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Chapter 2  Time-Domain Representations of Linear 
Time-Invariant Systems 

 

2-1 The Representation of Signals in Terms of Impulses 

1. Discrete-time case 

               
generalized

0x n n x n x n n k x k n k          (1) 

where x[k] represents a specific value of the signal x[n] at time k. Therefore, 

x[n] can be expressed as the following weighted sum of time-shifted 

impulses: 

     
k

x n x k n k


       (2) 

Example 1: 

     
■ Figure 1. Graphical example illustrating the representation of a 

signal x[n] as a weighted sum of time-shifted impulses. 
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Example 2:    
0k

u n n k


   

2. Continuous-time case 

Define 

   
1 ,  0

,  1
0 ,  otherwise

t
t t  

   
  


    (3) 

     ˆ
k

x t x k t k


          (4) 

       

   
0 0

ˆlim lim
k

x t x t x k t k

x t d



   


 





     

 




   (5) 

 x(t) equals the limit as   0 of the area under    x t    . 

   0t t   
         (6) 

Example 3: 

       
0

u t u t d t d      
 


        ■ 

              x t d x t t d x t t d x t         
  

  
         

(        x t x t t       )         (7) 

 

2-2 Discrete-time LTI Systems 

1.        x n x k n k y n


    

Let     h n H n  be the impulse response of the LTI system and 

  [ ]h n k H n k    denote the response of the system to the shifted unit 

sample  n k  . Then 

         
      

    
  linearity property

k

k

k

y n H x n H x k n k

H x k n k

x k H n k



















  

 

  





         (8)      

       time-invariance property
k

x k h n k



         (9) 

    
     

k
y n x k h n k




              (10) 
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This result is referred to as the convolution sum or superposition sum. We 

will represent symbolically as 

     y n x n h n        (11) 

Interpretation of the convolution of two sequences 

 

■ Figure 2. Illustration of the convolution sum. 

 

Example 4: 

       
         

     

;  

,  0
0, 0

,  otherwise0

n

k

k

x n u n h n u n

y n x n h n x k h n k

k n
x k h n k n k k









 

   

 
    







 

(1) For n  0,  
1

0

1

1

n
n k

k
y n









 

 . 

(2) For n < 0,   0y n  . 

   
11

1

n

y n u n




 


          ■ 

   1 1x n 

   0x n

   1 1x n 

   2 2x n 

   
k

x k n k
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Example 5: Multipath communication channel 

     1
1

2
y n x n x n    

         1
1

2
x n n h n n n        

Determine the output of this system in response to the input 

       2 4 1 2 2x n n n n        

             2 4 1 2 2 2 5 1 3y n h n h n h n n n n              ■ 

 

2. When the input is of long duration, the procedure can be cumbersome. So we 

need to use an alternative approach to evaluate the convolution sum. 

       nk k
y n x k h n k w k

 

 
       (12) 

where      nw k x k h n k   is called the intermediate signal. 

In this definition, k is the independent variable and    ( )h n k h k n     is 

a reflected and time-shifted version of  h k . 

   
   

0,  time shift  to the left.

0,  time shift  to the right.

n h n k h k

n h n k h k

    


   
 

Example 6: Convolution sum evaluation by using an intermediate signal 

     3 4
n

h n u n  

Using the intermediate signal to determine the output of the system at 

time n = 5, 5, and 10 when the input is x[n] = u[n]. 

     3 4
n k

h n k u n k
    

        
 

     

     

     

5

5

5

5

6
5 5

0

10

10

5,  5 3 4 5 0

5 0

,0 53 4
5,  5

,  otherwise0

1 3 4
5 3 4 3.288

1 3 4

,0 103 4
10,  10

,  otherwise0

k

k

k

k

k

n w x k h k u k u k

y

k
n w x k h k

y

k
n w x k h k
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     11
10 10

0

1 3 4
10 3 4 3.831

1 3 4
k

k
y






   

  

 
■ Figure 3. (a) The input signal x[k] above the reflected and shifted 

response h[nk], depicted as a function of k. (b) The product signal 

w5[k] used to evaluate y[5]. (c) The product signal w5[k] used to 

evaluate y[5]. (d) The product signal w10[k] used to evaluate y[10]. 

 

Example 7: MA systems 

              3

0

1 1
4

4 4k
y n x n k x n n h n u n u n


         

Determine the output of the system when the input is defined as 

     10x n u n u n    

   

     

   

     

 

0

3

9

3

0,  0,  for all 0

1 4 ,0
0 3,  1 4 1 4

0 ,  otherwise

1 4, 3
3 9,  1 4 1

0 ,  otherwise

1 4, 3 9
9 12,  1 4 13 4

0 ,  otherwise

12 ,  0,  for 

n

n

n k

n

n k n

n k n

n

n w k k y n

k n
n w k y n n

n k n
n w k y n

n k
n w k y n n

n w k



 

 

   

 
      


  

     


  
      


 







 all 0k y n 
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■ Figure 4. (a) The system impulse response. (b) The input signal. (c) 

The input above the reflected and time-shifted impulse response h[nk], 

depicted as a function of k. (d) The product signal wn[k] for the interval 

of shifts 0  n  3. (e) The product signal wn[k] for the interval of shifts 3 

< n  9. (f) The product signal wn[k] for the interval of shifts 9 < n  12. 

(g) The output y[n]. 

 

Example 8: 

  1 ,  0 4

0,  otherwise

n
x n

 
 


 and   ,  0 6

,  otherwise0

n n
h n

  
 


 

  ,  6

,  otherwise0

n k n k n
h n k

    
   


 

Interval 1: n < 0 

       0 0nw k x k h n k y n      

Interval 2: 0 4n   

   
1

0

,0 1

,  otherwise 10

n k n
n n k

n k

k n
w k y n
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Interval 3: 4 < n  6 

   
4 1

4

0

,0 4

,  otherwise 10

n k n n
n k

n k

k
w k y n

  


  




  
    

  

Interval 4: 6 < n  10 

   
4 7

4

6

, 6 4

,  otherwise 10

n k n
n k

n k n

n k
w k y n

  


 


 

   
    

  

Interval 5: 10 < n,    0 0nw k y n          ■ 

 

3. Basic properties of convolution 

(1) Commutative property 

       x n h n h n x n        (13) 

               
k r

x n h n x k h n k x n r h r h n x n
 

 
         

(14) 

(2) Associative property 

             1 2 1 2x n h n h n x n h n h n        (15) 

Interpretation of the associative property 

 x n  y n

 x n  y n

 x n  y n

 x n  y n

1[ ]h n 2[ ]h n

1 2[ ]  [ ]* [ ]h n h n h n

2 1[ ]  [ ]* [ ]h n h n h n

2[ ]h n 1[ ]h n

 
■ Figure 5. Associative property of convolution and the implication of 

this and the commutative property for the series interconnection of LTI 

system. 
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(3) Distributive property 

              1 2 1 2x n h n h n x n h n x n h n         (16) 

 x n  y n

 x n  y n

1[ ]h n

2[ ]h n

+

1 2[ ]  [ ] [ ]h n h n h n 

 
■ Figure 6. Interpretation of the distributive property of convolution 

for a parallel interconnection of LTI systems. 

