CHAPTER 1

1.1to 1.41 - part of text

1.42

.43

(a) Periodic:
Fundamental period = 0.5s

(b) Nonperiodic

(c) Periodic
Fundamental period = 3s

(d) Periodic
Fundamental period = 2 samples

(e) Nonperiodic

() Periodic:
Fundamental period = 10 samples

(g) Nonperiodic
(h) Nonperiodic

(i) Periodic:
Fundamental period = 1 sample

y(t) = %‘%cos%oa + (T—;Elg

2
LN
9cos %OG + 60

g[costOOt + 7—3%1}

(a) DC component :g

N 9 s
(b) Sinusoidal component Ecos%lOOt + 30
9

Amplitude =



Fundamental frequency g=-@Hz

1.44 The RMS value of sinusoiddl) is A/ /2. Hence, the average powex@) in a 1-ohm
resistor is(A/ /2)° A2,

1.45 LetN denote the fundamental periodxpiN]. which is defined by

N

Tt

N:b—

The average power @fn] is therefore

1N_12
P = NZX [n]
N-1

= N ZA cosE27Tn cp%

n=0

Zcos[glnﬂpg

1.46 The energy of the raised cosine pulse is

E =" Licoget) + 1)t
.[—n/oo4
1 Vow 2
= ifo (cos (wt) + 2cos(wt) + 1)dt
_1mwoerd 1
= Zfo EEcos(Zwt) + 5 + 2cog(wt) + 1%&

_ 13amo _
= SO0 - 34w

1.47 The signak(t) is even; its total energy is therefore

5 2
E = ZIOX (t)dt



= 20 (D%t + 2 (5- 1)t
- 20 of 5

= 21, + 2[—%(5 —t)ﬂ5

2 _26
3 3

t=4

= 8+

1.48 (a) The differentiator output is

E 1 for -5<t<-4
y(t) = 0-1 for 4<t<5
E 0 otherwise
(b) The energy of(t) is
E = J’_4(1)2dt+ J’S(—l)zdt
-5 4

=1+1=2

1.49 The output of the integrator is
t
y(t) = AIOTdT = At forO<t<T

Hence the energy oft) is

T 2.2 AZT3
E = Atdt = —
Io 3
1.50 (a)
x(5t)
1.0
1 -08 0 08 1
(b) X(0.20)
1.0
25 -20 0 20 25
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1.52
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1.53 We may represerift) as the superposition of 4 rectangular pulses as follows:
g1(t)

To generat@;(t) from the prescribed(t), we let

9,(t) = g(at—b)
wherea andb are to be determined. The width of pulg8 is 2, whereas the width of
pulseg;(t) is 4. We therefore need to expagft) by a factor of 2, which, in turn, requires

that we choose

a=:
2

The mid-point ofg(t) is att = 0, whereas the mid-point of(t) is att = 2. Hence, we must
chooseb to satisfy the condition

a(2)-b =0

or

_ _ o0 _
b—2a—2E2D—1

- ot _ 40
Hence,g,(t) = g[Qt_lm

Proceeding in a similar manner, we find that
2, _50

gz(t) = g[B 30

93(t) = g(t-3)

9u(t) = 9(2t-7)
Accordingly, we may express the staircase siglin terms of the rectangular pulgé)
as follows:



1.54

x(t) = gfft- 10+ gkt~ 2+ g(t-3) +g(2t-7)

(@)

(b)

(€)

(d)

(e)

X(t) = u(t) - u(t - 2)

X(t) = u(t + 1) - Au(t) + u(t - 1)

-2 0 1 2
| | t

-1 3

X(t) = -u(t + 3) + Ut +1) -2u(t - 1) +u(t - 3)

1 2 3
1 | t

X®)=rt+1)-r(t) +r(t-2)




1.55 We may generaiét) as the superposition of 3 rectangular pulses as follows:

1.56

01(t)

| | | | | | L t
-4 -2 0 2 4

All three pulsesg(t), go(t), andgs(t), are symmetrically positioned around the origin:
1. g(t) is exactly the same agt).

2. 0go(t) is an expanded version gft) by a factor of 3.

3. gz(t) is an expanded version gft) by a factor of 4.

