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Chapter 1  Introduction 
 

1-1 Signals  

1. Information in a signal is contained in a pattern of variations of some form. 

Example 1: The human vocal mechanism produces speech by creating 

fluctuations in acoustic pressure. 

 
■ Figure 1. Example of a recording of speech [1]. 

 

Example 2: Monochromatic picture: variation in brightness. 

 

■ Figure 2. A monochromatic picture [1]. 

 

2. Signals are represented mathematically as functions of one or more 

independent variables that convey information on the nature of a physical 

phenomenon. 

Example 3: Speech signal  acoustic pressure: a function of time 

(one-dimensional). 
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Example 4: Picture  brightness: a function of two spatial variables 

(two-dimensional). 

Note: For convenience, we will generally refer to the independent variable as 

time, although it may not in fact represent time in specific applications. 

3. Classification of signals 

Five methods of classifying signals, based on different features, are common: 

(1) Continuous-time and discrete-time signals 

(a) A signal x(t) is said to be a continuous-time signal if it is defined 

for all time t. The amplitude or value varies continuously with 

time, e.g., speech signal. 

(b) A discrete-time signal is defined only at discrete instants of time. 

Thus, the independent variable has discrete values only, which are 

usually uniformly spaced, e.g., stock market index x[n]. 

 

■ Figure 3. An example of a discrete-time signal: the weekly 

Dow-Jones stock market index from January 5, 1929 to January 4, 

1930 [1]. 

 

(c) Digital signal: discrete-time and discrete-state signal 

(d) Analog signal: continuous-time and continuous-state signal 

Note: 

 If the signal amplitude is continuous, the signal is called 

“continuous-state” signal; otherwise, it is called “discrete-state” 

signal. 

 A discrete-time signal is often referred to as a discrete-time 

sequence. 

 continuous-time signal sampling  discrete-time signal 

(2) Even and odd signals 

(a) Even: x(t) = x(t) for all t  symmetric about vertical axis 
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(b) Odd: x(t) = x(t) for all t  anti-symmetric about vertical axis 

Example 5: 

 
sin ,

,otherwise
0

t
T t T

x t T

         


 

   sin sin
t t

x t x t
T T

             
   

 odd signal 

■ 

(c) Any signal can be broken into a sum of an odd signal and an even 

signal 

     e ox t x t x t        (1) 

where  ex t  and  ox t  mean even and odd signals, 

respectively. 

   e ex t x t   and    o ox t x t    

         e o e ox t x t x t x t x t         

     1

2ex t x t x t       and      1

2ox t x t x t        (2) 

Example 6: 

   
     

2

2 2

cos

cos cos

t

t t

x t e t

x t e t e t



   
 

         

     

2 21
cos cos cosh 2 cos

2
sinh 2 cos

t t
e

o

x t e t e t t t

x t t t

      
  

 

■ 

(d) A complex-valued signal x(t) is said to be conjugate symmetric if 

   x t x t        (3) 

     
     

       ,  

even odd

x t a t jb t

a t jb t x t

a t a t b t b t



    


  

     
 

    (4) 
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(3) Periodic signals and non-periodic signals 

(a) Periodic signal: x(t+T) = x(t) for all t  

where T is a positive constant. 0 0 0,  2 ,  3 ,T T T T   

 T=T0 : fundamental period 

 1/T : fundamental frequency, f = 1/T  Hz or cycles/sec 

 2 2f T    : angular frequency (radians/sec) 

Note: x(t) is a constant 

(1) The fundamental period is undefined. 

(2) The fundamental frequency is defined to be zero. 

(b) x[n] = x[n+N] for integer n  

where N is a positive integer. 

 fundamental period: smallest N samples 

 fundamental angular frequency: 2 N   (radians/sample) 

(4) Deterministic signals and random signals 

(a) A deterministic signal is a signal about which there is no 

uncertainty with respect to its value at any time. 

(b) A random signal is a signal about which there is uncertainty before 

it occurs. 