 

Note: 

 Convolution sum formula 
imply

  unit impulse response 

It completely characterizes the behavior of an LTI system. 

 The unit impulse response of a nonlinear system does not completely 

characterize the behavior of the system. 

Example 9: 

  1 ,  0,1

0, otherwise

n
h n


 


 

LTI system: 

         
       0 1 1

k k
y n x k h n k h k x n k

h x n h x n

 

 
   

  

 
 

“There is exactly one LTI system with h[n] as its impulse response.” 

Nonlinear system: 

      
      

2
1

with the same impulse response
max , 1

y n x n x n

y n x n x n

   


  
 

Let    x n n , then    y n h n  

      
      
      
      

1 max 1 , 2 0

0 max 0 , 1 1

1 max 1 , 0 1

2 max 2 , 1 0

y x x

y x x

y x x

y x x
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      3 max 3 , 2 0y x x 


 

“There are many nonlinear systems with h[n] as its unit impulse response.” 

Note: It is not true in general that the order in which nonlinear systems are 

cascaded can be changed without changing the overall response.    ■ 

 

Example 10: 

 2h n

 x n    24y n x n

 x n    22y n x n

multiply by 2 1[ ]h n 2[ ]h n

square
2[ ]h n 1[ ]h n

 1h n

■ 

 

2-3 Continuous-Time LTI Systems 

1.      
0

lim
k

x t x k t k


             (17) 

where  t k    is a rectangular pulse with unity amplitude and width . 


      

      
0

0

lim

lim  linear property

k

k

y t H x k t k

x k H t k











    

    


 

  (18) 

where   H t k    is defined as the response of an LTI system to the 

input  t k   . 

As 0,      H t k H t k       . 

      
0

lim
k

y t x k H t k


       k  

d 

  (19) 

      y t x H t d   



          (20) 

  The system is time invariant. 

          ,  H t h t H t h t          (21) 

       ty t x h t d w d    
 

 
         (22) 
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where      tw x h t     is the intermediate signal. 

 

■ Figure 7. (a) Impulse response of an LTI system H. (b) The output of an 

LTI system to a time-shifted and amplitude-scaled impulse is a time-shifted 

and amplitude-scaled impulse response. 

 

The convolution of two signals x(t) and h(t) will be represented 

symbolically as 

     y t x t h t        (23) 

2. Properties of the continuous-time convolution 

(1) Commutativity 

       x t h t h t x t        (24) 

The roles of input signal and impulse response are interchangeable. 

(2) Associativity 

           1 2 1 2x t h t h t x t h t h t             (25) 

A cascade combination of LTI systems can be condensed into a single 

system whose impulse response is the convolution of the individual 

impulse responses. 

(3) Distributivity 

             1 2 1 2x t h t h t x t h t x t h t                  (26) 

A parallel combination of LTI systems is equivalent to a single 

system whose impulse response is the sum of the individual impulse 

response in the parallel configuration. 
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Note: 

 The overall impulse response of a cascade of two nonlinear systems 

(or even linear but time-varying system) does depend upon the order in 

which the systems are cascaded. 

 A nonlinear continuous-time system is not completely described by its 

unit impulse response. 

Example 11: 

Let    atx t e u t  and    h t u t  where a > 0. 

           
,  0

,  otherwise0

a

t

te
y t x h t d w x h t

 
     






 
      


  

For t > 0,    
0

1
1

t a aty t e d e
a

      

For t < 0,   0y t   

     1
1 aty t e u t

a
   



 x 


 h 

 h t 



 

■ Figure 8. Calculation of the convolution integral for Example 11. 

 

Example 12: 

 
1 ,  0

0,  otherwise

t T
x t

 
 


 and  
,  0 2

0 ,  otherwise

t t T
h t
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2 2 2

0

2

0

2 2

2

0,  0

0 ,  0

1 1

2 2
2 ,  0

1

2
2 3 ,  2

1 3

2 2
3 , 0

t

t

T

T

t T

t y t

t T t

w x h t t y t t d t t t

T t T T

y t t d Tt T

T t T t T T

y t t d t Tt T

T t y t



     



 



 


 

   

         

   

   

    

     

 







 

 h t 







 h t 

 h t 



 y t



 x 

 h 

 h 







 h t 



 h t 

T T t 2T

2     T t T 

T 2T -  2t T T 2T t 3T

3     2T t T 

2T 3TT-T-2T

  3t T
 0t 

 -  2t T t

 0t 

 0T t 

t

t

T
 

■ Figure 9. Signal  x  ,  h t  , and  y t  for different values of t for 

Example 12. 

 

Example 13:  

           1 3  and 2x t u t u t h t u t u t        
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Evaluate the convolution integral for a system with x(t) and h(t). 

   

   

   

   

1,  0 0

1 ,  1
1 3,  1

0, otherwise

1,  2 3
3 5,  5

0 , otherwise

5 ,  0 0

t

t

t

t

t w y t

t
t w y t t

t
t w y t t

t w y t











   

 
     


  

     


   

 

 

■ Figure 10. Input signal and LTI system impulse response for Example 13. 

 

 
■ Figure 11. Evaluation of the convolution of integral for Example 13. (a) 

The input  x   depicted above the reflected and time-shifted impulse 

response  h t  , depicted as a function of  . (b) The product signal 

 tw   for 1 3t  . (c) The product signal  tw   for 3 5t  . (d) The 

system output  y t . 

 

Example 14: RC circuit output 

Assume RC = 1 sec.    th t e u t  and      2x t u t u t   . 
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■ Figure 12. RC circuit system with the voltage source x(t) as input and the 

voltage measured across the capacitor, y(t), as output. 

 

     
   

 
 

   

 
 

     

0

2 2

0

0,  0 0

,  0
0 2,  1

,  otherwise0

,  0 2
2 ,  1

,  otherwise0

t

t

t
t t t

t

t
t t

t

h t e u t

t w y t

te
t w y t e d e

e
t w y t e d e e









 




 


 

 

 
  

 
  

  

   

        


       






 

 

■ Figure 13. Evaluate of the convolution integral for Example 14. (a) The 

input  x   depicted above the reflected and time-shifted impulse response 

 h t  , depicted as a function of  . (b) The product signal  tw   for 

0 2t  . (c) The product signal  tw   for 2 t . (d) The system output 

 y t . 

