Solution of Homework No. 5

1.

Let us call the given impulse response h[n]. It is easily observed that the signal $h_1[n]=h[n+2]$ is real and even. Therefore (using properties of the Fourier transform) we know that the Fourier transform $H_1(jw)$ of h[n] is real and even. Therefore $H_1(jw)$ has zero phase. We also know that the Fourier transform $H(jw)=H_1(jw)e^{-2jw}$.

$$A$$
H(jw) = -2w, group delay $\tau(w) = \frac{d}{dw} A$ H(jw) = 2

2.

Note that H(jw) = -2jw.

- (a) Here, $x(t) = e^{jt}$. Therefore, $y(t) = -2dx(t)/dt = -2je^{jt}$. Or, by using Eigen function of LTI systems. Then $x(t) = e^{jt}$, y(t) should be $H(jt)e^{jt} = -2je^{jt}$.
- (b) $x(t) = sin(w_0 t)u(t)$. Then, $dx(t)/dt = w_0 cos(w_0 t)u(t) + sin(w_0 t)\delta(t) = w_0 cos(w_0 t)u(t)$. Therefore, $y(t) = -2dx(t)/dt = -2w_0 cos(w_0 t)u(t)$.
- (c) Here, H(jw)=1/(2+jw). From this we obtain $x(t)=e^{-2t}u(t)$. Therefore, $y(t)=-2dx(t)/dt=4e^{-2t}u(t)-2\delta(t)$.

3.

$$H(s) = \frac{s^2 + 2s + 2}{s^2 - 1} = 1 + \frac{2s + 3}{s^2 - 1} = 1 + \left(\frac{\frac{5}{2}}{s + 1} + \frac{-1}{\frac{2}{s - 1}}\right)$$

(a)Causal System $h(t) = \delta(t) + \frac{5}{2}e^{-t}u(t) - \frac{1}{2}e^{t}u(t)$ (b)Stable system $h(t) = \delta(t) + \frac{5}{2}e^{-t}u(t) + \frac{1}{2}e^{t}u(-t)$

- 4. Find the Laplace transform of following signals; indicate the ROC of each signal with figure also. (15%)
 - (a) $x(t) = -e^{-at}u(t)$ $X(s) = \frac{1}{s+a}, \operatorname{Re}\{s\} > -a$ (b) $x(t) = e^{-2t}u(t) + e^{-t}\cos(3t)u(t)$

$$X(s) = \frac{1}{s+2} + \frac{s+1}{(s+1)^2 + 3^2}, \operatorname{Re}\{s\} > -1$$

(c)
$$x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t)$$

 $X(s) = 1 - \frac{4}{3}\frac{1}{s+1} + \frac{1}{3}\frac{1}{s-2}, \operatorname{Re}\{s\} > 2$