(5) Energy signals and power signals 

(a) The instantaneous power dissipated in the resistor R is defined by 

     
   

2 2

2 2 ,  1 ohm

p t v t R i t R

v t i t R

  

  
   (5) 

We may express the instantaneous power of the signal as  

   2p t x t       (6) 

the total energy of the non-periodic continuous-time signal x(t) as 

   
2 2 2

2
lim

T

TT
E x t dt x t dt



 
       (7) 

and its time-averaged, or average, power as 

 

 

2 2

2

2 2

2

1
lim

1
( , for periodic signal)

T

TT

T

T

P x t dt
T

x t dt
T












  (8) 

P  means root mean-squared (rms) value of the periodic signal 
x(t). 

(b) For non-periodic discrete-time signal, the total energy of x[n] is 

defined by 
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 2

n
E x n




       (9) 

and its average power is defined by 

 

 

2

1

1 2

0

1
lim

2
1

( , for periodic signals)

N

n NN

N

n

P x n
N

x n
N

 












    (10) 

(c) A signal is referred to as an energy signal if and only if the total 

energy of the signal satisfies the condition 

0 E        (11) 

A signal is referred to as a power signal if and only if the average 

power of the signal satisfies the condition 

0 P        (12) 

(d) Energy signal has zero time-average power and power signal has 

infinite energy. They are mutually exclusive. 

Note: 

 Periodic signals and random signals are usually viewed as power 

signals, whereas signals that are both deterministic and 

non-periodic are usually viewed as energy signals. 

 Signals that satisfy neither property are referred to as neither 

energy signals nor power signals [3]. 

 

1-2 Basic Operations on Signals 

1. Operations performed on dependent variables 

(1) Amplitude scaling 

   y t cx t        (13) 

where c is a scaling factor. 

   y n cx n        (14) 

(2) Addition, e.g., mixer 

     1 2y t x t x t       (15) 

     1 2y n x n x n       (16) 

(3) Multiplication, e.g., amplitude modulation (AM) radio signal 

     1 2y t x t x t       (17) 



EE3610 Signals and Systems   Fall 2011 

 1-6

     1 2y n x n x n       (18) 

(4) Differentiation:  d
x t

dt
, e.g., inductor,    d

v t L i t
dt

 . 

(5) Integration:    
t

y t x d 


  , e.g., capacitor,    1 t
v t i d

C
 


  . 

2. Operations performed on the independent variable 

(1) Time scaling: 

   y t x at        (19) 

   
   

1  is a compressed version of .

0 1  is an expanded (stretched) version of .

a y t x t

a y t x t

  


  
 

   ,  0y n x kn k        (20) 

k > 1  some values of x[n] are lost. 

(2) Reflection: 

   y t x t         (21) 

y(t) represents a reflected version of x(t) about t = 0. An even signal is 

the same as its reflected version. An odd signal is the negative of its 

reflected version. 

(3) Time shifting: 

   0y t x t t        (22) 

   
   

0

0

0  is obtained by shifting  toward the right.

0  is obtained by shifting  toward the left.

t y t x t

t y t x t

  


 
 

   y n x n m        (23) 

where the shift m must be a positive or negative integer. 

3. Precedence rule for time shifting and time scaling 

Let y(t) is derived from another signal x(t) through a combination of time 

shifting and time scaling; that is, 

   y t x at b       (24) 

To obtain y(t) from x(t), the time-shifting and time-scaling operations must 

be performed in the correct order: time-shifting  time-scaling 
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(1) The time-shifting operation always replaces t by tb. 

(2) The scaling operation always replaces t by at. 

   
     

v t x t b

y t v at x at b

 

  
     (25) 

Example 7:    2 3y t x t   

Time scaling  time shifting:         3 2 3 2 3y t v t x t x t       

 x t

t

 2x t

t

1
3

2


1
2

2


 y t

1 1/ 2 1/ 2 3 2 1 01

1 1 1

 

Time shifting  time scaling:      2 2 3y t v t x t    

 x t

t

   3v t x t     2y t v t

1

1 123 2 11

1 1

4 00
  ■ 

 

1-3 Basic Continuous-Time Signals 

1. Complex exponential signal 

     atx t Be        (26) 

Sinusoidal signal 

   cos  x t A t         (27) 

(1) B and a are real  real exponential signal 

growing B 0a 
t

0

( )x t ( )x t

B 0a 
t

0

decaying

(a) (b)

 

■ Figure 4. Continuous-time real exponential   atx t Be : (a) a > 0; 

(b) a < 0 [1]. 
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Example 8: The operation of the capacitor for t  0 