 

Example 15: Radar range measurement: propagation model 

    0,  0sin

,  otherwise0
c t Tt

x t
  

 


 and    h t a t    

where a represents the attenuation factor and   the round-trip time 
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delay. 

            
 
    
        

even symmetry

h a h a a a

h t a t

r t x a t d ax t

             

   

     




           

   

    


 

 

■ Figure 14. Radar range measurement. (a) Transmitted RF pulse. (b) The 

received echo is an attenuated and delayed version of the transmitted pulse. 

 

Example 16: Radar range measurement : the matched filter 

 

     

         
   

       

       

  

0

0

0 0

0 0 0

0

,  0sin

,  otherwise0

,  0 0

,

sin sin ,  

,  otherwise0

sin sin 

cos cos 2
2

c
m

t m

t

c c
t

t T

c c

c c

T tt
h t x t

w r h t r x t

t T t T w y t

t T T T t

a t t T
w

y t a t d

a
t





    

  

   

      


     

   



  
   


   

       

       

      


  

  


  

      

   

     

     

0

0

0

0

0

6
0

cos sin 2
2 4

cos
2

sin 2 sin
4

cos  10 rad/s
2

t T

t T

c c
c

c

c c
c

c c

t d

a a
t t T t

a
t t T

a
t T t

a
t t T
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0

0

0

0

0

,

sin sin ,  

,  otherwise0

sin sin

cos
2

,  0 0

c c
t

T

c ct

c

t

t T

a t t T
w

y t a t d

a
t T t

T t w y t



 

      


     

  

 



  

      


  


   

    

  

 

 

■ Figure 15. (a) Impulse response of the matched filter. (b) The received 

signal  r   superimposed on the reflected and time-shifted matched filter 

impulse response  mh t  , depicted as function of  . (c) Matched filter 

output  y t . 
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2-4 Properties of Linear Time-Invariant Systems 

1. LTI system with or without memory 

(1) Discrete-time memoryless system: y[n] depends only on x[n]. 

 h[n] = 0 for n  0         (27) 

 h[n] = cδ[n], c = h[0]        (28) 

y[n] = cx[n]           (29) 

If a discrete-time LTI system has an impulse response h[n] which is 

not identically zero for n  0, then the system has memory. 

Example 17: y[n] = x[n] + x[n1] 

  1 ,  0,1

0,  otherwise

n
h n


 


     ■ 

 

(2) Continuous-time memoryless system: 

 
       

0 for 0h t t

y t cx t h t c t

  


  
    (30) 

  0h t   for some value of t  “memory” system 

If c = 1, then the convolution sum and convolution integral formulas 

of memoryless LTI system imply that 

     
     

x n x n n

x t x t t





 

 
     (31) 

2. Invertibility of LTI systems 

 x t  x t( )h t ( )invh t
 

■ Figure 16. Concept of an inverse system for continuous-time LTI 
systems. 
 

     
     

inv

inv

h t h t t

h n h n n





  


 
     (32) 

The process of recovering  x t  from    h t x t  is termed deconvolution, 

since it corresponds to recovering or undoing the convolution operation. 

Example 18: 

   
   
       

0

0

0 0 0delay by 

y t x t t

h t t t

x t t x t t t t
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0

0 0 0

0 0

0 0

0

advance by 

inv

inv

h t t t

x t t x t t t t

h t h t t t t t

t t t d

t t d t





 

    

    









  


   
    

   

  




 

■ 

 

Example 19: Multipath communication channels: compensation by means 

of an inverse system 

     
     

1

1

y n x n ax n

h n n a n 

  

   
 

Find a causal and stable inverse system that recovers  x n  from 

 y n .  

     
         
 
     
       

     
     

 

2 3

1

For 0, 0 causal

For 0, 0 1 1 0 1

For 0, 1 0 1

1 ,  2 ,  3 ,

inv

inv inv inv

k

inv

inv inv inv

inv inv inv inv

inv inv inv

ninv

kinv

k k

h n h n n

h k h n k h n ah n n

n h n

n h ah h

n h n ah n h n ah n

h a h a h a

h n a u n

h k a











 

     

  

     

       

     

  









 when 1a



  

 

■ 

 

3. Causality for LTI systems 

The output of a causal system depends only on the present and past values 

of the input. 

           
         

0

n

k k

k k

y n x k h n k y n x k h n k

h k x n k y n h k x n k



 

 

 

    

    

 
 

  (33) 

           

         
0

t
y t x h t d y t x h t d

h x t d y t h x t d

     

     



 

 



    

    

 
 

  (34) 
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0 for 0

0 for 0

h n n

h t t

   
 

         (35) 

Example 20: 

   
     

causal
1

h n u n

h n n n 

 
   

 

   0h t t t   is causal for 0 0t   and noncausal for 0 0t  .  ■ 

 

4. Stability for LTI systems 

BIBO stability: bounded input  bounded output 

(1) The impulse response h[n] is absolutely summable, i.e., 

 
k

h k



  .  The discrete-time system is BIBO stable. 

(a)  
k

h k



     BIBO stable 

Consider   xx n M  for all n 

     

     
      for all 

k

k

x k

y n h k x n k

h k x n k a b a b

M h k n













 

    







    (36) 

Thus, if  
k

h k



  , then the system is BIBO stable. 

(b) BIBO stable     
k

h k



   

  
k

h k



    not BIBO stable (i.e., there exists a 

bounded input that can generate an unbounded output.) 

The system output at index 0n n  for the input x[n] is 

     0 0k
y n h k x n k




      (37) 

Consider a bounded input of the form  

  1,  for all x n B n       (38) 



EE3610 Signals and Systems   Fall 2011 

 2-20

 

and let     0 1signx n k h k B  , then 

           0 1  sign
k

y n B h k h k h k h k



     (39) 

 
k

h k



     0y n   

Therefore, “h[n]  is absolutely summable” is a sufficient and 

necessary condition to guarantee the BIBO stability of a discrete-time 

LTI system. 

(2) The impulse response h(t) is absolutely integrable, i.e., 

 h d 



  .  The continuous-time system is BIBO stable. 

(a)  h d 



     BIBO stable 

Consider   xx t M  for all t 

     

   

 x

y t h x t d

h x t d

M h d

  

  

 













 

 








    (40) 

Thus, if  h d 



  , then the system is BIBO stable. 

(b) BIBO stable     h d 



   

  h d 



   not BIBO stable (i.e., there exists a 

bounded input that can generate an unbounded output.) 

