EE3610 Signals and Systems Fall 2011

Chapter 2 Time-Domain Representations of Linear
Time-Invariant Systems

2-1 The Representation of Signals in Terms of Impulses
1. Discrete-time case

x[n]é‘[n]:x[O]é[n] = x[n]5[n—k]=x[k]5[n—k] (1)

generalized

where x[k] represents a specific value of the signal x[x] at time k. Therefore,
x[n] can be expressed as the following weighted sum of time-shifted

impulses:

x[n]=3"  x[k]5[n—k] )

Example 1:

x[-2)5[n + 2]
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0
x[2]8[n - 2]
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O—O0—0O & O—O—0—N
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m Figure 1. Graphical example illustrating the representation of a

signal x[n] as a weighted sum of time-shifted impulses.
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Example 2: u[n]=) " &[n—k]

2. Continuous-time case

Define
/A, 0<t<A B
{ , otherwise’ Aoy (t) =1 ®)
2(r)=2,  x(kA)S,(t—kA)A 4)

A—0 - (5)

@ x(?) equals the limit as A — 0 of the area under x(r)5A (t - 2') .

S, (t—7)—"=56(1—7) (6)

Example 3:

2-2 Discrete-time LTI Systems

1. n] Z x[k n k:>y[]

Let h[n|=H {5 [n]} be the impulse response of the LTI system and
hn—-kl=H {5 n— k]} denote the response of the system to the shifted unit

sample &[n—k]. Then

y[n)=#{x[n]}= B {Y x[k]6[n-k]}

= z: _OOH{x [k]o] n—k]} (- linearity property) (8)
=2 X[kl H{S[n— K]}

= zk__ [k]-h[n—k] (- time-invariance property) 9)

= y[n]=2,_ x[k]h[n—K] (10)
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This result is referred to as the convolution sum or superposition sum. We

will represent symbolically as

y[n]:x[n]*h[n] (11)
Interpretation of the convolution of two sequences
k==l y[a1]s[n+1] x[-1] h[n +1] k=-1
1
0= = e S S e —_ — © _1——T 2 - —— 1
T 1 2 3 4 i) ! ' O S SR
e LTI -1
k=0 x[0]8[n] x[0] hn ] k=0
T”z —n — h[n] = A T 2 f o—bo—06—n
-1 1 2 3 4 a2t o1 % 3 4 5 6
11 LTI
k=1 x[1]8[n-1] x[11h[n-1] k=1
' i 'y i 3§
© 6——n — h[n] = OOt n
-1 1 2 3 4 1 2 4 5 06
-4 LTI -1
k=2 x[2]6[n-2] x[2] h[n -2] k=2
-1 I 8 ) . 12+ 2.3 o5 .
art 1 43 4 —~ e R7R RSN BV B
LTI
z bX,
2 x[k]s[n-k] ym1=§‘, X[k] hln - k]
1 1 ‘ [
1 2 -1 2 3 s
n —= h[n] = © o1
i 304 1 | 4 %6
.l LTI -1
m Figure 2. Illustration of the convolution sum.
Example 4:
x[n] = a”u[n]; h[n] = u[n]
yn]=x[n]*hln] =3, x[k]h[n—F]
k
a*,0<k<n
x[k]h[n—k]: ) '.'n—kZO,kZO)
0 , otherwise
1 F . O B " . l_arlJrl
(1) Forn>0, y[n]— PN -
(2) Forn <0, y[n]zO.
l_anﬂ
= y[n] = u[n] ]
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Example 5: Multipath communication channel

y[n]:x[n]Jr%x[n—l]

x[n]=[n]= h[n]= 5[n]+%5[n ]
Determine the output of this system in response to the input

x[n]:25[n]+4§[n—1]—25[n—2]

:>y[n]:2h[n]+4h[n—l]—2h[n—2]225[n]+5§[n—1]—5[n—3] ]

2. When the input is of long duration, the procedure can be cumbersome. So we

need to use an alternative approach to evaluate the convolution sum.
y[n]= 2 x [k aln=k] =20 w, [] (12)

where w, [k]=x[k]h[n—k] is called the intermediate signal.
In this definition, & is the independent variable and h[n—k]=h[—(k—n)] is
a reflected and time-shifted version of A[k].

n<0, h [n —k] = time shift h[—k] to the left.

n>0, h[n—k]= time shift 2[—k] to the right.
Example 6: Convolution sum evaluation by using an intermediate signal

h[n]=(3/4)"u[n]

Using the intermediate signal to determine the output of the system at

time n = -5, 5, and 10 when the input is x[n] = u[n].
h[n—k]= (3/4)”71{ u[n—k]

n=-5 w,=x[k]h[-5-k]=u[k](3/4)" " u[-5-k]=0

L y[—s] =0
Sk 0<k<5
n=>5, Wszx[k]h[s_k]:{(?’/‘]') ) .
0 , otherwise
1)
L y[8)= X (3/4) T = =3.288
=T =155
10—k
n:10, Wlozx[k]h[lo_k]:{(3/4) ,OSkSIO
0 , otherwise
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Lo[10]=300 (3/4) = % =3.831

x[k]

e

=2 0 2 4 6

h[n - k] w_slk]
(%)“\: 1 ]' I T
R A f T TT Lloooo00000—k —0-6-0-0-0-0-0-0-0-0-0-60-0-0-0-0-0-0—— Kk
0 n -4 -2 0 2 4

(a) (b)
\\'5I”\'] (%)54 wiolk] Ayt
I i @)

eenotttl] [ ovoeotegtt 1] | i -

0 2 4 0 2 4 6 8 10
(©) @
m Figure 3. (a) The input signal x[k] above the reflected and shifted
response h[n—k], depicted as a function of k. (b) The product signal
w_s[k] used to evaluate y[—5]. (c) The product signal ws[k] used to
evaluate y[5]. (d) The product signal wo[k] used to evaluate y[10].

Example 7: MA systems
1 1
A =12 xln- K= <[] =5[] = hr) = (uln] -uln 4]
Determine the output of the system when the input is defined as

x[n]zu[n]—u[n—lO]
n<0, wn[k]:O, for allk:>y[n]=0

1/4 aogkﬁl’l B , -
0, otherwise:>y[n]_zk:ol/4—(n+l)/4

1/45’1 - 3 S k S n ;
0 . OtherWiSC y[n] Zk:nf3 /

1/45n_3ﬁkﬁ9 3 9 ~
0 , otherwise y[n]_zk:n—3l/4_(13 n)/4

0<n<3, wn[k]:{
3<n<9, wn[k]:{

9<n<12, wn[k]:{

12 <n, wn[k]=0, forallk:>y[n]=0
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hin) x[n]
Olfg ? T ? -O0—-0—-0—0—0~- N O—0—0 -O—-0— N
0 2 4 6 0 2 4 6 8
(a) (b)
x[k]
1
. & & k walk)
h[n - k]
?2¢¢9¢lM 1/4
—o0-0-0-0 o—k I ?—o—o—o—o—o—o—k
n-3 n 0 n 4
(c) (d)
w,[k] w k]
1/4+ 79%¢9 B 1/4 - k
" n-3 n 2 4 n-39
(e) ()

yln]

I -
1/2
—o n

0 2 4 6 8 10 12
(2)

m Figure 4. (a) The system impulse response. (b) The input signal. (c)
The input above the reflected and time-shifted impulse response A[n—k],
depicted as a function of k. (d) The product signal w,[k] for the interval
of shifts 0 < n < 3. (e) The product signal w,[k] for the interval of shifts 3
<n £ 9. (f) The product signal w,[k] for the interval of shifts 9 <n < 12.

