{1k} e^{-j\Omega} + \alpha_{2k} e^{-j2\Omega}$$
(4.135)

where
$$(\mu_{k} + \mu_{k}^{*})$$
, $|\mu_{k}|^{2}$, $(\eta_{k} + \eta_{k}^{*})$, and $|\eta_{k}|^{2}$ are all real.

$$H(e^{j\Omega}) = \frac{b_{0}}{a_{0}} \cdot \frac{\prod_{k=1}^{P} (1 + \beta_{1k}e^{-j\Omega} + \beta_{2k}e^{-j2\Omega}) \prod_{k=1}^{N-2P} (1 + \mu_{k}e^{-j\Omega})}{\prod_{k=1}^{Q} (1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}) \prod_{k=1}^{N-2Q} (1 + \eta_{k}e^{-j\Omega})} (4.136)$$

where the coefficients are all real.

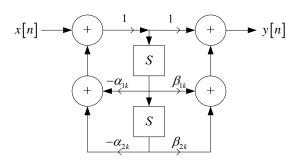
Note:

- The frequency response of any LTI system described by a linear constant coefficient difference equation can be written as the product of first- and second-order terms.
- The LTI system can be realized as the cascade of first- and second-order LTI systems.
- (a) Realization of a second-order LTI system

$$H(e^{j\Omega}) = \frac{1 + \beta_{1k}e^{-j\Omega} + \beta_{2k}e^{-j2\Omega}}{1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}} = \frac{Y(e^{j\Omega})}{X(e^{j\Omega})}$$
(4.137)

$$Y(e^{j\Omega})\left[1+\alpha_{1k}e^{-j\Omega}+\alpha_{2k}e^{-j2\Omega}\right]=X(e^{j\Omega})\left[1+\beta_{1k}e^{-j\Omega}+\beta_{2k}e^{-j2\Omega}\right] \quad (4.138)$$

$$y[n] + \alpha_{1k}y[n-1] + \alpha_{2k}y[n-2] = x[n] + \beta_{1k}x[n-1] + \beta_{2k}x[n-2] (4.139)$$
$$y[n] = -\alpha_{1k}y[n-1] - \alpha_{2k}y[n-2] + \underbrace{x[n] + \beta_{1k}x[n-1] + \beta_{2k}x[n-2]}_{w[n]}$$
(4.140)



- **Figure 4.12** Realization of a second-order LTI system with direct form II for cascade structure.
- (b) The first-order terms can also be realized using the second-order structure with β_{2k} and α_{2k} equal to zero.

(2) Parallel form

$$H(e^{j\Omega}) = \frac{b_N}{a_N} + \sum_{k=1}^{N} \frac{A_k}{1 + \eta_k e^{-j\Omega}}$$
(4.141)

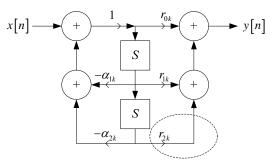
Adding the pairs involving complex conjugate η_k 's, we obtain

$$H\left(e^{j\Omega}\right) = \frac{b_{N}}{a_{N}} + \sum_{k=1}^{Q} \frac{r_{0k} + r_{1k}e^{-j\Omega}}{1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}} + \sum_{k=1}^{N-2Q} \frac{A_{k}}{1 + \eta_{k}e^{-j\Omega}} \quad (4.142)$$

where all the coefficients are real.

We can realize the LTI system using a parallel interconnection of firstand second-order LTI systems.

Realization of
$$H(e^{j\Omega}) = \frac{r_{0k} + r_{1k}e^{-j\Omega}}{1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}}$$



removing this part

Figure 4.13 Realization of a second-order LTI system with direct form II for parallel structure.

4-9 First-Order and Second-Order Systems

1. First-order systems

Consider the first-order causal LTI system described by the difference equation

$$y[n] - ay[n-1] = x[n], |a| < 1$$
 (4.143)

$$H\left(e^{j\Omega}\right) = \frac{1}{1 - ae^{-j\Omega}} \tag{4.144}$$

$$h[n] = a^{n}u[n] \cdots \cdots \text{impulse response}$$
 (4.145)

$$s[n] = h[n] * u[n] = \sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1 - a} u[n] \cdots \text{step response}$$
 (4.146)

(1) The magnitude of "a" plays a role similar to that of the time constant τ of a continuous-time first-order system. (See Fig. 4.14)

Note:

• For a > 0, the system amplifies low frequencies and attenuates high frequencies. (See Fig. 4.16)

For a < 0, the system amplifies high frequencies and attenuates low frequencies. (See Fig. 4.17)

 $\begin{cases} \text{low frequencies: } \Omega \text{ near } 0. \\ \text{high frequencies: } \Omega \text{ near } \pm \pi. \end{cases}$

0

$$H\left(e^{j\Omega}\right) = \frac{1}{1 - ae^{-j\Omega}} \begin{cases} \max\left|H\left(e^{j\Omega}\right)\right| = 1/(1 - |a|) \\ \min\left|H\left(e^{j\Omega}\right)\right| = 1/(1 + |a|) \end{cases}$$
(4.147)

For |a| small, 1/(1+|a|) and 1/(1-|a|) are close.