The system output at time 0t t  for the input x(t) is 

     0 0y t h x t d  



      (41) 

Consider a bounded input of the form  

  2 ,  for all x t B t       (42) 

and let     0 2signx t h B   , then 
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           0 2  signy t B h d h h h    



     (43) 

 h d 



     0y t   

The system is BIBO stable if and only if the impulse response is 

absolutely integrable, 

 h d 



        (44) 

Example 21:    0h n n n   

   
           

   

0

0

1  stable

accumulator

 unstable

n n

n

k k

k k

h n n n

h n u n y n x k h n k x k

u n u n

 

 



 

 

 

   

     

  

 
 

 
■ 

 

  Example 22: Properties of the first-order recursive system 

     
   

 
 

 

1 ,  1

0 for 0 causal

0 for 0 memory

n

k
k

k k k

y n y n x n

h n u n

h n n

h n n

h k

 



   

  

   

 

   
   

      

 

■ 

    

5. The unit step response of an LTI system 

 
 

u t

u n

 
 

s t

s n

LTI System

( ),  [ ]h t h n
 

■ Figure 17. Step response of an LTI system H. 

 

       n

k
s n u n h n h k


       (45) 

     1h n s n s n        (46) 

       
t

s t u t h t h d 


        (47) 



EE3610 Signals and Systems   Fall 2011 

 2-22

     d
h t s t s t

dt
        (48) 

In both continuous and discrete time, the unit step response can also be used 

to characterize an LTI system to sudden changes in the input. 

Example 23: RC circuit 

From chapter 1, the impulse response of a RC circuit is 

   1 t RCh t e u t
RC

 . The step response of the circuit is 

     
0

1
,  01
,  0

0

,  01

,  00

t RC
t RC

t RC

te u d
s t e u d RC

tRC

te

t


  

 








    
 

  


 

 

 
■ Figure 18. RC circuit step response for RC = 1 s. 

■ 
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2-5 Systems Described by Differential or Difference Equations 

1. The general form of a linear constant-coefficient differential equation (for 

continuous-time systems) is 

   
0 0

k k
N M

k kk kk k

d y t d x t
a b

dt dt 
      (49) 

where the ak and bk are constant coefficients of the system, x(t) is the input 

applied to the system and y(t) is the resulting output. 

2. A linear constant-coefficient difference equation (for discrete-time systems) 

has a similar form: 

   
0 0

N M

k kk k
a y n k b x n k

 
        (50) 

The order of the differential or difference equation is (N, M), representing the 

number of energy storage devices in the system. Often, N M , and the 

order is described using only N. 

Example 24: RLC circuit 

 

       

       
2

2

1

1

t

d

dt

d
Ry t L y t y d x t

dt C

d d d
R y t L y t y t x t

dt dt C dt

 


  

   


 

Here the order is N = 2. This implies that the circuit contains two energy 

storage devices: capacitor and inductor.       ■ 

 

Example 25:          1
1 2 2 1

4
y n y n y n x n x n        

The order is N = 2. This implies a maximum memory of 2 in the system 

output.      ■ 

 

3. Computing the current output of the system from the input signal and past 

outputs: 

      0 1
0

1 M N

k kk k
y n b x n k a y n k

a  
       (51) 

Example 26:          1
1 2 2 1

4
y n y n y n x n x n        

         1
2 1 1 2

4
y n x n x n y n y n        
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1
0 0 2 1 1 2

4
1

1 1 2 0 0 1
4

y x x y y

y x x y y

      

    



 

In order to begin this process at time n = 0, we must know the two 

most recent past values of the output. These values are known as initial 

conditions. 

Note: 

 The number of initial conditions required to determine the output 

is equal to the maximum memory of the system. It’s common to 

choose n = 0 or t = 0 as the starting time for solving a difference 

or differential equation, respectively. For example, the initial 

conditions for an Nth-order difference and differential equation 

are the N values 

     , 1 , , 1y N y N y        (52) 

and 

     1

10
0 0

, , ,
N

Nt
t t

dy t d y t
y t

dt dt

 




 

   (53) 

 

2-6 Solving Differential and Difference Equations 

1. The output of a system described by a differential or difference equation may 

be expressed as the sum of two components. 

(1) Homogeneous solution,  hy : a solution of the homogeneous form (by 

setting all terms involving the input to zero) of the differential or 

difference equation. 

(2) Particular solution,  py : any solution of the original equation for the 

given input. 

Thus, the complete solution is 

         h py t y t y t   or          h py n y n y n    (54) 

2. Linear constant-coefficient differential equations 

Consider a continuous-time system described by 

     2
d

y t y t x t
dt

       (55) 

where x(t) and y(t) are the input and output of the system respectively. The 
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complete solution to the above differential equation can be expressed as 

         p hy t y t y t       (56) 

where 

   
       

:  particular solution

:  homogeneous solution, i.e., solution of 2 0

p

h

y t

d
y t y t y t

dt





 


 

(1) Determination of the particular solution 

(A particular solution is usually obtained by assuming an output of 

the same general form as the input.) 

Consider      0
0cos( ) Re{ }j tx t k t u t ke u t  . For 0t   we can 

hypothesize a particular solution of the form 

     0Rep j ty t Ye       (57) 

           0 0 0
02 Re 2 Rep p j t j t j td

y t y t j Ye Ye ke
dt

       (58) 

0 2j Y Y k         (59) 

1 0

2
0 0

,  tan
2 24

jk k
Y e

j
 

 
         

  (60) 

       0
02

0

Re cos ,  0
4

p j t k
y t Ye t t  


   


  (61) 

(2) Determination of the homogeneous solution 

(a) In order to determine    hy t , we hypothesize a solution of the 

form 

   h sty t Ae       (62) 

       2 2 0h h st std
y t y t sAe Ae

dt
       (63) 

s + 2 = 0  s = 2     (64) 

    2 ,  0h ty t Ae t       (65) 

(b) The homogeneous solution of a general linear constant 
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coefficient differential equation can be found in a way given in 

the Appendix. 

(3) Determination of the complete solution 

From (1) and (2), we have 

           2
02

0

cos ,  0
4

p h t k
y t y t y t Ae t t 


     


 (66) 

(a) Determination of the constant A by specifying initial (or 

auxiliary) conditions on the differential equation 

If we specify y(0) = y0, then 

0 2
0

cos
4

k
A y 


 


     (67) 

   2 2
0 02

0

cos cos ,  0
4

t tk
y t y e t e t  


       

 (68) 

(b) Solution of the differential equation for t < 0 

For t < 0,   0x t   and       2h ty t y t Be  , 

    2
0 0,  0 0ty t y e t y y      (69) 

(c) Complete solution 

     2 2
0 02

0

cos cos
4

t tk
y t y e t e u t  


      

 (70) 

Note: 

 The above system is linear if the initial condition is zero. 

