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Chapter 3  Fourier Representations of Signals and Linear 
Time-Invariant Systems 

 
3-1 Eigenfunctions and Eigenvalues of Continuous-Time LTI Systems 

1. A signal for which the system output is just a (possibly complex) constant 

times the input is referred to as an eigenfunction of the system, and the 

amplitude factor is referred to as the eigenvalue. 

          
ioneigenfuncteigenvalue

txHtytx                      (3.1) 

Note:  tx  is called an eigenfunction of the system if     txHtxT  , 

where H  is called the eigenvalue corresponding to the eigenfunction. 

 

2. Complex exponentials ste  are eigenfunctions of continuous time LTI 

systems 

 

  stetx   

 

 

(3.2) 

 

 

 sH  is a complex constant whose value depends on “s”. 

ste                                eigenfunction 
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 :  Fourier seriesks s  

 :  Fourier transforms j  
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3-2 Fourier Series Representation of Periodic Continuous-Time Signals: The 

Continuous-Time Fourier Series 

1. Fourier series representation 

Harmonically related complex exponentials: 

  0  , 0,  1,  2,  ....jk t
k t e k                     (3.3) 

Note:  

 Each of these exponentials is periodic with period 0 02T   . 

 Any linear combination of these exponentials is also periodic with 

period 0T . 

Let  x t  be a periodic continuous-time signal with fundamental period 0T . 

Then 

  0jk t
kk

x t a e 


                        (3.4) 

is referred to as the Fourier series representation of  x t . 

Note:  

 The terms for 1k   :  the fundamental components or the lst 

harmonic components. 

The terms for 2k   :  the 2nd harmonic components. 

 

 

The terms for k N  :  the Nth harmonic components. 

 Alternative forms for the Fourier series of real periodic signals 
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           (3.5) 

      is real    x t x t x t  . 

Let   0jk t
kk

x t a e 


 . Then 

     0 0* *

 replaced with

jk t jk t
k kk kk k

x t x t a e a e  
 

          
(3.6) 

* *  or  k k k ka a a a     
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Let k k ka b jc  . Then 
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    (3.8) 

      0 0
0

jk t jk t
k kk k

x t a e y t a H jk e       

    0
0

jkH jk h e d   
 


                      (3.9) 

 

2. Determination of the Fourier series coefficients 

  0jk t
kk

x t a e 


                        (3.10) 
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                  (3.11) 
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                      (3.13) 

where 
0T denotes integral over any interval of length 0.T  
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                     (3.14) 

Example 3.1: Derive the Fourier series of  x t . 

 

  1

1 0

1  ,  

0  ,  2

t T
x t

T t T


   

 for one period.  Fundamental period = 0T . 

The Fourier series representation of  x t  is 

  0
0 0 ,     2jk t

kk
x t a e T  
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               (3.15) 

Note:  
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3-3 Approximation of Periodic Signals Using Finite Fourier Series and the 

Convergence of Fourier Series 

1. Finite Fourier series 

 
 

0

0

     infinite series

'    finite series    

jk t
kk

N jk t
N kk N

x t a e

x t a e











 










           (3.16) 

Let  Ne t denote the approximation error. 

        0'
N jk t

N N kk N
e t x t x t x t a e 


               (3.17) 

Quantitative measure of the size of the approximation error: 

“Mean Squared-Error” (MSE) 

     
0 0

2

N N N NT T
E e t dt e t e t dt                  (3.18) 

   2
  energy in  over the time interval 

b

a
E z t dt z t a t b     

:  Error energy in the approximation over one periodNE  

Determining the Fourier series coefficients for Nx  such that NE  is 

minimized 

  0

0

2

'
N jk t

N kk NT
E x t a e dt


                   (3.19) 

  0

0
0

1
0 '

'
jk tN

k T
k

E
a x t e dt

a T


  
                 (3.20) 

  The best approximation is obtained by truncating the Fourier series to the 

desired number of terms. 