(g) The output y[n].

Example 8:

1,0<n<4 a",0<n<6
x[n]= . and h[n]= ,
0, otherwise 0 , otherwise

a"*, n—-6<k<n

0 , otherwise

:h[n—k]:{

Interval 1: n <0

w [k] :x[k]h[n—k] :0:>y[n]:0

n

Interval 2: 0<n<4

acR

a"* 0<k<n

0 , otherwise

n B 1-—
=Y et =
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Interval 3: 4<n<6

an—k ’O <k<4 4 i an—4 _anﬂ
" ["]‘{ 0 . otherwise 1= Zue® =T,
Interval 4: 6 <n <10

an_k,n—6SkS4 4 n_k_a"74—a7

v 4] _{ 0 , otherwise [7] _Z"=”’6a T l-a
Interval 5: 10 <n, w, [k]=0:>y[n]=0 m

3. Basic properties of convolution
(1) Commutative property

x[n]*h[n]:h[n]*x[n] (13)

x[n]xehln] =2 x[k]h[n—k]=2.  x[n=r]h[r]=h[n]*x[n]

(14)
(2)  Associative property

x[n]*(h1 [n]*hz[n])z(x[n]*h1 [n])*h2 [n] (15)

Interpretation of the associative property

x[n] ——» hln] > h[n] —» y[n]

(a)

x[n] ——» h[n] = h[n]*h[n] — y[n]

(b)

x[n] ——» h[n] = hy[n]*h[n] —» y[n]

(©

x[n] —» h,[n] » h[n] —» y[n]

(d)
m Figure 5. Associative property of convolution and the implication of
this and the commutative property for the series interconnection of LTI

system.
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(3) Distributive property

x[n]*(h1 [n]+h2 [n]):x[n]*hl[n]+x[n]*h2[n] (16)
h[n]
TRy
hy[n]
(a)

x[n] ——h[n] = h[n]+h[n]— y[n]

(b)
m Figure 6. Interpretation of the distributive property of convolution

for a parallel interconnection of LTI systems.

Note:

imply
@ Convolution sum formula = unit impulse response

It completely characterizes the behavior of an LTI system.
@ The unit impulse response of a nonlinear system does not completely

characterize the behavior of the system.

Example 9:
1 ,n=0,1
mnl=1, 0
0, otherwise

LTI system:
yInl= 2 xlk]hln—k]=2, hlk]x[n—k]
= h[O]x[n]+h[l]x[n —1]

“There is exactly one LTI system with A[#] as its impulse response.”

Nonlinear system:

y[r]=(x[n] + x[n-1])

with the same impulse response
y[n] = max(x[n],x[n - 1])

Let x[n]=5[n],then y[n]:h[n]
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y[3] = max(x[3],x[2]) =0

“There are many nonlinear systems with 4[#n] as its unit impulse response.”

Note: It is not true in general that the order in which nonlinear systems are

cascaded can be changed without changing the overall response. ]
Example 10:
by [n]
—» multiply by 2 —» x[n] —» h[n] > h[n] —» y[n]:4x2[n]
hy [n]
— » square | x[n] — hyn] > hn] —» y[n]=2x"[n]
]

2-3 Continuous-Time LTI Systems

Lo x(r)=lim> " x(kA)S, (- kA)A (17)

where &, (t - kA) is a rectangular pulse with unity amplitude and width A.

() =limH {37 x(ka)S, (1 kA)A
= A0 i (18)
= lim z::_wx(kA)H {5A (t- kA)} A (" linear property )

where H {5A (t —kA)} is defined as the response of an LTI system to the
input 6, (1—kA).

As A0, H{5,(t—kA)} > H{5(t—kA)}.

A—dr
= p()=lim> " x(kA)H{S(t—ka)jA  KADT (19)
:y(t)zjix(r)H{ﬂt—f)}dr (20)

- The system is time invariant.
L H{S(t—1)}=h(t—7), H{5(¢)} =h(t) (21)

00

= y(?) =Jix(r)h(t—r)dr =I (7)dr (22)

w

00

29
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where w, (r) = x(z‘)h(t - r) is the intermediate signal.

hir)

0 ,
(a)
x(0)s (t=1) x(0 hr =7)
x0) x(T)
T —> h(t) —>
t LTI t
r T

0 ’ 0
(b)

m Figure 7. (a) Impulse response of an LTI system H. (b) The output of an
LTI system to a time-shifted and amplitude-scaled impulse is a time-shifted

and amplitude-scaled impulse response.

The convolution of two signals x(f) and A(f) will be represented

symbolically as
y(t)=x(t)*h(r) (23)

2. Properties of the continuous-time convolution

(1) Commutativity
x(t)xh(r)=h()*x(r) (24)

The roles of input signal and impulse response are interchangeable.

(2)  Associativity
MOSEIORAVINEORACIRAG (25)

A cascade combination of LTI systems can be condensed into a single
system whose impulse response is the convolution of the individual
impulse responses.

(3) Distributivity

x(0)* [ () + k()] = [x() () ]+ [x()*m ()] 26)

A parallel combination of LTI systems is equivalent to a single
system whose impulse response is the sum of the individual impulse

response in the parallel configuration.
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Note:

The overall impulse response of a cascade of two nonlinear systems
(or even linear but time-varying system) does depend upon the order in

which the systems are cascaded.

@ A nonlinear continuous-time system is not completely described by its
unit impulse response.
Example 11:

Let x(t)=e“u(r) and h(t)=u(t) wherea>O0.

e ,0<r<t
0 , otherwise

t

m Figure 8. Calculation of the convolution integral for Example 11.