Let  1x t  and  2x t  be two input signals, and let  1y t  and  2y t  

be the corresponding responses with    1 20 0 0y y  , i.e., 

       1 1 1 12 ,  0 0
d

y t y t x t y
dt

      (71) 

       2 2 2 22 ,  0 0
d

y t y t x t y
dt

      (72) 

Consider next the input      3 1 2x t x t x t   , where   and   

are any complex numbers. 

             3 3 3 3 1 2 32 ,  ,  0 0
d

y t y t x t y t y t y t y
dt

       (73) 
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where      3 1 2y t y t y t    is the response corresponding to 

     3 1 2x t x t x t   .   

 The system is linear. 

 The above system is incrementally linear if the initial condition is not 

zero. 

      2 2
0 02

due to the nonzero 0
auxiliary condition alone

the linear response of the system assuming that the auxiliary condition is zero

cos cos (74)
4

t tk
y t y e t e u t  


      



 
■ Figure 19. Incrementally linear structure of a system specified by a 

linear constant-coefficient equation. 

 

 A general Nth-order linear constant-coefficient differential equation is 

given by 

   
0 0

k kN M

k kk k
k k

d y t d x t
a b

dt dt 

      (75) 

 The solution          p hy t y t y t   

   
   

:  particular solution

:  homogeneous solution

p

h

y t

y t





 

 Initial conditions correspond to the values of 

     1

10 0 0
,  , ,  

N

Nt t t

dy t d y t
y t

dt dt
  



  
     (76) 

“The system will be linear only if all of these initial conditions are 

zero.” 

 A necessary and sufficient condition for the initial conditions at 

0t t  (e.g., 0 0t  ) to equal the initial conditions at 0t t  for 

a given input is that the right-hand side of the differential equation 

in (75), 
 

0

kM

k k
k

d x t
b

dt
 , contain no impulses or derivatives of 

impulses. 
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Example 27: RC circuit 

         cos
d

y t RC y t x t t u t
dt

    

 1 ,  1 ,  and 0 2R C F y V    . 

The homogeneous solution is 

   
    1

0

The order 1.  h r t

d
y t RC y t

dt

N y t ce

 

 
 

where r1 is the root of the characteristic equation  

1 1

1
1 0RCr r

RC
      

      1h t RC ty t ce ce RC      

Assume        1 2cos sinpy t c t c t   

         

 

 
   

 
 

 
     

   

1 2 1 2

1 2

1 2

1 2
2 2

2 2

cos sin sin cos cos

1

11

0

1

1 1 1
cos sin cos sin ,  0

2 21 1

 No impulses are introduced. 0 0 2

p

c t c t RCc t RCc t t

c
RCc RCc

RCc c RC
c

RC

RC
y t t t t t t

RC RC

y y 

   

         
 

    
 

  

 

We have 

           

     

0 1 1 1 3
2 cos 0 sin 0

2 2 2 2
3 1 1

cos sin ,  0                                                   
2 2 2

h p

t

y t y t ce c c

y t e t t t

  



        

    

 

 

3. Linear constant-coefficient difference equations 

(1) The Nth-order linear constant-coefficient difference equation 

   
0 0

N M

k kk k
a y n k b x n k

 
        (77) 
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The solution y[n] can be written as 

         p hy n y n y n      (78) 

   
     

0

:  particular solution

:  homogeneous solution 0

p

Nh
kk

y n

y n a y n k





   
 

Note: 

    hy n  is the solution of the homogeneous equation 

   
0

0
N h

kk
a y n k


      (79) 

The homogeneous solution for a discrete-time system can be 

found in a way given in the Appendix. 

(2) A system described by the Nth-order linear constant-coefficient 

difference equation and some initial conditions is incrementally 

linear. 

 
■ Figure 20. Incrementally linear structure of a system specified by a 

linear constant-coefficient difference equation. 

 

(3)       0 1
0

1 M N

k kk k
y n b x n k a y n k

a  
      

 A set of initial conditions such as  

     , 1 , , 1

N

y N y N y   


   (80) 

are needed. 

(4) The order N > 0, 

   

      
0 0

0 1
0

1

recursive equation

N M

k kk k

M N

k kk k

a y n k b x n k

y n b x n k a y n k
a

 

 

  

   



 

    (81) 

“We need initial conditions to determine y[n].” 

N = 0,      00

M

kk
y n b a x n k


  : nonrecursive equation 
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“We do not need initial conditions to determine y[n].” 

  0 ,  0

0 ,  otherwise
nb a n M

h n
 

  


 (let    x n n , then    y n h n ) 

(82) 

Example 28: Example of recursive difference equations 

           1
1 ,  1 ,  

2
y n y n x n y a x n k n       

(i) Determine y[n] for n  0 

     1
1

2
y n x n y n    

     

     

     

     

2

1

1 1
0 0 1

2 2
1 1 1

1 1 0
2 2 2

1 1 1
2 2 1

2 2 2

1
1

2

1 1 1 1
,  0

2 2 2 2

n n n

y x y k a

y x y k a

y x y k a

y n x n y n

k a k a n


    

     
 

         
   

  

                  
       



 

(ii) Determine y[n] for n < 0 

      1 2y n y n x n    

      
       2

2 2 1 1 2

3 2 2 2 2

y y x a

y y x a

     

     
 

      

        

3

1
1

4 2 3 3 2

1
2 1 1 2 ,  0

2

n
n

y y x a

y n y n x n a a n


 

     

        
 

  

Thus, for all values of n, 

 
   

 
   

1
1 1

2 2
h p

n n

y n y n

y n a k u n


       
    

 

a = 0  The system is linear. 
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Note: 

 Initial conditions are zero.  The system is linear. 

 The recursive difference equation has an impulse response 

of infinite duration.  “infinite impulse response” (IIR) 

system 

 The nonrecursive difference equation has an impulse 

response of finite duration.  “finite impulse response” 

(FIR) system          ■ 

 

Example 29: First-order recursive system 

         1 1
1 ,  ,  1 8

2 4

n

y n y n x n u n y         
 

 

The homogeneous equation is 

        1 1 1

1 1 1
1 0 1,  0

4 4 4
h ny n y n N y n cr r r            

Assume     1

2

n
p

py n c    
 

, 

   

1
1 1 1 2

1 1 2
2 4 2 2 4

1
2

2

n n n
p

p p p

n
p

c
c c c

y n


                    
       

    
 

 

  1 1
2 ,  0

2 4

n n

y n c n        
   

 

     1
0 0 1 3

4
y x y     

 
0 0

1 1 1 1
3 2 1 2 ,  0

2 4 2 4

n n

c c y n n                     
       

 

Note: If 
1

2
  , then no coefficient cp satisfies  1 2 1pc    and we 

assume a particular solution of the form      1 2
np

py n c n . 