  If  x t  has a Fourier series representation, then the limit of 

 as    is  zero.NE N   

Any one of the following conditions is sufficient to ensure the MSE 

convergence of the Fourier series for  x t : 

Condition 1: If the periodic signal  x t  is a continuous function of t , the 

Fourier series converges. (Actually, in the case, the convergence is uniform, 

which is a stronger criterion than MSE convergence.) 
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Condition 2: If  x t  is square-integrable over a period T, that is, if  

  2
,

T
x t dt    

the Fourier series converges in the MSE sense. Since this condition is 

equivalent to the requirement that the average power in  x t  be finite, it 

clearly applies to all periodic signals encountered in the laboratory, as well as 

to most theoretical signals of interest. In particular, note that any bounded 

signal satisfies the condition because, if  x t B  for finite B and all t, then 

  2 2 .
T

x t dt TB  

Condition 3 (Dirichlet): 

(1) Over any period,  x t  must be absolutely integrable 

 
0T

x t dt                          (3.21) 

(2) In any finite interval of time,  x t  is of bounded variation, i.e., there 

are no more than a finite number of maxima and minima during any 

single period of the signal. 

(The number of maxima and minima points must be countable during 

any period.) 

(3) In a finite number of time, there are only a finite number of 

discontinuities. Furthermore, each of these discontinuities must be 

finite. 

 

Note:  

 These conditions guarantee that: 

(i)  x t  has a Fourier series representation. 

(ii)  x t  is equal to its Fourier series representation for all t  except 

at isolated values of t  for which  x t  is discontinuous. At the 

isolated points of discontinuity, the series converges to the average 

value of the discontinuity. 
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The integrals of both signals (  x t  and its Fourier series) over 

any interval are identical. 

 The two signals behave identically under convolution and 

consequently are identical from the standpoint of the analysis of 

LTI systems. 

 For a periodic signal that varies continuously, the Fourier series 

representation converges and equals the original signal at any t . 

 

 

Example 3.2: 

(a)   1  ,   0 < 1  ,  period 1x t t t    

(cannot be represented by a Fourier series) 

This signal violates the first Dirichlet Condition. 

(See Fig. 3.1(a)) 

(b)    sin 2   ,   0 1  ,  period 1x t t t     

(Converge in the MSE sense) 

This signal meets the 1st Dirichlet condition but not the 2nd one. 

 
1

0
sin 2 1t dt   

Having an infinite number of maxima and minima in the interval 

(See Fig. 3.1(b)) 

(c) This signal violates the 3rd Dirichlet condition. 

Having an infinite number of discontinuities (See Fig. 3.1(c)) 



EE3610 Signals and Systems  Fall 2011 

 85 

 

 

 
■Figure 3.1. Signals that violate the Dirichlet conditions: (a) the signal x(t), 

periodic with period 1, with x(t) = 1/t  for 0 1t   (this signal violates the 

first Dirichlet condition); (b) the periodic signal    sin 2x t t  which 

violates the second Dirichlet condition; (c) a signal, periodic with period 8, 

that violates the third Dirichlet condition [for 0 8t   the value of x(t) 

decreases by a factor of 2 whenever the distance from t to 8 decreases by a 

factor of 2; that is x(t) = 1, 0 4t  , x(t) = 1/2, 4 6t  , x(t) = 1/4, 

6 7t  , x(t) = 1/8, 7 7.5t  , etc.]. 

■ 

 

Note: 

 The signals that do not satisfy the Dirichlet conditions are generally 

pathological in nature and thus are not particularly important in the 

study of signals and systems. 
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3-4 The Fourier Transform of Aperiodic Continuous-Time Signals: The 

Continuous-Time Fourier Transform 

1. Development of the Fourier Transform 

Periodic signals → Fourier series 

Aperiodic signals → Fourier transform 

 

 

■ Figure 3.2. Periodic square wave. 

 

Fourier series representation 
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(3.22) 

The function   12sin T   represents the envelope of 0 kT a (See Fig. 