Example 12:

1,0<t<T t, 0<t<2T
x(1)= . and h(r)= _
0, otherwise 0, otherwise
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1<0,y(¢t)=0
O<t<T,0<7<t

w,(z')=x(r)h(t—z')=t—z':>y(t):J;(t_z-)dz-=Z2_%tzZ%tz
T<t<2T, 0<7z<T
y(t)= jOT(z_f)dT:n_%Tz
2T <t <3T, t-2T <t <T
_(" _ 1, 3,
y(t)—J.HT(t—T)dr——Et +Te+ 2T

3r<t, y(1)=0

Ax(7) h(-7+1)

1

0
h(f)l /
0

T
T 21 %
(-7)
t=20
» T

2T >t > T

2T T |
h(—r+t)
I t <0
t - 2T t‘ > | | -
0| T 2T 3T
h(—r+t)
T>t >0
l >
o] t'1

m Figure 9. Signal x(r), h(t—r), and y(t) for different values of ¢ for
Example 12.

Example 13:

x(t)=u(t-1)—u(t—3) and h(r)=u(r)—u(r-2)

2-12
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Evaluate the convolution integral for a system with x(¢) and /4(¢).

t<l1, wt(r):0:>y(t)=O

1,1<7<¢t
1=1<3,w(7)= 0 0‘[h€1'WiSGZ>y(t)=t_1

= y(1)=5-1¢

1,t-2<7<3
3<t<5, wt(r):{

0 , otherwise
5<t, wt(r):0:>y(t)=O
x(1) h(r)

1~‘~ 1
t t

o' 1 2 3 o' 1 2

m Figure 10. Input signal and LTI system impulse response for Example 13.

x(7)

(c) (d)
m Figure 11. Evaluation of the convolution of integral for Example 13. (a)
The input x(z) depicted above the reflected and time-shifted impulse
response h(t—r), depicted as a function of 7. (b) The product signal

wt(r) for 1<t<3. (c) The product signal wt(r) for 3<t<5.(d) The

system output (7).

Example 14: RC circuit output

Assume RC =1 sec. h(l) = e’tu(t) and x(t) = u(l) — u(t — 2).
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+

x(1) ~C y(t)

m Figure 12. RC circuit system with the voltage source x(¢) as input and the

voltage measured across the capacitor, y(7), as output.

h(t—f): e_(t_r)u(z‘— 1’)
t <0, wt(z'): 0:>y(z‘):0

0<t<2, wt(r):{e

{e(”) , 0<1<2

) Qerat "
» _ —(t-7) i -t

= yliti=| e dr=1-¢

0 , otherwise y( ) IU

0 , otherwise

0 1 2 w(r)
Hi—1)
) 1 ]
r T
t 0 t
(a) (b)
w(r] y(t)
0.86
A /\
T t
0 2 0 2
(c) (d)

m Figure 13. Evaluate of the convolution integral for Example 14. (a) The
input x(r) depicted above the reflected and time-shifted impulse response
h{t-17), depicted as a function of 7. (b) The product signal w,(7) for
0=z <2. (c) The product signal w,(z) for 2=<7. (d) The system output

(7).
Example 15: Radar range measurement: propagation model

sin(wt), 0<1<1
= ‘ d hit)=ab(t—
x(t) { 0 ., otherwise n (t) “ (t ﬁ)

where a represents the attenuation factor and / the round-trip time
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delay.

h(t)=as(t— p)= h(-t)=as(-7— B)=as(-(r+p))=as(z+ B)

(- even symmetry )
k(t—f):aé'(f—(z‘—ﬂ))
r(z‘): J._Zx(’c)aé'(rf(tf ﬁ))dr: ax(tf ﬁ)

x(1) r(t)

14
. A , *] N NNN ,
T, —ad ﬁU \Vj Uﬁ«t]"u
14

(a) (b)

m Figure 14. Radar range measurement. (a) Transmitted RF pulse. (b) The

received echo is an attenuated and delayed version of the transmitted pulse.

Example 16: Radar range measurement : the matched filter

LTI system , A, (7)

(matched filter)

o (6)= () —sin{wt), —T,<t<0
=x|—-1)=
" 0 , otherwise

wr(r): r(r)hm(t—r):r(r)x(r—t)
t+Ty<f=t<p-T, w(r)=0=y(¢)=0
Bet+T< g+ 1= =1, S50,
y (T):{asin(coc(f—ﬁ))sin(a)c(r—f)), B<t<t+T,
’ 0 , otherwise

_ y(z‘):J.;+?aasin(a)c(f—ﬁ))sin(mc(f—z‘))df
- %J':TU [cos(wc(t— ﬁ))—cos(a)c(Zr— ﬁ—f))]dr

= %cos(a)c(f— e+, - Bl+ ﬁsin(wc(zr— p—t)) D

= Soos(@, (1= B))t+ 1, - ]

+

& [sin(o. (e 21, ) -sin{o (1)

4

~ %cos(mﬂ(z‘— ﬁ))[t+TO - p] ( w, >106rad/s)
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B<t<p+1i,,
o (7)= {asin(a)c(r ﬁ))sin(wc(r—t)), <1< [5’.+T0
0 , otherwise
y(t)= J.fﬁ aSin(@C(T* ﬁ))sin(wc(rft))dr
—
z%cos(a)c(z‘—ﬂ))[ﬂJr]B_t]
L+1, <1, wt(r):O:y(t):o

h m(r)

AANL
2VAATAY

(h)

y(1)

m Figure 15. (a) Impulse response of the matched filter. (b) The received
signal r(r) superimposed on the reflected and time-shifted matched filter

impulse response 7, (z‘— T), depicted as function of 7. (¢) Matched filter
output y(z).
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2-4 Properties of Linear Time-Invariant Systems
1. LTI system with or without memory

(1)  Discrete-time memoryless system: y[n] depends only on x[#].

= h[n]=0forn=0 (27)
= h[n] = cd[n], c = h[0] (28)
yln] = ex[n] (29)

If a discrete-time LTI system has an impulse response 4[n] which is
not identically zero for n # 0, then the system has memory.
Example 17: y[n] = x[n] + x[n—1]

= 1 ,n=0,1
[n]— 0, otherwise .

(2) Continuous-time memoryless system:
h(t)=0 forz#0
(30)

y(t) = cx(t) = h(t) = c5(t)
h(t) #0 for some value of # = “memory” system

If ¢ = 1, then the convolution sum and convolution integral formulas

of memoryless LTI system imply that
x[n] :x[n]*5[n] a1
x(t)=x(1)*5(1)

2. Invertibility of LTI systems

x(1) — h(t) —> K™ () = x(1)

m Figure 16. Concept of an inverse system for continuous-time LTI
systems.

h[n] *h""v[n] = 5[11] (32)

{h(z)*hi’”(z)zé(z)

The process of recovering x(7) from h(¢)*x(z) is termed deconvolution,

since it corresponds to recovering or undoing the convolution operation.
Example 18:

(1) =x(t-1)
{h(t):é'(t—to)

x(t—1,)=x(t)*5(t—1,) (delay by 1,)
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{hmv(t)::5(t4—%)
x(t+1,)=x(t)*5(¢t+1,) (advance by ¢,)
h@)*h”%})=§(r—t)*§(r+t)

= S(t—t+t,)dr

=(1 )J ( t,)dr=35(1)