    0
d

RC v t v t
dt

   

   d
i t C v t

dt


 v t
C

R



  

  0
t RCv t V e   

where V0 denotes the initial value of the voltage developed across the 

capacitor.             ■ 

 

(2) B is real and a is pure imaginary  periodic complex exponential 

  0j tx t Be  : periodic     (28) 

 00 0 0j t Tj t j t j Te e e e          (29) 

0 1j Te     the fundamental period is 0
0

2
T




  

Euler’s relation:  

0
0 0cos sinj te t j t          (30) 

     0

0 0cos sinj te t j t              (31) 

     0

0 0cos sinj te t j t               (32) 

     0 0

0

1
cos

2
j t j tt e e             or     0

0cos Re j tt e       

(33) 

where Re   denotes the real part of the complex quantity enclosed 

inside the braces. 

   0
0cos Re ,  j t jA t Be B Ae         (34) 

Note: 

 Fundamental period = T0  

 Fundamental frequency = 0 02 T   

 The fundamental frequency of a constant signal is zero. 

 Harmonically related complex exponentials: 

  0 , 0, 1, 2,jk t
k t e k          (35) 
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k = 0  k  is a constant 

k  0  k  is periodic with fundamental period  02 k   or 

fundamental frequency 0k  . 

 k t  has a common period of 02  . 

 

   Example 9: 

   
2

2
0

d
LC v t v t

dt
   

   d
i t C v t

dt


 v t C


  

       0 0cos ,  0v t V t t    

where 0 1 LC   is the natural angular frequency of 

oscillation of the circuit.         ■ 

 

(3) B is complex and a is complex: general complex exponential function 

jB B e   and 0a r j       (36) 

   

   
   

0 0

0 0

0 0

cos sin

cos cos 2

r j t j tat j rt

rt rt

rt rt

Be B e e B e e

B e t j B e t

B e t j B e t

  

   

    

   

   

    

  (37) 

r = 0  the real and imaginary parts are sinusoidal. 

r > 0  the real and imaginary parts are sinusoidal signals multiplied 

by a growing exponential. 

r < 0  the real and imaginary parts are sinusoidal signals multiplied 

by a decaying exponential. 

2. The continuous-time unit-step function 

 

 

0, 0

1, 0

0,  undefined

t
u t

t

t


  



     (38) 
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( )u t

0 t

1

 
■ Figure 5. Continuous-time version of the unit-step function of unit 

amplitude. 

 

Example 10: Rectangular pulse 

 

     

,0 0.5

, 0.50

0.5 0.5

tA
x t

t

x t Au t Au t

 
  
   

       

■ 

Example 11: RC circuit 


0

DC voltage

source V

0t 
R

C
0 ( )V u t

 v t


C
R

 

 
 

     0

0

0 0
1 t RC

v
v t V e u t

v V


   
  

 

        ■ 

3. The continuous-time unit impulse function 

(1) The continuous-time version of the unit impulse is defined by the 

following pair of relations: 

   0 for 0 and 1t t t dt 



      (39) 

The impulse  t  is also referred to as the Dirac delta function. 

(2) The impulse and the unit-step function are related to each other in that 

if we are given either one, we can uniquely determine the other. 

     
t

t u t d   


       (40) 

   du t
t

dt
   (in a restricted sense)   (41) 

u(t) is discontinuous at t = 0.  not differentiable at t = 0 
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2

 u t

2

1 

   du t
x t

dt


 

2 2

1

"unity area"

(a) (b)

t t

 

■ Figure 6. (a) Continuous approximation to the unit step; (b) 

derivative of  u t  [1]. 

 

    
0

limt x t 
          (42) 

 t  k t

1

0
(a) (b)

0

k

t t

 

■ Figure 7. (a) Unit impulse; (b) scaled impulse [1]. 

 

“The height of the arrow used to depict the scaled impulse will be 

chosen to be representative of its area.” 

 

Example 12: RC circuit (continued) 


0

DC voltage

source V

0t 
R

C
0 ( )V u t

 v t


C
R

 
   

     

0

0

v t V u t

d
i t C v t CV t

dt




  



          

■ 

(3) Graphical interpretation of  

   
t

u t d  


        (43) 

Alternative interpretation: 

   
 

    
0

0

t

t d d
u t d t d t d

   
        



    
         (44) 
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  



 0 0t u t  

  



 0 1t u t  

Interval of integration

(a)

(b)

Interval of integration

t

t

0

0
 

■ Figure 8. Running integral given in (43): (a) t < 0; (b) t > 0. 