3.3). 
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■ Figure 3.3. Fourier coefficient and their envelope for the periodic square 

wave: (a) T0 = 4T1; (b) T0 = 8T1; (c) T0 = 16T1. 

i.e., 0 kT a  is a sampled value of   12sin T   

0

0 0

The sampling interval is                                                                                                       

sampling spacing Fourier series coefficients approach theT



   



 0

                         

                                                             envelope function      

 is a rectangular pulse  (aperiodic)                                            T x t                      








 Note:  

 We can think of an aperiodic signal as the limit of a periodic signal as 

the period becomes arbitrarily large. 

Consider a general aperiodic signal  x t  that is of finite duration. 

From this aperiodic signal, we can construct a periodic signal  x t  for 

which  x t  is of one period (See Fig. 3.4). 
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 x t

              

■ Figure 3.4. (a) Aperiodic signal x(t); (b) periodic signal  x t , 

constructed to be equal to x(t) over one period. 

 

   0As  , T x t x t   

Fourier series representation of  x t  
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          (3.23) 

Defining the envelope of 0 kT a  as  X j , we have 

   
0

0

0
j t

k k
k

T a X j x t e dt
   


 

  
                (3.24) 

 
0

0

1
k

k

a X j
T

 




                                (3.25) 

    0
0

0

1 jk t

k
x t X jk e

T



                         (3.26) 

0 0
0 0

2 1 1
     

2
T

T

 
 

                              (3.27) 

    0
0 0

1

2
jk t

k
x t X jk e  





                       (3.28) 

   0As  ,  T x t x t  , and the above equation becomes a representation 

of  x t . 
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 0 0As  ,  0.           T       0 d   

   

   

1

2
j t

j t

x t X j e d

X j x t e dt





 








 










                          

Fourier transform pair:  X j  is referred to as the Fourier transform or 

Fourier integral of  x t . 

 

2. Examples of Continuous-Time Fourier Transform 

Example 3.3:  

  1

1

1      t

0      t

T
x t

T


  

  rectangular pulse 

  1

1

1 1 1
1 1

1

sin sin
2 2 2 sinc

T j t

T

T T T
X j e dt T T

T
   

  




        
      (3.29) 

12 T


1T



1T





 X j

    ■ 

 

Example 3.4:  

 
1      

0      

W
X j

W





   

                               

  1 sin sin
sinc

2

W j t

W

Wt W Wt W Wt
x t e d

Wt
 

    

      
           (3.30) 

t

 x t

W


W





WW

W 
 X j



            

Note:  

 Broader in time domain → narrower in frequency domain    

■ 
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3-5 Periodic Signals and the Continuous-Time Fourier Transform 

1. Fourier series coefficients as samples of the Fourier transform of one period 

Fourier series representation 

  0jk t
kk

x t a e 


    fundamental period = 0T  

  0

0
0

1 jk t
k T

a x t e dt
T

                                  

    0 0   ,    
2 2

0      ,        otherwise

T T
x t t

x t
    



                    (3.31) 

    j tX j x t e dt
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T
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General statement: 

   

 

 

   

0

0
0

   ,    s
Let   

0       ,        otherwise

Then the Fourier series coefficients of are given by

1
                

where  is the Fourier transform of .

k

x t t s T
x t

x t

a X jk
T

X j x t





   
 







             

Example 3.5: Compare the Fourier series coefficients of x1(t) and x2(t). 

 x t

             

 1x t

                            

   
0

1
sampling period 2 /

Fourier series coefficients of 
o T

X j x t
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  1
1

2sin T
X j




                          (3.32) 

 2x t

1T 0T0 1T T
t

                         

   
0

2
sampling period 2 /

Fourier series coefficients of 
o T

X j x t
 


 

    

 

 

1 0

0 1

0 11

2 0

2212
          sin

2

T Tj t j t

T T

j T Tj T

X j e dt e dt

T
e e

 








 



 

 

        

 
               (3.33) 

   1 2   ,   butX j X j 
      0 1

1 0 2 0
0

2sin k T
X jk X jk

k


 


   (only 

some sample points are the same) 

The Fourier coefficients of a periodic signal can be obtained from samples of 

the Fourier transform of an aperiodic signal that equals the original periodic 

signal over any arbitrary interval of length 0T  and that is zero outside this 

interval. 