       1 2 2 1 0 1 1 1 2
np

p p p p pc n c c n c c y n n             ■ 
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4. General form of the particular solutions corresponding to some x(t) and x[n] 

x(t) Particular solution 

1 c 

tn 1
1 2 1

n n
n nc t c t c t c

     

eat 

 atce  if a is not a characteristic root. 

 1 2
at atc te c e  if a is a distinct characteristic root. 

 1 2
1 2

k at k at at
kc t e c t e c e     if a is a (k1)-multiple 

characteristic root. 

cos(at)    1 2cos sinc at c at  

sin(at)    1 2cos sinc at c at  

 

x[n] Particular solution 

1 c 

nk 1
1 2 1

k k
k kc n c n c n c

     

n  

 nc  if   is not a characteristic root. 

 1 2
n nc n c   if   is a distinct characteristic root. 

 1 2
1 2

k n k n n
kc n c n c       if   is a 

(k1)-multiple characteristic root. 

 cos n       1 2cos sinc n c n    

 

Example 30: 
       

2

2
7 6 6

d y t dy t
y t x t

dt dt
    

         
0

sin 2 ,  0 0,  0 0
t

d
x t t y y t y

dt 

     

Characteristic equation: 

  
   

2

1 2

6
1 2

7 6 0

1 6 0 1,  6
h t t

r r

r r r r

y t c e c e 
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    1 2

sin 2

sin 2 cos2p

x t t

y t p t p t



  


 

Substituting    py t  into the differential equation, we obtain 

1 2 1 2 1 24 sin 2 4 cos 2 14 cos 2 14 sin 2 6 sin 2 6 cos 2

6sin 2

p t p t p t p t p t p t

t

     


 

   
   

         
   

1 2 1 2 1 2

1 2 1 2

1 2 1

1 2 2

6
1 2

1 2

1 2

4 14 6 6 sin 2 4 14 6 cos2

2 14 6 sin 2 14 2 cos2 0

2 14 6 0 3 50

14 2 0 21 50

3 50sin 2 21 50cos2

0 0 and 0 0

21 50 0

6 6 50 0

h p t t

p p p t p p p t

p p t p p t

p p p

p p p

y t y t y t c e c e t t

y y

c c

c c

 

       

     

    
      

     

 

  
   



1 212 25,  3 50c c   


 

  612 25 3 50 3 50sin 2 21 50cos2t ty t e e t t         ■ 

Example 31:            22 1 1 ,  ,  0 1y n y n x n x n x n n y        

     
     
   

2

1 2

2 0 2

2

 1 2 1

nh

p

r r

y n c

x n n x n x n n

y n p n p

    

  

     

  


 

Substituting    py n  into the difference equation, we obtain 

 

   

   
 

1 2 1 2

1 2 1

1 2 1

1 1

2 1 2

2 1 2 1

3 3 2 2 1

3 2 3 2 1 0

3 2 0 2 3

3 2 1 0 1 9

2 2 3 1 9

0 1 8 9

n

p n p p n p n

p n p p n

p n p p

p p

p p p

y n c n

y c

       
    

     

   
      

    

  

 

   8 9 2 2 3 1 9
n

y n n             ■ 
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2-7 Characteristics of Systems Described by Differential or Difference Equations 

1. It’s informative to express the output of a system described by a differential 

or difference equation as the sum of two components: 

(1) One associated only with the initial conditions. 

 natural response (zero-input response),  ny  

(2) One associated only with the input signal.  forced response 

(zero-state response),  fy  

2. The natural response is the system output for zero input and thus describes 

the manner in which the system dissipates any stored energy or memory of 

the past represented by non-zero initial conditions. 

zero input 

         or h hy t y n  

 Choose the coefficient ci such that the initial conditions are satisfied. 

Example 32: RC circuit (same as Example 27) 

     d
y t RC y t x t

dt
  ,  1 ,  1 ,  and 0 2R C F y V     

           0 2 2 2 ,  0h n nt ty t ce y c y t e t            ■ 

 

Example 33: First-order recursive system (same as Example 29) 

         

       
1

1 1
1 ,  ,  1 8

2 4

1 1 1
8 2 2 ,  1    

4 4 4

n

n n
h n

y n y n x n u n y

y n c c c y n n

 



        
 

                  
     



 

 

3. The forced response is the system output due to the input signal assuming 

zero initial conditions. Thus, the forced response is of the same form as the 

complete solution of the differential or difference equation. 

zero initial conditions 

 “at rest”, no stored energy or memory in the system 

 System behavior is “forced” by the input. 

The forced response depends on the  py , which is valid only for times t > 

0 or n  0. 

Note: As before, we shall consider finding the forced response only for 

continuous-time systems and inputs that do not result in impulses on the 
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right-hand side of the differential equation, i.e.,    0 0y y  . 

Example 34: RC circuit (same as Example 27) 

         cos
d

y t RC y t x t t u t
dt

   , 1 ,  1R C F    

     1 1
cos sin ,  0

2 2
ty t ce t t t     

Assume that the system is initially at rest,  0 0 1 2y c    , 

       1 1 1
cos sin ,  0

2 2 2
f ty t e t t t           ■ 

 

Example 35: First-order recursive system (same as Example 29) 

       

     

 

1 1
1 ,  

2 4

1
0 0 1 1 0 1

4

1 1
2 1

2 4

n

n n

y n y n x n u n

y x y

y n c c

       
 

     

          
   

 

    1 1
2

2 4

n n
fy n         

   
         ■ 

 

4. The basic difference between impulse-response descriptions and 

differential- or difference-equation system descriptions: 

(1) Impulse response  no provision for initial conditions 

It applies only to systems that are initially at rest or when the input is 

know for all time. 

(2) Differential- and difference-equation system descriptions are more 

flexible in this respect, since they apply to systems either at rest or 

with nonzero initial conditions. 

5. Linearity and time-invariant 

(1) The forced response of an LTI system described by a differential or 

difference equation is linear with respect to the input. 

     
     

           1 1

1 2 1 2

2 2

f

f f

f

x t y t
x t x t y t y t

x t y t
   

    
 

 (83) 

(2) The natural response is linear with respect to the initial conditions: 
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         1 1

1 2 1 2

2 2

initial conditions 

initial conditions 

n

n n

n

I y t
I I t y t y t

I y t
   

    
 

 

(84) 

(3) Time invariant 

(a) The forced response is also time-invariant since the system is 

initially at rest. 

(b) The complete response of an LTI system described by a 

differential or difference equation is not time-invariant, since the 

initial conditions will result in an output term that does not shift 

with a time shift of the input. 