 

 t 



 0 0t u t  

 t 



 0 1t u t  

Interval of integration

t 0 (a)

Interval of integration

t(b)
0

 

■ Figure 9. Relationship given in (44): (a) t < 0; (b) t > 0. 

 

(4) Product of  x t  and  t  

             
       

       

1 0

0 0 0

0  and lim

0

x t x t x t x x t x t t

x t t x t

x t t t x t t t



 

 

  
  

 

  

  (45) 

“equivalence property” 

2

 x t
 x t

t

2
 

■ Figure 10. The product    x t x t  [1]. 

(5)      0 0x t t t dt x t



   
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   0 0t t dt x t




        , “sifting property”     (46) 

It is assumed that x(t) is continuous at time 0t t . 

 

(6) Time-scaling property: 

   1
at t

a
        (47) 

   
0

1
lim x at t

a


       (48) 

 

1 
 x t

a

 x at

area 1 a

a 
 ax at



0 0

1 

a

0

 

■ Figure 11. Steps involved in proving the time-scaling property of 

the unit impulse. 

 

4. Ramp function 

The integral of the step function u(t) is a ramp function of unit slope. The 

ramp function is defined as 

   ,  0

0 , 0

t t
r t tu t

t


  

     (49) 

 

Example 13: Parallel circuit 

   

     

   

0

0
0

0 0

0 ,  01 1

, 0

t t

i t I u t

t
v t i d I u d

I t C tC C

I I
tu t r t

C C

   
 




    

 

   
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 i t  i t



 0I u t
0

DC current

source I

Switch is open

at 0.t 

C

 v t



 v t



C

Switch is open

at 0.t   ■ 

1-4 Basic Discrete-Time Signals 

1. Discrete-time unit step sequence 

  0, 0

1, 0

n
u n

n


  

     (50) 

 u n

n
0

1

 
■ Figure 12. Discrete-time version of step function of unit amplitude. 

 

2. Discrete-time unit impulse (or unit sample) 

 

  0, 0

1, 0

n
n

n



  

      (51) 

 n

0

n

1

 

■ Figure 13. Discrete-time form of the unit impulse. 

 

       0x n n x n            (52) 

     1n u n u n              (53) 

   n

m
u n m


             (54) 

or    
0k

u n n k


            (55) 
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 m
  0u n 

 m   1u n 

0n 

m

m

(a)

(b)

0n 

 
■ Figure 14. Running sum of (54): (a) n < 0; (b) n > 0 [1]. 

 

3. Discrete-time ramp function 

   ,  0

0,  0

n n
r n nu n

n


  

     (56) 

 r n

1 2 3 4

1
2

3
4

0

n

 
■ Figure 15. Discrete-time version of the ramp function. 

 

4. Discrete-time complex exponential signals 

   ,   may be any complex number.n nx n Br Be r e      (57) 

sinusoidal signals 

   cosx n A n         (58) 

(1) B and r are real 

1r    the signal grows exponentially with n. 

1r  1r  

(a)

(b)

 

■ Figure 16.   nx n Br : (a) r > 1; (b) r < 1 [1]. 
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1r    the signal decays exponentially with n. 

0 1r 
1 0r  

(a)

(b)
 

■ Figure 17.   nx n Br : (a) 0 < r < 1; (b) 1 < r < 0 [1]. 

(2)  is pure imaginary 

  0
0 0cos sinj nx n e n j n         (59) 

  0 0
0cos

2 2
j n j nj jA A

A n e e e e           (60) 

Both 0  and  have units of radians. 

Examples of sinusoidal sequences: 

 
■ Figure 18. Discrete-time sinusoidal signals [1]. 
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(3) General complex exponential 

   

0

0 0

,

cos sin

jj

n nn

B B e r r e

Br B r n j B r n



 

 

     
   (61) 

 

■ Figure 19. (a) Growing discrete-time sinusoidal signal, |r| > 1; (b) 

decaying discrete-time sinusoid, |r| < 1 [1]. 