■ 

2. The Fourier Transform for Periodic Signals 

Consider a signal  x t  with Fourier transform    02X j     . 

    0
0

1
2

2
j tj tx t e dt e   





     

If    02 kk
X j a k    


  , then 

  0jk t
kk

x t a e 


  …… corresponding to the Fourier series 

representation of a periodic signal. 

Note:  

  0
02j te     F                                  (3.34) 

 0 1 2j te     F                                   (3.35) 

     0
02jk t

k kk k
x t a e X j a k      

 
    F

   
(3.36) 
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Periodic signal → Fourier series representation 

→ Fourier transform 

 

Example 3.6: Represent the periodic signal x(t) with Fourier transform. 

   0 0
0

1
sin

2
j t j tx t t e e

j
                          (3.37) 

     

   

0 0

0 0

1
2 2

2

              

X j
j

j j

      

      

      

   
           (3.38) 

0
0



j




j


 X j

                             

   0 0
0

1
cos

2
j t j tx t t e e                        (3.39) 

     0 0X j                          (3.40) 

0


 

0

 X j

                           ■ 

 

Example 3.7: Represent the periodic signal x(t) with Fourier series 

representation. 

   

 

0

02
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1 1

jk t
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T
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1 2 2 2
2     ,      (3.41)
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T T T T



        





 

 

 

          
   



 
 

Impulse train in time domainF Impulse train in frequency domain   

■ 
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3-6 Properties of the Continuous-Time Fourier Transform 

   

   

1

2
j t

j t

x t X j e d

X j x t e dt





 








 










                      (3.42) 

Notation: 

   x t X jF                                  

    X j x t  F                                  

    -1x t X j F                                 

1. Linearity 

   
   

1 1

2 2

x t X j

x t X j









F

F
                               

       1 2 1 2ax t bx t aX j bX j    F                  (3.43) 

 

2. Symmetry Properties 

If  x t  is a real-valued function, then 

                       : complex conjugateX j X j           (3.44) 

Proof: 

     

             

j t j t

j t

X j x t e dt x t e dt

x t e dt X j

 







   

 





    

  

 


                    

             

Note:  

        Re ImX j X j j X j     

If  x t  is real, then 

     
     

Re Re  even function

Im Im odd function

X j X j

X j X j
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       polar formj jX j X j e      

If  x t  is real, then 

   
   

even function

     odd function

X j X j

j j

 

   

 

  




              (3.45) 

 If  x t  is both real and even, then  X j  will also be real and even. 

   

 

      
 

           

                          

                                  even

j t

j

j

X j x t e dt

x e d

x e d x t x t

X j









 

 







 



 



 

 

  





 



      (3.46) 

symmetry property          realX j X j X j        

 If  x t  is both real and odd, then  X j  is pure imaginary and odd. 

 A real function  x t  can always be expressed as 

     
even part odd part

e ox t x t x t                            (3.47) 

     
  

  
  Re Im

e o

X j j X j

x t x t x t

 

 
 

F F F                 (3.48) 

 

3. Time Shifting 

   x t X jF                                 

   0
0

j tx t t e X j  F                       (3.49) 

Proof: 
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0 0

                    

                    

                    

j t

j t

j t j

j t

x t t x t t e dt

x e d

e x e d

e X j



 

 



 

 



 



  



 





  












F

                       

Time shifting only introduces a phase shift but leaves the magnitude 

unchanged.             
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4. Differentiation and Integration 

   x t X jF                               

   dx t
j X j

dt
 F                       (3.50) 

 
           1

0
t

x t u t x d X j X j
j

     


    F

  
       (3.5

1) 

 0X : reflects the dc or average value that can result from the integration 

   

   

1

2

1

2

j t

j t

x t X j e d

dx t
j X j e d

dt





 


  










 

 




                (3.52) 

 

Example 3.8: Determine the Fourier transform of step function u(t). 