 \Rightarrow The graph of $|H(e^{j\Omega})|$ is relatively flat. (See Fig. 4.16) For |a| near 1, 1/(1+|a|) and 1/(1-|a|) differ significantly.

 \Rightarrow The graph of $|H(e^{j\Omega})|$ is more sharply peaked. (See Fig. 4.16)

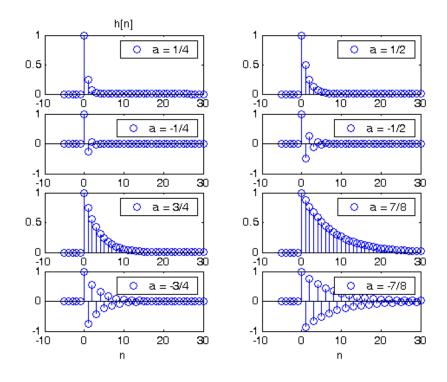
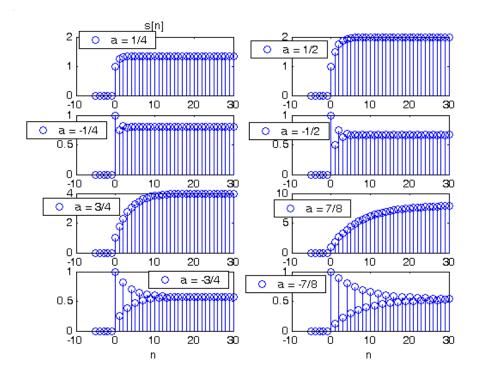


Figure 4.14 Impulse response $h[n] = a^n u[n]$ of a first-order system.



■ **Figure 4.15** Step response *s*[*n*] of a first-order system.

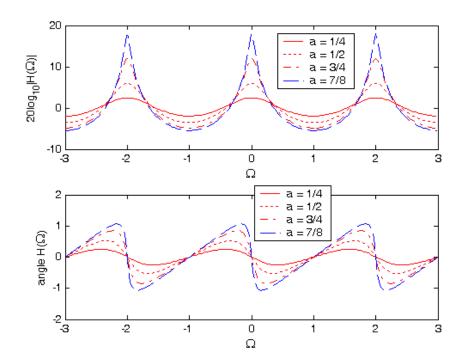


Figure 4.16 Magnitude and phase of the frequency response of Eq. (4.144) for a first-order system. (a > 0)

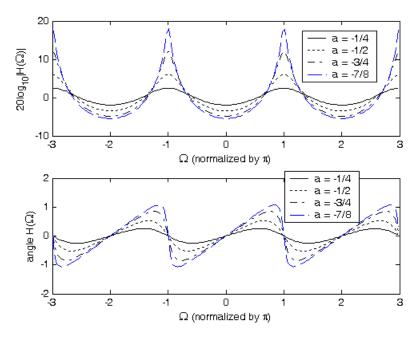


Figure 4.17 Magnitude and phase of the frequency response of Eq. (4.144) for a first-order system. (a < 0)

2. Second-order systems

Consider the second-order causal LTI system described by

$$y[n] - 2r\cos\theta y[n-1] + r^2 y[n-2] = x[n]$$
(4.148)

with 0 < r < 1 and $0 \le \theta \le \pi$,

$$H(e^{j\Omega}) = \frac{1}{1 - 2r\cos\theta e^{-j\Omega} + r^2 e^{-j2\Omega}} = \frac{1}{\left[1 - (re^{j\theta})e^{-j\Omega}\right]\left[1 - (re^{-j\theta})e^{-j\Omega}\right]} (4.149)$$

(1) For $\theta \neq 0$ or π , $re^{j\theta} \neq re^{-j\theta}$ and

$$H\left(e^{j\Omega}\right) = \frac{A}{1 - \left(re^{j\theta}\right)e^{-j\Omega}} + \frac{B}{1 - \left(re^{-j\theta}\right)e^{-j\Omega}}$$
(4.150)

where
$$A = \frac{e^{j\theta}}{2j\sin\theta}$$
 and $B = \frac{e^{-j\theta}}{2j\sin\theta}$.
 $h[n] = \left[A\left(re^{j\theta}\right)^n + B\left(re^{-j\theta}\right)^n\right]u[n] = r^n \frac{\sin\left[(n+1)\theta\right]}{\sin\theta}u[n]$ (4.151)