 

(4) Periodicity properties of discrete-time complex exponentials 

Continuous-time 0j te   

(a) The larger the magnitude of 0, the higher the rate of oscillation in 

the signal. 

(b) 0j te   is periodic for any value of 0. 

Discrete-time 0j ne   

(a)  0 0 02 2j n j n j nj ne e e e              (62) 
 The signal with frequency 0  is identical to the signals with 

frequencies  0 2  ,  0 4  , and so on. 

 We only need to consider an interval of 2  in which to 

choose 0 . ( 00 2    or 0     ) 

 The signal 0j ne   does not have a continually increasing rate 
of oscillation as 0  is increasing in magnitude. 

0  : signal with increasing rates of oscillation 

2  : signal with decreasing rates of oscillation 
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
20



( )jH e 

 
■ Figure 20. The magnitude of ( )jH e   from 0   to 2   radians. 

(b)  0 0 0 0
01 2

2
j n N j n j N m

e e e N m
N




    
         (63) 

The signal 0j ne   is periodic with period N only if 0 2  is a 

rational number. (For example, Fig. 18(a) and (b) are periodic, T = 

12 and 31. Fig. 18(c) is not periodic.) 

 If x[n] is periodic with fundamental period N, its fundamental 

frequency is 2 N  (radians/sample). 

 N: the number of samples contained in a single cycle of x[n]. 

 If N and m have no factors in common then the fundamental 

period of x[n] is N. 

 02

N m

 
  and 

0

2
N m


 


 

 Constant discrete-time signal: fundamental frequency = 0; 

fundamental period = undefined. 

 

Example 14: Discrete-time sinusoidal signals 

A pair of sinusoidal signals with a common angular 

frequency is defined by    1 sin 5x n n  and 

   2 3 cos 5x n n . Find their fundamental period and 

express the composite sinusoidal signal 

     1 2y n x n x n  . 

5  rad/sample 2 2 5N m m        

For  1x n  and  2x n  to be period, N must be an integer. 

This can be so only for m = 5, 10, 15,…, which results in N = 

2, 4, 6,…. 
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     

   

   

sin 5 3 cos 5

1 3
1 3 sin 5 cos 5

2 2

2 sin 5 cos cos 5 sin
3 3

2sin 5
3

y n n n

n n

n n

n

 

 

  



 

 
   

 
             

   
 

 

■ 

 

(c) Differences between the signals 0j te   and 0j ne  . 
0j te   0j ne   

Distinct signals for distinct 

values of 0  

Identical signals for exponentials 

at frequencies separated by 2 

Periodic for any choice of 0
Periodic only if 0

2
m

N


   ,  

N > 0. m and N are integers. 

Fundamental frequency 0  

Fundamental frequency 0 2

m N




(m and N have no factors in 

common.) 

Fundamental period 

0 0  : undefined 

0 0  : 
0

2


 

Fundamental period 

0 0  : undefined 

0 0  : 
0

2
N m


 


 

 

(d) Harmonically related periodic exponentials 

 2[ ] , 0, 1,jk N n
k n e k         (64) 

    2 22[ ] [ ]j k N N n jk N nj n
k N kn e e e n  
       (65) 

There are only N distinct periodic exponentials in the set given in 

the above equation. 

(e) Discrete-time signal obtained by taking samples of 

continuous-time signal. 

   00
0 0

j T nj nTx n e e T        (66) 

x[n] is periodic only if 0 2T   is a rational number. 
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Similarly, 

   cos 2x t t      (67) 

       0

0

cos 2 cos

2

x n x nT nT n

T





   

 
   (68) 

Example 15: 

Fig. 18(a): 0 01 12 6 2 1 12 12T N         

Fig. 18(b): 0 04 31 8 31 2 4 31 31T N         

Fig. 18(c): 0 01 12 1 6 2 1 12T           ■ 

1-5 Systems 

1. A system can be viewed as any process that results in the transformation of 

signals 

Input OutputSystem

(a)  

Input OutputH

(b)  

■ Figure 21. (a) Block diagram of a system; (b) representation of operator H. 

 

(1) Continuous-time system: continuous-time input, continuous-time 

output 

   x t y t ,     y t H x t     (69) 

(2) Discrete-time system: discrete-time input, discrete-time output 

   x n y n ,     y n H x n     (70) 

Example 16: Moving-average (MA) system 

        1
1 2

3
y n x n x n x n      

y[n] is the average of the sample values x[n], x[n1], and x[n2]. 