Example 19: Multipath communication channels: compensation by means
of an inverse system

y[n]=x[n]+ax[n-1]

:>h[ ] 5[ ]+a5[n—1]

Find a causal and stable inverse system that recovers x[n] from

y[n]
h[n] *hi"v[n] = 5[11]
:z h’”V n k] hi”v[n]+ahi”v[n—l]:5[n]

Forn <0, h™ [n] 0 = causal

For n=0, A" [0]+ ah™ [1] =1= k™ [0] =1

Forn >0, hi"v[ ]+ ah™ [n - 1] =0=h" [n] =—agh™ [n - 1]
= W [1] ==, K" [2] =, K" [3]=a',...

h’"v[n] = (—a)"u[n]

2 i K]

h™ ‘ = Zf}w|a|k < oo when |a| <1

3. Causality for LTI systems

The output of a causal system depends only on the present and past values
of the input.

ynl= 2, x[kh[n—k]= yn]= 30, x[K]h[n—k]
= 2 NK]x[n—k] = y[n]= 2 hlk]x[n k]

(33)

(34)
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h[n]=0forn<0
h(t)=0f0rt<0

Example 20:
h[n]=uln]

. [n] _ 5[71] ~ 5[71 ~ 1]} = causal

h(t) =5(t—1t,) iscausal for #, >0 and noncausal for ¢, <O0.

4. Stability for LTI systems
BIBO stability: bounded input — bounded output
(1) The impulse response #h[n] 1is absolutely summable,

Z:Ho‘h [k]‘ <. <> The discrete-time system is BIBO stable.
(@ X" |h[k]<e = BIBO stable

Consider ‘x[n]‘SMx for all n

vl =[X;_ alk]x[n k]

< 2Lk eln =] (o] <[al + )
<M.y |n[k] foralln

Thus, if z::_w‘h[k]‘ < 0, then the system is BIBO stable.

(b) BIBOstable = > " |h[k]<w

(35)

1.e.,

(36)

= Z::_m‘h[k]‘—mo = not BIBO stable (i.e., there exists a

bounded input that can generate an unbounded output.)

The system output at index n=n, for the input x[n] is

y[n]= Zf:_wh[k]X["o —k]
Consider a bounded input of the form

x[n]=%B,, foralln

2-19
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2)

and let x[n, —k|=sign(h[k])B,, then
=B E] (- sien(s[EDA ) @9)

DI B AR

Therefore, “h[n] 1is absolutely summable” is a sufficient and
necessary condition to guarantee the BIBO stability of a discrete-time
LTI system.

The 1impulse response /h(f) 1s absolutely integrable, i.e.,

[”|1(z)|dr <. < The continuous-time system is BIBO stable.
@ [ |n(z)|dz <o = BIBO stable
Consider |x(¢)|<M, forall ¢
()= A(z)x(t-7)dz

<[ |n(e)x(t=7)|dz (40)
Siji‘h(r)‘dr

Thus, if I:‘h(r)‘ dt <o, then the system is BIBO stable.
(b) BIBOstable = | |n(r)|dr <o

= I_OO ‘h(r)‘dt — o0 = not BIBO stable (i.e., there exists a
bounded input that can generate an unbounded output.)

The system output at time ¢=¢, for the input x(?) is

() =] h(e)x(t,~z)ar (1)
Consider a bounded input of the form

x(t)==B,, forall ¢ (42)

and let x(,—7)=sign(h(z))B,, then
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Bj_w‘h )dz'( s1gn( ) (r):‘h(r)‘) (43)

Lo‘h )a’r—)oo —)oo

The system is BIBO stable if and only if the impulse response is
absolutely integrable,

["|n(z)]dr <o (44)
Example 21: hi[n]=6[n—n,]

Zj:_w‘h[”]‘ = Z::_wb[n - ”o]‘ =1= stable

h[n] = u[n] = y[n] = Z::_mx[k]h[n - k] = z:j_wx[k] = accumulator

Z:;w\u[n]\ = Zw ‘u[n]‘ =00 = unstable

k=0
n
Example 22: Properties of the first-order recursive system
y[ ] py[n 1]+x[n <1
= h[n)= puls]
h[n] =0 for n <0 = causal
h[n]# 0 for n >0 = memory
o o s k
2= e = e <0
n
5. The unit step response of an LTI system
u(r) LTI System s(1)
aln] T A@ [ )
m Figure 17. Step response of an LTI system H.
s[n]=u[n]=n[n] =3 h[k] (45)
h[n]zs[n]—s[n—l] (46)
s(t)=u(e)*h(t)=[ n(z)dr (47)
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h(t)=%s(t)=s'(t) (48)

In both continuous and discrete time, the unit step response can also be used
to characterize an LTI system to sudden changes in the input.
Example 23: RC circuit

From chapter 1, the impulse response of a RC circuit is

h(t)= ée"” *Cu(t). The step response of the circuit is

1

t
B ILﬂ/RC B —I e’T/RCu(T)dr,tZO
s(t)—J:wRCe u(r)dr— RC 0 . L 1<0
l—e_[/RC,tZO
1l o <0

s(1)

m Figure 18. RC circuit step response for RC =1 s.
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2-5 Systems Described by Differential or Difference Equations
1. The general form of a linear constant-coefficient differential equation (for
continuous-time systems) is
k k
50 20y 40 @
where the a; and by are constant coefficients of the system, x(7) is the input

applied to the system and y(¢) is the resulting output.
2. A linear constant-coefficient difference equation (for discrete-time systems)

has a similar form:

> ay[n—k]=Y hx[n—k] (50)

The order of the differential or difference equation is (N, M), representing the
number of energy storage devices in the system. Often, N > M , and the
order is described using only N.

Example 24: RLC circuit
R L

x(1) @ TC

R()+L y I )dz'x)

d

%ng<wm§—ﬂ>-gw»=§wo>

Here the order is N = 2. This implies that the circuit contains two energy

storage devices: capacitor and inductor. ]

Example 25: y[n]+ y[n—1] +%y[n —2]=x[n]+2x[n-1]

The order is N = 2. This implies a maximum memory of 2 in the system

output. [

3. Computing the current output of the system from the input signal and past

outputs:

y[n)=—{X ) bex[n=k]- 3 ay[n -]} (51)

Example 26: y[n]+ y[n—1] +%y[n —2]=x[n]+2x[n-1]

y[n] = x[n]+2x[n—1]—y[n—1]—%y[n—2]

2-23



EE3610 Signals and Systems Fall 2011

In order to begin this process at time n = 0, we must know the two
most recent past values of the output. These values are known as initial
conditions.