(2) For
$$\theta = 0$$
, $re^{j\theta} = re^{-j\theta} = r$ and

$$H\left(e^{j\Omega}\right) = \frac{1}{\left(1 - re^{-j\Omega}\right)^2}$$
(4.152)

$$h[n] = (n+1)r^{n}u[n]$$
 (4.153)

(3) For
$$\theta = \pi$$
, $re^{j\theta} = re^{-j\theta} = -r$

$$H\left(e^{j\Omega}\right) = \frac{1}{\left(1 + re^{-j\Omega}\right)^2} \tag{4.154}$$

$$h[n] = (n+1)(-r)^{n} u[n]$$
(4.155)

(The impulse response for second-order systems are plotted in Fig. 4.18 for a range of values of r and θ .)

Note:

- The rate of decay of h[n] is controlled by r. The closer r is to 1, and the slower the decay in h[n].
- The value of θ determines the frequency of oscillation.

 $\theta = 0 \implies \text{No oscillation.}$

 $\theta = \pi$ \Rightarrow Oscillations are rapid.

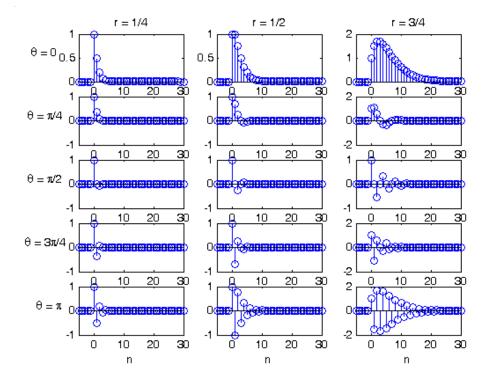


Figure 4.18 Impulse response of the second-order system of Eq. (4.148) for a range of values of *r* and θ .

• The effect of different values of r and θ can also be seen by examining the step response.

$$s[n] = h[n] * u[n] = \left[A\left(\frac{1 - \left(re^{j\theta}\right)^{n+1}}{1 - re^{j\theta}}\right) + B\left(\frac{1 - \left(re^{-j\theta}\right)^{n+1}}{1 - re^{-j\theta}}\right) \right] u[n] \quad (4.156)$$

For $\theta = 0$,

$$s[n] = \left[\frac{1}{\left(r-1\right)^{2}} - \frac{r}{\left(r-1\right)^{2}}r^{n} + \frac{r}{r-1}(n+1)r^{n}\right]u[n] \qquad (4.157)$$

For $\theta = \pi$,

$$s[n] = \left[\frac{1}{(r+1)^2} - \frac{r}{(r+1)^2}(-r)^n + \frac{r}{r+1}(n+1)(-r)^n\right]u[n] \qquad (4.158)$$

The step response for a range of r and θ is plotted in Fig. 4.19.

• For any value of θ other than zero, the impulse response has a damped oscillatory behavior, and the step response exhibits ringing and overshot.

The frequency response of the system is depicted in Fig. 4.20.
 θ essentially controls the location of band that is amplified.
 r determines how sharply peaked the frequency response is within the band that is amplified.

• Consider $H(e^{j\Omega})$ of the form

$$H(e^{j\Omega}) = \frac{1}{(1 - d_1 e^{-j\Omega})(1 - d_2 e^{-j\Omega})} = \frac{Y(e^{j\Omega})}{X(e^{j\Omega})}$$
(4.159)

where d_1 and d_2 are both real with $|d_1|$, $|d_2| < 1$.

$$y[n] - (d_1 + d_2) y[n-1] + d_1 d_2 y[n-2] = x[n]$$
(4.160)

Using the partial function expansion technique, $H(e^{j\Omega})$ can be expressed as

$$H(e^{j\Omega}) = \frac{A}{1 - d_1 e^{-j\Omega}} + \frac{B}{1 - d_2 e^{-j\Omega}}$$
(4.161)

where $A = \frac{d_1}{d_1 - d_2}$ and $B = \frac{d_2}{d_2 - d_1}$. $h[n] = (Ad_1^n + Bd_2^n)u[n]$ (4.162)

$$s[n] = \left(A\frac{1-d_1^{n+1}}{1-d_1} + B\frac{1-d_2^{n+1}}{1-d_2}\right)u[n]$$
(4.163)

The system corresponds to a parallel interconnection of two first-order systems. We can deduce most of its properties from our understanding of the first-order systems.