The value of y[n] changes as n moves along the discrete-time axis. 

Let the operator Sk denote a system that shifts the input x[n] by k 

time units to produce an output equal to x[nk]. Accordingly, we 

may define the overall operator for the moving average system is 

 21
1

3
H S S    
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 ■ 

2. Interconnection of systems: 

(1) Series interconnection (or cascade interconnection) 

Input OutputSystem 1 System 2
 

■ Figure 22. Series (cascade) interconnection [1]. 

(2) Parallel interconnection 

System 1

System 2

Input Output

 
■ Figure 23. Parallel interconnection [1]. 

 

(3) Series/parallel interconnection 

System 1 System 2

System 3

OutputInput

 
■ Figure 24. Series/parallel interconnection [1]. 

 

Example 17:       222 5y n x n x n   

 x n
 y n

Multiply by 2

Square

Square

Multiply by 5





■ 

Viewing a complex system in the above manner is often useful in 

facilitating the analysis of the properties of the system. 

(4) Feedback interconnection 



EE3610 Signals and Systems   Fall 2011 

 1-22

OutputInput System 1

System 2
 

■ Figure 25. Feedback interconnection [1]. 

 

3. Properties of systems 

(1) Systems with or without memory 

(a) Memoryless system: the output at a given time is dependent only 

on the input at the same time. 

(b) System with memory: the output at a given time is dependent on 

the inputs at some previous and/or future time instants other than 

(or in addition to) the input at the same time. 

Example 18: 

    
k

y n x k



  and    1y t x t   have memory. 

 A resistor is memoryless because of    i t v t R . 

 An inductor has memory because of    1 t
i t v d

L
 


  . 

 The MA system         1
1 2

3
y n x n x n x n      has 

memory. 

    2y n x n  is memoryless.        ■ 

 

(2) Invertibility 

A system is said to be invertible if distinct inputs lead to distinct 

outputs. That is, there must be a one-to-one mapping between input 

and output signals for a system to be invertible. 

 Observing the system output, we can determine the system input. 

 x t  y t    z t x tSystem

H

Inverse

System
invH  

■ Figure 26. The notion of system invertibility. 

         inv inv invH y t H H x t H H x t    (71) 

For this output signal to equal the original input x(t), we require that 
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invH H I       (72) 

where I denotes the identity operator. 

Example 19:    n

k
y n x k


  (invertible system) 

The difference between two successive values of the output is 

precisely the last input value. 

       1z n y n y n x n     

   n

k
y n x k


      1z n y n y n  

 x n    z n x n

 y n

 ■ 

 

Example 20:    2y t x t         or x t y t y t   

 a non-invertible system        ■ 

 

Example 21:       0
0

ty t x t t S x t    

            0 0 0 0 0t t t t tS y t S S x t S S x t I x t      

The inverse of the system is a time shift –t0.     ■ 

 

(3) Causality 

A system is causal if the output at any time depends only on values of 

the input at the present time and in the past. 

 often referred to as non-anticipative 

 If two inputs to a causal system are identical up to some time t0 or 

n0, the corresponding outputs must also be equal up to this same 

time. 

Example 22: 

     
   

1

1

y n x n x n

y t x t

   


  
 noncausal; 

   
   1

n

k
y n x k

y t x t


 


  


causal 

■ 

 

 All memoryless systems are causal. (True) 

All systems with memory are causal. (False) 
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 Causality is not of fundamental importance in some applications, 

such as image processing, in which the independent variable is 

not time. 

 The important point to note here is that causality is required for a 

system to be capable of operating in real time. 

Example 23: The MA system,         1
1 2

3
y n x n x n x n     , is 

causal. By contrast, the MA system described by  1
1

3
x n      

   1x n x n   is noncausal.         ■ 

 

(4) Stability 

Bounded input  bounded output (BIBO): “stable system” 

Bounded input  unbounded output (the magnitude grows without 

bound): “unstable system” 

The operator H is BIBO stable if the output signal y(t) satisfies the 

condition 

  for all yy t M t        (73) 

whenever the input signals x(t) satisfy the condition 

  for all xx t M t        (74) 

Both Mx and My represent some finite positive numbers. 