0

1

( )u t

t

                      

1/2

{ ( )} 1 2Even u t 

t

                      

1/2

-1/2

{ ( )} ( ) 1 2Odd u t u t 

t

                      

   

 

1 1

2 2
v t

u t u t     
                         (3.53) 
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1
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1 1

2 2

1
 "agrees with the integration property"(3.54)
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t j V j
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F F
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F

Note: 

         1
1          0
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5. Time and Frequency Scaling 

   x t X jF                                 

  1 j
x at X

a a

   
 

F                        (3.55) 

Proof: 
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6. Duality 

   g t f jF      where     juvf u g v e dv
 


   

   2f t g j  F            1

2
juvg v f u e du





 

 
(3.56) 

Proof: 
    and  u j v t   

   
    

j tf j g t e dt

f j g t





 



 





F
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  and  u t v j    
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2
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f t e dt e d

f t e dt e d
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f t g j



 

 



 










 





  

 

  

 





  
      


     


   
  



 

 


F
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          ■ 

 

Example 3.9: Compare the relationship between rectangular and sinc 

function with the duality property. 

rectangular in time domain→ sinc in frequency domain 

sinc in time domain→ rectangular in frequency domain 

  1
1

1

1,       t

0,       t

T
x t

T


  

 F   1
1 12 sinc

T
X j T




   
 

         (3.57) 

 2 sinc
W Wt

x t
 

   
 

 F  2

1,       

0,       

W
X j

W





   

        (3.58) 

(Let W = T1, and we can find that they satisfy the duality property.) 

            ■ 

 

Example 3.10: Calculate the Fourier transform of x(t) with duality property. 

  2

2

1
x t

t



                               (3.59) 

Let   2

2

1
f u

u



                          (3.60) 

    2

2

1
g t f j


 


F                      (3.61) 

    2

2

1
tg t e f j


  


F                  (3.62) 

     2 2x t f t g j e       F              (3.63) 

   2x t e   F                          (3.64) 
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Note: 

    dX j
jtx t

d




 F            j tX j x t e dt
 


        (3.65) 

   dx t
j X j

dt
 F       

    j tdX j
jtx t e dt

dt
  


     (3.66) 

     0
0

j te x t X j   F  

   0
0

j tx t t e X j  F                               (3.67) 

        1
0x t x t X d

jt
   




  F  

       1
0

t
x t d X j X

j
    


  F                    (3.68) 

 

7. Parseval’s Relation 

   x t X jF                               

   2 21

2
x t dt X j d 


 

 
                    (3.69) 

Proof: 
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X j

x t dt x t x t dt x t X j e d dt

X j x t e dt d
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            ■ 

Note: 

 The total energy in the signal  x t  may be determined either by 

computing the energy per unit time and integrating over all time or by 

computing the energy per unit frequency and integrating over all 

frequencies. 

 For periodic signals, 
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2 2
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1
kkT

x t dt a
T




                     (3.70) 
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8. Convolution Property 

           y t h t x t Y j H j X j     F              (3.71) 

Proof: 
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            ■ 

       0

0
0 0

0
eigenfunction

1 1
lim (3.72)

2 2
jk tj t
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  H j : the Fourier transform of the system impulse response or the 

frequency response of the system. 