Note:

@ The number of initial conditions required to determine the output
is equal to the maximum memory of the system. It’s common to
choose n = 0 or ¢ = 0 as the starting time for solving a difference
or differential equation, respectively. For example, the initial
conditions for an Nth-order difference and differential equation
are the N values

y[-N].y[-N+1]....,y[-]] (52)

and

dy(t)

dt

dN—ly(t)

dtN_l (53)

Py 9oy

t=0"

(1)

t=0"

2-6 Solving Differential and Difference Equations

1.

The output of a system described by a differential or difference equation may
be expressed as the sum of two components.

(1) Homogeneous solution, y(h)

: a solution of the homogeneous form (by
setting all terms involving the input to zero) of the differential or
difference equation.

(r)

(2) Particular solution, y'"’: any solution of the original equation for the

given input.

Thus, the complete solution is
(1) =y (e)+ 7 (¢) or y[n]=y"[n]+ " [n] (54)

Linear constant-coefficient differential equations

Consider a continuous-time system described by

d

Ey(t)+ 2y(t) = x(t) (55)
where x(¢) and y(f) are the input and output of the system respectively. The
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complete solution to the above differential equation can be expressed as
(1) =y (1) + " (1) (56)
where
) (¢): particular solution
) (¢): homogeneous solution, i.e., solution of %y(t) +2y(1)=0
(1)  Determination of the particular solution

(A particular solution is usually obtained by assuming an output of

the same general form as the input.)
Consider x(t) = kcos(a)ot)u(t) =Re {kej’”‘)’}u(t) . For t>0 we can

hypothesize a particular solution of the form

y(p)(t) = Re{Yej“’”’} (57)
d (») () — i @yt oot | @yt
77 e)+2y"(2) = Re{]a)OYe’ +2Ye’ } = Re{ke’ } (58)
= jo,Y +2Y =k (59)
ok Kk o g tan (&j (60)
Jo,+2 \/4+a)§ 2

y(p) (t) = Re{Yej“’Ot} =

k
- Ji4+ o)

(2) Determination of the homogeneous solution

cos(ayt—0), t>0 (61)

(a) In order to determine y(h) (t) , we hypothesize a solution of the

form
W(1)= e (62)
% Y (0)+ 25" (1) = sde” +24e" =0 (63)
s+2=0=s5=-2 (64)
g ()=A4e™, t>0 (65)

(b) The homogeneous solution of a general linear constant
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coefficient differential equation can be found in a way given in
the Appendix.
(3) Determination of the complete solution
From (1) and (2), we have

y(t) — y(p)(t)+y(h)

~

t) =Ae™ +

k cos(ait—86),t>0 (66)
J4+ @)
(a) Determination of the constant A4 by specifying initial (or
auxiliary) conditions on the differential equation

If we specify y(0) = yo, then

k
A=y, — cosd (67)
’ Ji+ ]
y(t)=pe™ + k [cos(a)ot—ﬁ)—cos Hefz’], t>0 (68)

;

4+ w}
(b) Solution of the differential equation for z <0

Fort<0, x(¢t)=0 and y(7)= ) (1)=Be™,

y(t)=ye™, 1<0 ( y(0)= yo) (69)
(c) Complete solution

k

2
4+ w

y(t)=pe™ + [cos(a)ot—ﬁ)—cos Qefz’]u(t) (70)

;

Note:

@ The above system is linear if the initial condition is zero.
Let x,(¢) and x,(¢) be two input signals, and let y,(¢) and y,(¢)
be the corresponding responses with y,(0)=»,(0)=0, i.e.,

%yl(t)“yl (£)=x (), »(0)=0 (71)
%yZ(t)”%(t):xz(f):yz(0)=0 (72)

Consider next the input x,(7)=ax,(¢)+fx,(t), where a and S

are any complex numbers.

%%(f)* 293(1) =%, (1), v, (£) =@y (1) + Byy (1), »,(0) =0 (73)
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where y,(¢)=ay,(t)+By,(¢t) is the response corresponding to

X, (t) =ax (t)+ Bx, (t) .
= The system is linear.
@ The above system is incrementally linear if the initial condition is not
Zero.
k
y(t)=  ye? + ——|cos(at—0)—cosOe u(t) (74)
- % TremrLoosta=0)-oosoe Ju()

due to the nonzero
auxiliary condition alone

the linear response of the system assuming that the auxiliary condition is zero

Response to auxiliary

conditions alone

Linear svstem specified by linear
X(1)— constant coefficient di fferential y(t)
equation with zero auxiliary conditions

m Figure 19. Incrementally linear structure of a system specified by a

linear constant-coefficient equation.

@ A general Nth-order linear constant-coefficient differential equation is

given by
Y dky(t) M dkx(t)
=>b 75
kzz(;ak di kzz(; - (75)
#®  The solution y(t)= yt7) ()+ ) (¢)
yt7) (¢): particular solution
y(h) (t) : homogeneous solution
# Initial conditions correspond to the values of
dy(t) d"'y(1)
y(l‘) =072 7 1=0"2""" W 1=0" (76)

“The system will be linear only if all of these initial conditions are
zero.”

# A necessary and sufficient condition for the initial conditions at
t=t, (e.g., t; =0") to equal the initial conditions at ¢=¢, for

a given input is that the right-hand side of the differential equation

. u, d'x(1) . . o

in (75), Zbk .~ , contain no impulses or derivatives of
k=0 t

impulses.
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Example 27: RC circuit

R

x(1) @ C== ¥n

y(t)+RC% (1) =x(t) = cos(1)u(r) -

R=1Q, C=1F, and y(0")=2V .
The homogeneous solution is
() + RCL (1) =0
dt
The order N =1. y"(¢) = ce"

where 7 is the root of the characteristic equation

1+RCr1:O:>r1:—L
RC

-y (t)=ce ™ =ce" (RC=1)
Assume ") (1) = ¢, cos(t)+c,sin(¢)

¢, cos(1)+c¢,sin(t)— RC¢sin(t)+ RCc, cos(t) = cos(r)

1
G=—"—"3
¢ +RCc, =1 . 1+(RC)
—RCc, +¢,=0 RC
G=T"—""3
1+ (RC)
PV ()= ——cos(t +R—Csin t =lcos t +lsin t),t>0
T iyt L URS LR ORE 0
" No impulses are introduced. .. y(0+) = y(O") =2
We have
2=y" (1)+ t7) (1)=ce™ +lcos(0+) +lsin(0+) cetizse=
2 2 2 2
y(t)=%et+%cos(t)+%sin(t), t>0 .
3. Linear constant-coefficient difference equations
(1)  The Nth-order linear constant-coefficient difference equation
Yoarn=k]= 2] bx[n—k] (77)
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The solution y[n] can be written as
y[n] = y(p) [n] + y(h) [n] (78)

»"[n]: particular solution
) [1]: homogeneous solution — Z:/:O a,y[n—k]=0
Note:

o [n] is the solution of the homogeneous equation

> @y [n—k]=0 (79)

The homogeneous solution for a discrete-time system can be
found in a way given in the Appendix.
(2) A system described by the Nth-order linear constant-coefficient
difference equation and some initial conditions is incrementally
linear.