(4) The forced response is also causal since the system is initially at rest, 

i.e., the output does not begin prior to the time at which the input is 

applied to the system. 

6. Roots of the characteristic equation 

The roots of the characteristic equation afford considerable information 

about the LTI system behavior. 

(1) The forced response depends on both the input and the roots of the 

characteristic equation, since it involves both the homogeneous and 

particular solution. 

(2) The basic form of the natural response is dependent entirely on the 

roots of the characteristic equation. 

(3) The impulse response of an LTI system also depends on the roots of 

the characteristic equation, since it contains the same term as the 

natural response. 

(4) Stability 

For a BIBO stable LTI system, the output must be bounded for any 

set of initial condition. 

 The natural response of the system must be bounded. 

 Each term in the natural response must be bounded. 

(a) In discrete-time LTI systems, 

n
ir  is bounded or 1ir   for all i   (85) 

(b) In continuous-time LTI systems, 

ir te  is bounded or  Re 0ir     (86) 

 Re 0ir   means that the system is on the verge of instability. 



EE3610 Signals and Systems   Fall 2011 

 2-37

In a stable LTI system with zero input, the stored energy eventually 

dissipates and the output approaches zero. 

7. Response time 

(1) The natural response has decayed to zero. 

≡ The system behavior is governed only by the particular solution. 

≡ The transition of the system from its initial condition to an 

equilibrium condition determined by the input. 

(2) The response time of an LTI system to a transient is therefore 

proportional to 

  
max  for the discrete-time case

max Re  for the continuous-time case

i

i

r

r





   (87) 

 

2-8 Block-Diagram Representations of LTI Systems Described by Differential or 

Difference Equations 

1. Difference equation: 

Basic elements: 

(1) Adder  

(2) Multiplication by a coefficient  

(3) Unit delay 
 x n  1x n S

 

 

Example 36:      1y n ay n bx n    (initial rest) 

     1y n ay n bx n      

     ■ 
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Example 37:      0 1 1y n b x n b x n    

    ■ 

 

Example 38:        0 11 1y n ay n b x n b x n      (initial rest) 

       
     

   
0 1

0 1

1

1 1 1

w n b x n b x n

y n ay n b x n b x n ay n w n

  

          


 

 
 Interchange the order of cascade interconnection. 

      

     
     0 1

1

1

z n az n x n

y n b z n b z n

    


  
 

 

           

Requiring a single delay          ■ 
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Example 39:    
 

 
0 1

0

1 N N

k kk k

w n

y n b x n k a y n k
a  

 
     
  
 

 (initial rest) 

 
“Direct form I realization” (with 2N delay elements) 

 

“Direct form II realization” or “canonic realization” (N delay elements) 

Note: 

 The direct-form II realization requires much fewer delay elements 

than the direct-form I realization. 

 In fact, the direct-form II realization requires the minimum 

number of delay elements. 
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2. Differential equation: 

Basic elements: 

(1) Adder  

(2) Multiplication by a coefficient 
a x t  ax t

 

(3) Differentiator 
D x t

 dx t

dt  

     
0 1

0

1 k k
N N

k kk kk k

d x t d y t
y t b a

a dt dt 

    
  
    (88) 

The direct-form I and direct-form II realizations of the differential equation 

are the same as those of the difference equation except that the delay 

elements used in the realizations are replaced by differentiators. 

A differentiation element is often difficult to realize. Hence, we need some 

other realization method. Realization of the differential equation using 

integrators: 

Let 
     
         
                 

             

0

1

2 1

1 1

t

t

tk k k

y t y t

y t y t u t y d

y t y t u t u t y t u t y d d

y t y t u t y d



 

  

 



 

 





  

         

  



 




  (89) 

     
         
                 

             

0

1

2 1

1 1

t

t

tk k k

x t x t

x t x t u t x d

x t x t u t u t x t u t x d d

x t x t u t x d



 

  

 



 

 





  

         

  



 




  (90) 

   
0 0

k k
N N

k kk kk k

d y t d x t
a b

dt dt 
   (M = N here)   (91) 
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Assume initial rest, then the Nth integral of 
 k

k

d y t

dt
 is precisely    N ky t . 

(  The initial conditions for the integration are zero.) 

The Nth integral of 
 k

k

d x t

dt
 is precisely    N kx t . 

       
0 0

N NN k N k
k kk k

a y t b x t 

 
       (92) 

     

          
0

1

0 0

1 N NN k N k
k kk k

N

y t y t

y t b x t a y t
a

 

 



   



  (93) 

Let an integrator be expressed as 

 x t  
t

x d 
  

■ Figure 21. Pictorial representation of an integrator. 

 

Then the corresponding direct-form I and direct-form II realizations are 

illustrated as follows: 

Direct-form I realization: 

 

■ Figure 22. Direct form I realization for the LTI system described by Eq. 

(93). 
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Direct-form II realization: 

 

■ Figure 23. Direct form II realization for the LTI system described by Eq. 

(93). 

 

2-9 State-Variable Descriptions of LTI Systems 

1. The state of a system may be defined as a minimal set of signals that 

represent the system’s entire memory of the past. That is, given only the 

value of the state at an initial point in time, ni(or ti), and the input for times 

in n (or t  ti), we can determine the output for all times n  ni (or t  ti). 

2. A general state-variable description with the direct form II implementation of 

a second-order LTI system is first considered. Using 

(1) the input for in n  and 

(2) outputs of the time-shift operation labeled  1q n  and  2q n  at in n  

to determine the output of the system for in n . 
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 1 1q n  1 1q n 

 

■ Figure 24. Direct form II representation of a second-order discrete-time 

LTI system depicting state variables q1[n] and q2[n]. 

 

From Fig. 24, the next value of the state, q1[n+1] and q2[n+1], are obtained 

from the current state and the input via the two equations 

       
   

1 1 1 2 2

2 1

1

1

q n a q n a q n x n

q n q n

     


 
    (94) 

           
         

1 1 2 2 1 1 2 2

1 1 1 2 2 2

y n x n a q n a q n b q n b q n

b a q n b a q n x n

    


    
   (95) 

 
 

 
   1 11 2

2 2

1 1

1 1 0 0

q n q na a
x n

q n q n

        
              

   (96) 

     1n n x n   q Aq b      (97) 

     
       1

1 1 2 2
2

q n
y n b a b a x n n Dx n

q n

 
      

 
cq    (98) 

where  1 2
1 1 2 2

1
,  ,  ,  and 1

1 0 0

a a
b a b a D

    
        
   

A b c . 

Equations (97) and (98) are the general form of a state-variable description 

corresponding to a discrete-time system. 

3. If the input-output characteristics of the system are described by an 

Nth-order difference equation, then  nq  is N  1, b is N  1, A is N  N, 

and c is 1  N. 