 





       1 2y t x t h t h t   x t
 1h t  2h t

 x t

 x t  2h t  1h t

 y t

 y t

 1H j  2H j

 1H j  2H j

       1 2Y j X j H j H j   

 2H j  1H j  
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 Periodic Convolution: [(periodic signal)* (periodic signal)] 

Consider two periodic signals  1x t  and  2x t  with common period 

0T , the periodic convolution of   1x t  and  2x t  is defined as 

     
0

1 2T
y t x x t d       

Let 
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envelope

2 0 2 0 2

envelope
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y t c e T c Y jk Y j







 

 

 













  

  

  
















 

then 0k k kc T a b  

   

Example 3.11:  
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Example 3.12:  
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Example 3.13:  
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9. Modulation Property 

   
   

s t S j

p t P j









F

F
                              

           1

2
r t s t p t R j S j P j  


     

F           (3.73) 

Note: 

 Multiplication of one signal by another can be thought of as using one 

signal to scale or modulate the amplitude of the other. 

The multiplication of two signals is often referred to as amplitude 

modulation. 

Proof: 
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Example 3.14: Given R(jω) and p(t), calculate      1

2
G j R j P j  


    . 

           1

2
g t r t p t G R j P j  


     

F                 

 

     

0 0
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0 0
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2
j t j tp t t e e

P j

 

      

    

    
                    (3.74) 
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2A

2A
4A4A







00

00

0202



 P j

 R j

 G j

   
                ■ 

Example 3.15: Given s(t) and p(t), calculate      1

2
R j S j P j  


    . 

     r t s t p t                                

      2 2
k k

k
p t t kT P j

T T

     

 

      
 

        (3.75) 
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2

1 2
        

k

k

k
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   (3.76) 

            ■ 
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Example 3.16: (Sampling Theorem) 

     r t s t p t                               







A

2 T

A T

1W1W

4 T2 T2 T4 T

4 T2 T2 T4 T 1W1W

 S j

 R j

 P j

 

            ■ 

 

 1

2
2W

T


  i.e., 0 12W   

(Sampling frequency2 (Bandwidth of the signal) ) 

  no aliasing in R(jω) 

  s(t) can be reconstructed from r(t). 

 

3-7 The Frequency Response of Systems Characterized by Linear 

Constant-Coefficient Differential Equations 

1. Calculation of Frequency and Impulse Response 
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Example 3.17: Find out  h t  for      y t x t h t  . 
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1 at

dy t
ay t x t a

dt
j Y j aY j X j Y j a j X j
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Example 3.18: Find out  h t  for      y t x t h t  . 
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Example 3.19:  
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            ■ 

 

2. Cascade and Parallel-Form Structures for the Implementation of LTI Systems 

(i) Cascade-form structure 

 
 
 

1

1

M

M kk
N

N kk

b j
H j

a v j

 














                     (3.77) 

where k  and kv  may be complex. 

By multiplying together the two first-order terms involving complex 

conjugate 'k s  or 'kv s , we obtain second-order terms with real 

coefficients. For example, 

      

 
     

     

22
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0 11 1

22

0 11 1

2 Re

P M P

k k kk kM
Q N Q

N k k kk k

j j j j

j j jb
H j

a j j v j

       

     


    





 



 

    

     
    

 
 

 (3.78) 

where the coefficients are all real. 

The system can be implemented using a cascade (let P=Q) of P 

second-order systems and (N-2P) first-order systems. 
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 Realization of a second-order system 
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For convenience, we only consider the second-order terms for 

realization of a cascade system. (See Fig. 3.5.) 
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■ Figure 3.5. Cascade structure of each second-order subsystem with 

N=M=6 and P=Q=3. 

 

(ii) Parallel-form structure 
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                     (3.79) 

If all of the kv  are distinct, then 

 H j  can be expressed as 

 
1

NN k
k

N k

b A
H j

a v j




 
    

                    (3.80) 

Adding together the pairs involving complex conjugate 'kv s , we 
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obtain 
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             (3.81) 

(All the coefficients are real.) 

  We can implement the system by using a parallel interconnection 

of Q second-order systems and (N-2Q) first-order systems. 

For convenience, we only consider the second-order terms for 

realization of a parallel system. (See Fig. 3.6.) 
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■ Figure 3.6. Parallel-form realization for each second-order 

subsystem with N=6 and Q=3. 
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