Response to auxihary
conditions alone

Linear system with zero 7N
X [ii ]—P . - '—I\' v [ ]
auxihary conditions N/

m Figure 20. Incrementally linear structure of a system specified by a

linear constant-coefficient difference equation.

3) y[n {Zk obx[n k] Zk 1akyn k}

.. A set of initial conditions such as
y[—N],y[—N+1],...,y[—1] (80)

N

are needed.
(4) The order N> 0,

S ay[n—k]=Y" bx[n-k]
y[n]:a_lo{ Y beln=k]= X0 apn-k]) 6D
—> recursive equatlon

“We need initial conditions to determine y[n].”

N=0, y[n]= Zio(bk/ao )x[n—k]: nonrecursive equation
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“We do not need initial conditions to determine y[n].”
b,/ay,, 0<Sn<M

:h[n]z{ A

(let x[n] = 5[n] , then y[n] =h [n])

, otherwise

(82)
Example 28: Example of recursive difference equations

vy In=1]=[n]. y[-1]=a, a[n]=k[n]
(1) Determine y[n] forn >0
yn]=an]+ > y[n-1]

y[0]=x{0]+ 2y [-1)=k+a

s[1]=x[1]+ 2 o{o] :l(k+laj

2 2

y[21=x[2]+ L] :sz(mlaj

2

yln]=x{n]+ 3o [n-1]

n n n+l
(L k+la :kl +al , n=0
2 2 2 2
(i1)) Determine y[n] for n <0

y[n—l]:2{y[n]—x[n]}

n+l
y[]=2{y[n+1]-x[n+1]} =2 "a = @ 4, n<0
Thus, for all values of #,

¥[n] :Gja +k@”u[n]

%/_/
y(h) [] y(ﬂ) [1]

a =0 = The system is linear.
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@ Initial conditions are zero. = The system is linear.

Fall 2011

@ The recursive difference equation has an impulse response

of infinite duration. = “infinite impulse response” (IIR)

system

@ The nonrecursive difference equation has an impulse

response of finite duration. = “finite impulse response”

(FIR) system

Example 29: First-order recursive system

1

- eyl =)= 3| ulo) o= oT1)-8

The homogeneous equation is

y[n]—%y[n—1]=0:>N=l, y(h)[n]=cr1" = —%:034 =%

Assume y(”)[n]:cp %) ,

y[0]=x[0]+%y[—l]=3

3= 2(%}0 +c(%)0 =c=1= y[n]= 2(%)n +(

Note: If p =%, then no coefficient ¢, satisfies ¢, (1-2p)=1 and we

assume a particular solution of the form y"”)[n]=c n(1/2)".

cpn(1—2p)+2pcp =1:>Cpn-0+cp =1:>C,, =l:>y(")[n]
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General form of the particular solutions corresponding to some x(¢) and x[#]

x(1) Particular solution
1 c
¢ ot +o,t" e tte,,,
= ce” ifaisnot a characteristic root.
=  cte” +c,e” ifais a distinct characteristic root.
eat
= e + ot e 4+ e ifais a (k—1)-multiple
characteristic root.
cos(at) ¢, cos(at)+c, sin(at)
sin(ar) ¢, cos(at)+c, sin(at)
x[n] Particular solution
1 c
n* clnk + cznk_1 +-t+ontce,
» ca" if a isnota characteristic root.
»  cna"+c,a" if a isadistinct characteristic root.
an
- k=1 _,n k=2 _n noo: :
en'a"+en o'+ +ca” if a isa
(k—1)-multiple characteristic root.
cos(Qn+¢) ¢, cos(Qn) + ¢, sin(Qn)
d’y(t) _dy(t
Example 30: (;§)+7 i;)+6y0)=6x0)
t t

x(t)=sin(2t), y(0)=0, —y(?) ) =3'(0)=0

Characteristic equation:

P +7r+6=0
(r+1)(r+6)=0=>rn=-1,,=-6

=y (t)=ce" +c,e™
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x(t) =sin2¢

y(”)(t) = p,sin2t + p, cos 2t

Substituting y(” ) (t) into the differential equation, we obtain

—4p,sin2t—4p, cos2t+14p, cos2t—14p, sin 2t + 6 p, sin 2t + 6 p, cos 2t
= 65sin 2¢

(-4p, —14p, + 6p, —6)sin2t +(—4p, +14p, + 6 p, )cos 2t
=(2p, —14p, —6)sin2t +(14p, +2p, )cos2t =0
{2p1—14p2—6:0 {pl =3/50
= =
14p, +2p, =0 =-21/50
y(1)= 3" () + 57 (1) = e + c,e ™ +3/50sin 2¢ — 21/50cos 21
"+ y(0)=0andy'(0)=0
'{c1+c2—21/50=0

—12/25, ¢, =—3/50
¢ —6¢,+6/50=0 " /25, e =3/

= y(¢)=12/25¢"-3/50e”* +3/50sin 2 — 21/50cos 2¢ n

Example 31: y[n]+2y[n—1]:x[n]—x[n—l], x[n]:nz, y[O]:l

r+2=0=>r=-2

y(h)[n] = c(—2)n

x[n] no x[n] - x[n —1] =2n-1

) [n] pn+p,

Substituting y(" ) [n] into the difference equation, we obtain
pn+p, +2[pl(n—1)+p2]=2n—1

=3pn+3p,—2p =2n-1

=(3p,-2)n+(3p,-2p, +1)=0

{3171_2:0 {p1:2/3
= =

3p,—2p, +1=0 p,=1/9
= y[n]=c(-2)" +2n/3+1/9
y[0]=1..c=8/9

= y[n]=8/9(-2)" +2n/3+1/9 =
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2-7 Characteristics of Systems Described by Differential or Difference Equations

1.

It’s informative to express the output of a system described by a differential
or difference equation as the sum of two components:

(1)  One associated only with the initial conditions.

= natural response (zero-input response), y(")

(2) One associated only with the input signal. = forced response
(zero-state response), y(f )

The natural response is the system output for zero input and thus describes

the manner in which the system dissipates any stored energy or memory of

the past represented by non-zero initial conditions.

zero input
= 3(e) ory"[1]

= Choose the coefficient ¢; such that the initial conditions are satisfied.
Example 32: RC circuit (same as Example 27)

y(t)+ RC%y(t) =x(t), R=1Q, C=1F, andy(O’) =y

W(t)=ce' =" (0)=2=c=2=y"(1)=2¢", t20 .

Example 33: First-order recursive system (same as Example 29)
1Y 1
ol poln=1]=fa] =5 | ulal, o= 5[] =8
) [n]= c(l]n = 8= c(lj_l —c=2= " [n]= 2(1)” nz-1 =
4 4 4)°

The forced response is the system output due to the input signal assuming
zero initial conditions. Thus, the forced response is of the same form as the
complete solution of the differential or difference equation.

zero initial conditions

= “at rest”, no stored energy or memory in the system

= System behavior is “forced” by the input.