• We have only examined those first-order and second-order systems that are stable and consequently have frequency response.

 $\underbrace{|a| < 1}_{\text{first-order case}}, \underbrace{r < 1, |d_1| < 1, |d_2| < 1}_{\text{second-order case}}$

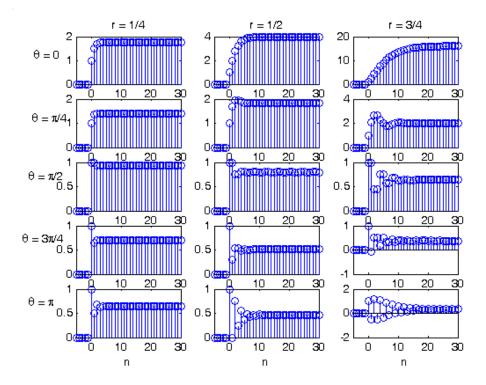


Figure 4.19 Step response of the second-order system of Eq. (4.148) for a range of values of *r* and θ .

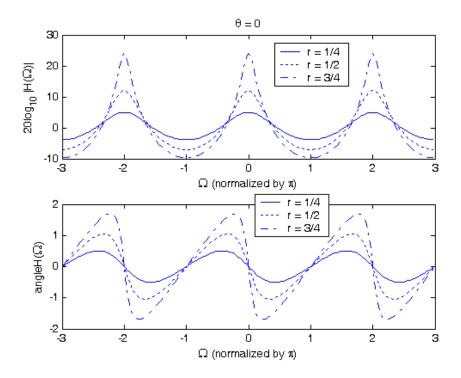


Figure 4.20 Magnitude and phase of the frequency response of the second-order system of Eq. (4.148). ($\theta = 0$)

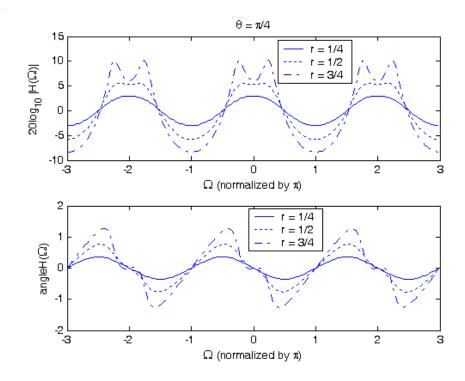


Figure 4.20 (contd.) ($\theta = \pi/4$)

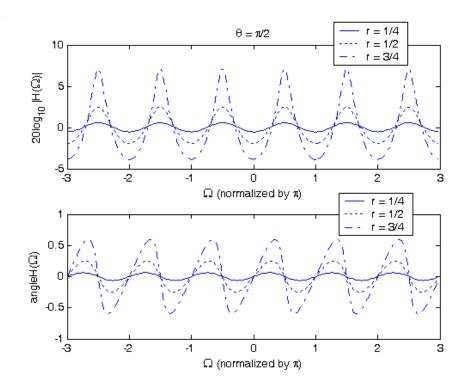


Figure 4.20 (contd.) ($\theta = \pi/2$)

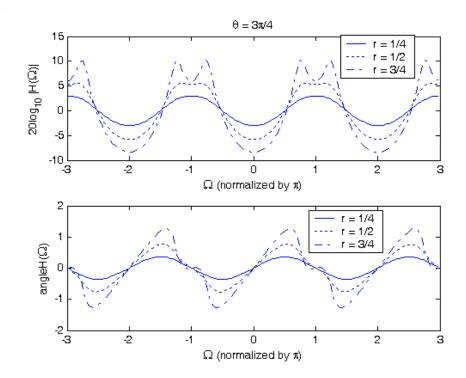


Figure 4.20 (contd.) ($\theta = 3\pi/4$)

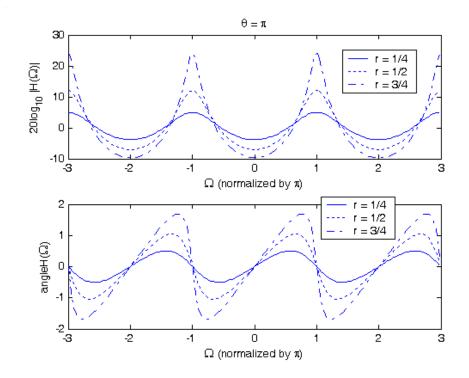


Figure 4.20 (contd.) ($\theta = \pi$)

References:

[1] Alan V. Oppenheim and Alan S. Willsky, with S. Hamid Nawab, *Signals and Systems*, 2nd Ed., Prentice-Hall, 1997.