 

Example 24:         1
1 2

3
y n x n x n x n      

        

      
 

1
1 2

3
1

1 2
3
1

3 x x x x

y n x n x n x n

x n x n x n

M M M M

    

    

   

 

MA system is stable.          ■ 

 

Example 25:    1

2 1

M

k M
y n x n k

M 
 

   

x[n] is bounded.  y[n] is bounded.  “stable system”   ■ 
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   Example 26:    ,  1ny n r x n r   

         1ny n r x n r          ■ 

 

Example 27:        1
n

k
y n u k n u n


    

       0 1,  1 2,  2 3, ,y y y y n     grows without bound. 

 “unstable system”          ■ 

(5) Time invariance 

A system is time invariant if a time shift in the input signal causes an 

identical time shift in the output signal. Put another way, the 

characteristics of a time-invariant system do not change with time. 

Otherwise, the system is said to be time variant. 

   
   0 0

x t y t

x t t y t t



  
     (75) 

Example 28:     siny t x t  

         1 1 1 0 1 0sin siny t x t y t t x t t      

Let    2 1 0x t x t t  , 

         2 2 1 0 1 0sin siny t x t x t t y t t     , “time invariant” ■ 

 

Example 29:    y n nx n  

         1 1 1 0 0 1 0y n nx n y n n n n x n n       

Let    2 1 0x n x n n  ,        2 2 1 0 1 0y n nx n nx n n y n n      

“time-varying”           ■ 

   Example 30: Inductor 
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     

   

       

0

0 0

1 1

1 0 1

2 1 0 1 1 0

1

1

1 1

t

t t

tt t t

y t i t x d
L

y t t x d
L

y t x t d x d y t t
L L

 

 

 

   







  

 

 

 

     





 

 

“time invariant”           ■ 

 

Example 31: Thermistor 

A thermistor,      1 1y t x t R t , has a resistance that varies with 

time due to temperature changes. 

     
     

2 1 0

1 0 1 0 0

y t x t t R t

y t t x t t R t t

 

   
 

In general,    0R t R t t   for 0 0t  .    1 0 2y t t y t   for 

0 0t  .            ■ 

 

(6) Linearity 

A linear system is one that possesses the two important properties of 

superposition and homogeneity. That is, if input consists of the 

weighted sum of several signals, then the output is simply the 

superposition, that is, the weighted sum, of the responses of the system 

to each of those signals. 

Additivity property: 

    
    
        

1 1

2 2

1 2 1 2 "additivity property"

y t H x t

y t H x t

y t y t H x t x t





  

 (76) 

Then for a system to be linear, it’s necessary that the composite input 

   1 2x t x t  produce the corresponding output    1 2y t y t . 

Homogeneity or scaling property:  

    
        1 2 1 2

                                        

Superposition Principle: 

ay t H ax t

ay t by t H ax t bx t



  
     (77) 

In general,     1 1

N N

i i i ii i
a y t a H x t

 
  . 
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When a system violates either the principle of superposition or the 

property of homogeneity, the system is said to be nonlinear. 

 Linear systems have zero output when the input is zero. From the 

scaling property, 

       1 2 1 2ax t x t ay t y t      (78) 

Let a = 0, then  2 0x t   and  2 0y t  . 

 An incrementally linear system is one that responds linearly to 

changes in the input 

 

Example 32:     2 3y n x n   

   0 3 0x n y n    , “not linear” 

             1 2 1 2 1 22 3 2 3 2y n y n x n x n x n x n      

“incrementally linear”        ■ 

 

 An incrementally linear system can be visualized as follows: 

 

 0y t

 y t x t
Linear

system
 

■ Figure 27. Structure of an incrementally linear system [1]. 

 

y0(t) is the zero-input response of the overall system. 

 

 Example 33:    y n nx n  is linear. 

   
   
       

1

1 1 1

N

i ii

N N N

i i i i i ii i i

x n a x n

y n n a x n a nx n a y n



  



  


  

   

■ 

 Example 34:      1y t x t x t   is nonlinear. 
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   
     

     

1

1 1

1 1 1

1

1

N

i ii

N N

i i j ji j

N N N

i j i j i ii j i

x t a x t

y t a x t a x t

a a x t x t a y t



 

  



 

    


 
  

  

  ■ 
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