The forced response depends on the y(” )

Oorn=0.

Note: As before, we shall consider finding the forced response only for

, which is valid only for times ¢ >

continuous-time systems and inputs that do not result in impulses on the
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right-hand side of the differential equation, i.e., y(O‘) = y(O* )
Example 34: RC circuit (same as Example 27)

$(0)+ RCE ()= (1) =cos()u(r) . R=10, C=1F
y(t)=ce™ +%cos(t)+%sin(t), (>0

Assume that the system is initially at rest, y(O) =0=>c=-1/2,

y(f)(t):_%e_t+%Cos(t)+%sm(t)’ t>0 ]

Example 35: First-order recursive system (same as Example 29)

4. The basic difference between impulse-response descriptions and
differential- or difference-equation system descriptions:

(1) Impulse response = no provision for initial conditions
It applies only to systems that are initially at rest or when the input is
know for all time.

(2) Differential- and difference-equation system descriptions are more
flexible in this respect, since they apply to systems either at rest or
with nonzero initial conditions.

5. Linearity and time-invariant

(1)  The forced response of an LTI system described by a differential or

difference equation is linear with respect to the input.

JORS0
X, (t) - ygf) (t)

(2)  The natural response is linear with respect to the initial conditions:

}:> ax, (1) + fx, (t) = ayt () + S (1) (83)
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€)

(4)

initial conditions 7, — "' (¢ . .
ridatconditions 3 )| 1 a1 (1) st (o) + ot 1)
initial conditions 7, — y, (t)

(84)

Time invariant

(a) The forced response is also time-invariant since the system is
initially at rest.

(b) The complete response of an LTI system described by a
differential or difference equation is not time-invariant, since the
initial conditions will result in an output term that does not shift
with a time shift of the input.

The forced response is also causal since the system is initially at rest,

1.e., the output does not begin prior to the time at which the input is

applied to the system.

6. Roots of the characteristic equation

The roots of the characteristic equation afford considerable information

about the LTI system behavior.

(1)

2)

€)

(4)

The forced response depends on both the input and the roots of the
characteristic equation, since it involves both the homogeneous and
particular solution.

The basic form of the natural response is dependent entirely on the
roots of the characteristic equation.

The impulse response of an LTI system also depends on the roots of
the characteristic equation, since it contains the same term as the
natural response.

Stability

For a BIBO stable LTI system, the output must be bounded for any
set of initial condition.

= The natural response of the system must be bounded.

= Each term in the natural response must be bounded.

(a) In discrete-time LTI systems,

‘ri"‘ is bounded or ‘rl. ‘<1 for all i (85)

(b) In continuous-time LTI systems,

it

e’

is bounded or Re{r} <0 (86)

Re{ri} =0 means that the system is on the verge of instability.
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In a stable LTI system with zero input, the stored energy eventually
dissipates and the output approaches zero.
7. Response time

(1)  The natural response has decayed to zero.
= The system behavior is governed only by the particular solution.
= The transition of the system from its initial condition to an
equilibrium condition determined by the input.

(2) The response time of an LTI system to a transient is therefore

proportional to

{max|rl| for the discrete-time case
(87)

max (Re {r }) for the continuous-time case

2-8 Block-Diagram Representations of LTI Systems Described by Differential or
Difference Equations
1. Difference equation:

Basic elements:

x,[n]

l

x; [#] —M/+>)—I- x; [n]+x,[n]

(1) Adder N—

_\'[.Fa‘] :T (I_'\'[??]

(2)  Multiplication by a coefficient

xn]—» S —» x[n—l]

(3)  Unit delay

Example 36: y[n]+ay[n—1]:bx[n] (initial rest)

= y[n] = —ay[n - 1] +bx[n]
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Example 37: y[n]=byx[n]+bx[n—1]

x[n]

x[n-1]

Example 38: y[n]+ay[n—1]=b0x[n]+b1x[n—l] (initial rest)

= y[n] = —ay[n—1]+b0x[n]+b1x[n—1] = —ay[n—1]+w[n]

w[n]=box[n]+bx[n-1]

W]

{z[n] = —az[n—l]+x[n]

y[n]=byz[n]+b,z[n-1]

Requiring a single delay [ ]
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Example 39: y[n]=— V bx[n=k]-Y." a,y[n—k]{ (initial rest)
%,—J

“Direct form II realization” or “canonic realization” (N delay elements)

Note:

@ The direct-form II realization requires much fewer delay elements
than the direct-form I realization.

@ In fact, the direct-form II realization requires the minimum

number of delay elements.
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2.

Differential equation:

Basic elements:

* (f:]

xl(r:] *é—xt (t)+x, (1‘)
(1) Adder

(2) Multiplication by a coefficient () o ax(r)

() D |» &0
(3) Differentiator dt
ex , d'x(0) <v  d'v(d)
y(t):a_O{Zk—Obk dr* _Zkzlak dr* (88)

The direct-form I and direct-form II realizations of the differential equation
are the same as those of the difference equation except that the delay
elements used in the realizations are replaced by differentiators.

A differentiation element is often difficult to realize. Hence, we need some
other realization method. Realization of the differential equation using
integrators:

Let

d*y(t d*x(t
S oa, dytf)=zjf_obk d’;ﬁ) (M = N here) 1)
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d'y(t)

dt*

Assume initial rest, then the Nth integral of is precisely y' ™ (7).

(v The initial conditions for the integration are zero.)

d*x(t
The Nth integral of ;() is precisely x(ka)(t).

tk

= Z:/ 0cz,{y(]\u‘)(t) = kN:Obkx(ka)(t) (92)

(93)

()= XL ) - X a0

Let an integrator be expressed as

x(t) —» j Hj;x(r)df

m Figure 21. Pictorial representation of an integrator.

Then the corresponding direct-form I and direct-form II realizations are
illustrated as follows:

Direct-form I realization:

m Figure 22. Direct form I realization for the LTI system described by Eq.
(93).
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Direct-form II realization:

m Figure 23. Direct form II realization for the LTI system described by Eq.
(93).

2-9 State-Variable Descriptions of LTI Systems

1. The state of a system may be defined as a minimal set of signals that
represent the system’s entire memory of the past. That is, given only the
value of the state at an initial point in time, n;,(or ¢;), and the input for times

n2>n, (ort>t;), we can determine the output for all times n > n; (or ¢ > ;).
2. A general state-variable description with the direct form II implementation of
a second-order LTI system is first considered. Using

(1) the input for n=>n, and
(2) outputs of the time-shift operation labeled ¢,[n] and g,[n] at n=n,

to determine the output of the system for n=>n,.
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x[n] > 3

—a,

qaln]

m Figure 24. Direct form II representation of a second-order discrete-time

LTI system depicting state variables g;[n] and g»[#n].