 

 

 



EE3610 Signals and Systems   Fall 2011 

 2-44

Example 40: State-variable description of a second-order system 

 

     
       

     

   
   

1 1 1

2 1 2 2

1 1 2 2

1 1
1 2

2 2

1

1

0
,  ,  ,  ,  and 0 

q n q n x n

q n q n q n x n

y n q n q n

q n
n D

q n

 

  

 


 

 

   


   
 

    
        

    
q A b c 

 

 

4. The state-variable description of continuous-time system is analogous to that 

of discrete-time systems, with the exception that the state equation given by 

(97) and (98) is expressed in terms of a derivative 

     d
t t x t

dt
 q Aq b      (99) 

and      y t t Dx t cq      (100) 

Example 41: State-variable description of an electrical circuit 

 

           1 1 1
1 1

1 1
x t y t R q t y t q t x t

R R
       

Let  2i t  be the current through R2, 

           1 2 2 2 2 1 2
2 2

1 1
q t R i t q t i t q t q t

R R
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2 2 2

2 1 2
2 2 2 2

1 1

d
i t C q t

dt
d

q t q t q t
dt R C R C



  



 

We need a state equation for  1q t . Let  1i t  be the current through 

C1, we have      1 2y t i t i t   and    1 1 1

d
i t C q t

dt
 . 

       

       

1 1 1 2 2
1 1

1 1 2
1 1 2 1 2 1 1 1

1 1

1 1 1 1

d d
q t x t C q t C q t

R R dt dt

d
q t q t q t x t

dt R C R C R C R C

   

 
      

 

 

1 1 2 1 2 1
1 1

1

2 2 2 2

1

1 1 1
1

1
,  ,  0 ,

1 1
0

1
and 

R C R C R C
R C

R

R C R C

D
R

  
                        
  



A b c

 

■ 

 

In a block diagram representation of a continuous-time system, the 

state-variable correspond to the outputs of the integrators. 

Example 42: State-variable description from a block diagram 

 

       

   

     

 

1 1 2

2 1

1 2

2

3

2 1 1
,  ,  3 1 ,  and 0

1 0 0

d
q t q t q t x t

dt
d

q t q t
dt
y t q t q t

D

  



 

   
       

   
A b c

 

■ 
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5. Transformations of the state 

(1) There is no unique state-variable description of a system with a given 

input-output characteristic. Different state-variable descriptions may 

be obtained by transforming the state-variables. 

Example 43: Consider Example 42 again 

Let    1 2q t q t   and    2 1q t q t  , 

 0 1 0
,  ,  1 3 ,  and 0

1 2 1
D

               
A b c .    ■ 

 

We may define T as the state-transformation matrix, then the new 

state vector 
 q Tq       (101) 

where T must be a nonsingular matrix, i.e., 1T  exists and 

1 q T q . 

The original state-variable description is given by 
x

y Dx

 
 

q Aq b

cq


      (102) 

where q  denotes differentiation in continuous time or time advance 

([n+1]) in discrete time. 

1

1

x x x

y Dx Dx D x





          

        

q Tq TAq Tb TAT q Tb A q b

cq cT q c q

 
 (103) 

where 1 1,  ,  ,  and D D       A TAT b Tb c cT . 

 

Example 44: Transforming the state 

 1 4 21 1
,  ,  1 1 ,  and 2

4 1 410 2
D

   
         

A b c . Find A , b , 

c , and D  corresponding to the new states 

     

     

1 1 2

2 1 2

1 1

2 2
1 1

2 2

q n q n q n

q n q n q n
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1

1 1

1 11
,  det 0  nonsingular

1 12

1 1

1 1

1 2 0 1
,  ,  0 1 ,

0 3 10 3

and 2.D



 

 
   

 
 

   
 

              
   



T T

T

A TAT b Tb c cT

 

Note: A  is a diagonal matrix and thus separates the state update 

into the two decoupled first-order difference equations 

     

     

1 1

2 2

1
1

2
3

1 3
10

q n q n x n

q n q n x n

    

   


 

■ 

 

(2) Both the block diagram and state-variable descriptions represent the 

internal structure of an LTI system. Advantages of the state-variable 

descriptions: 

(a) Powerful tool from linear algebra may be used to systematically 

study and design the internal structure of the system. 

(b) Transform the internal structure without changing the 

input-output characteristics of the system is used to optimize 

some performance criteria by transformation not directly related 

to input-output behavior. 
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Appendix 
Characteristic Equations of Differential and Difference Equations 

 

1. Differential equation 

   
0 0

k k
N M

k kk kk k

d y t d x t
a b

dt dt 
      (A1) 

Characteristic equation: 

1
1 1 0 0N N

N Na r a r a r a
         (A2) 

The roots of the characteristic equation, 1 2,  , ,  Nr r r , are called the characteristic 

roots of the differential equation. 

Note: 

 When the characteristic roots are all distinct, the homogeneous solution 
   hy t  will be 

    1 2
1 2

Nh r tr t r t
Ny t c e c e c e        (A3) 

 Suppose that 1r  is a k-multiple root of the characteristic equation. Then, 

corresponding to 1r , there will be k terms in the homogeneous solution: 

1 1 1 11 2
1 2 1

r t r t r t r tk k
k kc t e c t e c te c e 
        (A4) 

Example A1: 
         

3 2

3 2
7 16 12

d y t d y t dy t
y t x t

dt dt dt
     

Characteristic equation: 

     

3 2

2 2 2 3
1 2 3

7 16 12 0

2 3 0 t t t
h

r r r

r r y t c te c e c e  

   

      
     ■ 

 

2.  Difference equation 

   
0 0

N M

k kk k
a y n k b x n k

 
         (A5) 

Characteristic equation: 

1
0 1 1 0N N

N Na r a r a r a
          (A6) 

The roots of the characteristic equation, 1 2,  , ,  Nr r r , are called the characteristic 
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roots of the difference equation. 

Note: 

 When 1 2,  , , Nr r r  are all distinct , the homogeneous solution    hy n  will 

be 

    1 1 2 2
h n n n

N Ny n c r c r c r        (A7) 

 When the characteristic equation contains multiple roots, the homogeneous 

solution of a difference equation will be of slightly different form. 

Specifically, let 1r  be a k-multiple characteristic root; then its 

corresponding terms in the homogeneous solution are 

1 2
1 1 2 1 1 1 1

k n k n n n
k kc n r c n r c nr c r 
        (A8) 

Example A2:          6 1 12 1 8 3y n y n y n y n x n        

Characteristic equation: 

 
      

3 2

3

2
1 2 3

6 12 8 0

2 0 2, 2, 2

2
nh

r r r

r r

y n c n c n c

   

      

    

 

■ 
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