From Fig. 24, the next value of the state, ¢|[n+1] and g,[n+1], are obtained
from the current state and the input via the two equations

q, [” + 1] =—a,q, [n] —a)q, [n] + x[n]
{qz [n + 1] =gq, [n] O
y[n]=x[n]-agq,[n] - aq, [n]+ b, [n] + b,q,[n] 95)

= (b1 —al)q1 [n] +(b2 —a2)q2 [n] +x[n]

ol ool gy o

:>q[n+1]:Aq[n]+bx[n] (97)
y[n] = [b1 -a, b, - az]{i [[ZH + x[n] =cq [n] + Dx[n] (98)

_a2

-a, 1
where A= Lo , b= 0 ,c=[b—a, b,—a,],andD=1.

Equations (97) and (98) are the general form of a state-variable description
corresponding to a discrete-time system.

3. If the input-output characteristics of the system are described by an

Nth-order difference equation, then q[n] ISNx1,bisNx1, Ais Nx N,

andcis 1 x M.
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Example 40: State-variable description of a second-order system

gin+1] qIn]

{ql [n+ 1] =g, [n]+ é'lx[n]
g, [n + l] =74, [n]+ Ba, [n] + cS'Zx[n]
vlnl=ma [n]+ 1.4, [#]

&8,

N N

4.  The state-variable description of continuous-time system is analogous to that
of discrete-time systems, with the exception that the state equation given by

(97) and (98) is expressed in terms of a derivative

©q(t)= Aa(t)+bx(1) (99)
and y(t)=cq(t)+Dx(t) (100)

Example 41: State-variable description of an electrical circuit

y(1)

—_—

AN AN
R, + R, N
x(1) Ci==q, Cy == g2(1)

x(t):y(t)Rl + ql(t):> y(f): —R—lql(t)+ R—lx(t)
Let 4,(z) be the current through R,
()= R (1) 0.(0)= (1) = 2. 0)~-aa(0)
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(1) = Cquz(t)
1

- d 1 B
dt qz(t) - R,C, N (t) R,C, o (t)
We need a state equation for ¢, (7). Let i(¢) be the current through

Cy, wehave y(1)=i(r)+i,(¢) and il(t)=C1%ql(t).
1 1 d d
—qu(t)+EX(t):Clgql(t)'f‘czng(t)

d 1 1 1 1
= qu (t) = —(Rlcl + RC ]ql (t) + RC q, (t) + RC, x(t)

In a block diagram representation of a continuous-time system, the

state-variable correspond to the outputs of the integrators.
Example 42: State-variable description from a block diagram

dq, (1)
q,(1) q(1)

%qz(f) =4,(t)
y(t):3%(t)+%(t)

.-.A{z _1},b={1},c=[3 1], and D=0
10 0
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5. Transformations of the state
(1)  There is no unique state-variable description of a system with a given
input-output characteristic. Different state-variable descriptions may
be obtained by transforming the state-variables.
Example 43: Consider Example 42 again

Let ¢/(1)=g¢,(t) and ¢;(t)=q,(¢),

A':{O 1},b’:{0},c’:[1 3], and D' =0. n
-1 2 1

We may define T as the state-transformation matrix, then the new

state vector

g'=Tq (101)
where T must be a nonsingular matrix, ie., T ' exists and
q=T7q".

The original state-variable description is given by
1= Aq+bx
. a (102)
y=cq+ Dx

where ( denotes differentiation in continuous time or time advance

([n+1]) in discrete time.

0 =Tq=TAq+Tbx=TAT'q + Tbx=Aq +b'x

(103)
y=cq+Dx=cT'q+Dx=cq +Dx

where A'=TAT", b'=Th, ¢'=cT', and D' =D.

Example 44: Transforming the state

-1 4 2
1{ } bz[ },c:%[l 1], and D=2. Find A’, b',

T1004 -1 4
c',and D' corresponding to the new states
, 1 1
ai[n]=-Za[n]+74[n]

G [n]= 3o [n)+5a. 1]
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-1 1 .
T:E . det(T)# 0= nonsingular

'T“—_ll
I S T |

-2 0 1
cA=TAT 2| Y ,b'=Tb=| |, c'=cT"=[0 1],
0 3/10 3

and D =2.

Note: A’ is a diagonal matrix and thus separates the state update
into the two decoupled first-order difference equations

a[n+1]=-2a[n)+x[n]

. [n+1)= . [n]+ 3x[n]

(2) Both the block diagram and state-variable descriptions represent the
internal structure of an LTI system. Advantages of the state-variable
descriptions:

(a) Powerful tool from linear algebra may be used to systematically
study and design the internal structure of the system.

(b) Transform the internal structure without changing the
input-output characteristics of the system is used to optimize
some performance criteria by transformation not directly related

to input-output behavior.
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Appendix
Characteristic Equations of Differential and Difference Equations

1. Differential equation

d*y (t) d*x (t)
N M
I S M (a1
Characteristic equation:
ayg +a, 7+ vrar+a,=0 (A2)

The roots of the characteristic equation, 7, r,,..., 1, are called the characteristic

roots of the differential equation.
Note:

@ When the characteristic roots are all distinct, the homogeneous solution

" (2) will be

y(h) (t) =ce" +c e+ +c e (A3)
@ Suppose that 7 is a k-multiple root of the characteristic equation. Then,

corresponding to 7, there will be & terms in the homogeneous solution:

k-1 _nt k=2 nt nt it
ot e+t e +---+c_te" + el (A4)

d3y(t) dzy(t) dy(t)
E le Al: =
xample e +7 % +16 " +12y(1)=x(¢)

Characteristic equation:

P AT +16r+12=0

u
(r+ 2)2 (r+3)=0=..y,(t)=cte™ +c,e™ +c,e”™
2. Difference equation
N M
Zkzoaky[n_k]:Zk:obkx[n_k] (A5)
Characteristic equation:
ar" +ar" "+ +a, r+a, =0 (A6)

The roots of the characteristic equation, #, 7,,..., 7y, are called the characteristic
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roots of the difference equation.
Note:

@ When 7, 7,,...,r,, are all distinct, the homogeneous solution y")[n] will
be

y(h) [n] ="+ o, + ety (A7)

When the characteristic equation contains multiple roots, the homogeneous

solution of a difference equation will be of slightly different form.

Specifically, let # be a k-multiple characteristic root; then its

corresponding terms in the homogeneous solution are
k-1 n+ k-2 n_l_____l_ n+ n (AS)
annoTann Coath TGl

Example A2: y[n]+6y[n—1]+12y[n—1]+8y[n—3] :x[n]

Characteristic equation:
P 4+6r+12r+8=0

(r+2) =0=r=-2,-2,-2

y(h) [n] = (cln2 +c,n+c )(—2)”
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