Hence, it follows that
g,(t) = g(t)

go(t) = ngt

gs(t) = ga}tg

That is,
X(9) = o(t) + grEtT+ g tE
()
x[2n]
)
Bl n
-1 0 1
(b)
X[3n - 1]
2]l o
1
o) n
-1 0 1
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1.56 (c)

(d)
Y2 - 2]
E FZ r o 2 3 4 5
TTATT
(e)
X[n-2]+y[n+ 2]
o 14 )
93 0
12 0
2 -1 01 2 3 4 5 6 7
()

X[2n] + y[n - 4]

11



1.56 (9)

(h)

(i)

)

x[n+ 2}y[n - 2]

o
o

H2

X(3 - n]y[-n]

3

he

AP
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156 (k)
x{n + 2]y[6-n]

1.57 (a) Periodic
Fundamental period = 15 samples

(b) Periodic
Fundamental period = 30 samples

(c) Nonperiodic

(d) Periodic
Fundamental period = 2 samples

(e) Nonperiodic
(f) Nonperiodic

(g) Periodic
Fundamental period =r&seconds

(h) Nonperiodic
(i) Periodic

Fundamental period = 15 samples

1.58 The fundamental period of the sinusoidal sigklal] is N = 10. Hence the angular
frequency of[n] is

Q = Z%m m: integer

The smallest value d@ is attained wittF 1. Hence,
_2m _ T .

Q = 0" & radians/cycle
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1.59

1.60

1.61

The amplitude of complex signdt) is defined by

«/Azcosz(oot +@) + AzSinz(OOt + @)

JXE() +X(1)

A«/cosz(oot + @) + Sihz(oot + @)
A

Real part ok(t) is
Re[x(1)} = Ae" cog(wt)

Imaginary part ok(t) is
Im{x(t)} = Ae"'sin(wt)

We are given

=

1]
o o o o o

~ Dl

A
< —
2 for t >

The waveform ok(t) is as follows

14



The output of a differentiator in response(t) has the corresponding waveform:
y(t)

1/A

Yz 0 A2 t

v
1 A
> ot +7)

y(t) consists of the following components:

1. Rectangular pulse of duratiah and amplitude ¥ centred on the origin; the area
under this pulse is unity.

2. An impulse of strength 1/2 at A/2.

3. Animpulse of strength -1/2 &t -A/2.

As the duratio\ is permitted to approach zero, the impulses §{{2y/2) and

-(1/2)0(t+A/2) coincide and therefore cancel each other. At the same time, the rectangular
pulse of unit area (i.e., component 1) approaches a unit imputse@tWe may thus state

that in the limit:

lim y(t) = lim gx(t)
A-0 Ao dt
= 3(t)
1.62 We are given a triangular pulse of total durattband unit area, which is symmetrical

about the origin:
x(t)

2/IA
slope = 482 slope = -4?
area=1
t
-N\/2 0 A2

15



(a) Applyingx(t) to a differentiator, we get an outpft) depicted as follows:
y(t)

area = 24 4/p?
\\‘

A2

-N?2
<-—area=24

-4pN?

(b) As the triangular pulse duratiodA approaches zero, the differentiator output
approaches the combination of two impulse functions described as follows:

* Animpulse of positive infinite strengthtat 0.
« Animpulse of negative infinite strengthtat 0"

(c) The total area under the differentiator outy(titis equal to (24) + (-2/A) = 0.

In light of the results presented in parts (a), (b), and (c) of this problem, we may now make
the following statement:
When the unit impulsé(t) is differentiated with respect to tintethe resulting output

consists of a pair of impulses locatedtat 0" andt = 0", whose respective strengths
are +eo and «o.

1.63 From Fig. P.1.63 we observe the following:
X(1) = X,(t) = X5(t) = x(t)
X,(t) = ys(t)

Hence, we may write

y1(t) = x()x(t-1) (1)
Yo(t) = [x(1)] (2)
ya(t) = cos(ys(t)) = cos( 1+ X(1)) 3)

The overall system output is
Y(1) = yi(t) +yo(t) —y,(t) (4)

Substituting Egs. (1) to (3) into (4):
y(1) = x()x(t—1) + |x(t)| — cos(1 + 2x(1)) 5)

Equation (5) describes the operakbthat defines the outpy(t) in terms of the inpuk(t).

16



1.64 Memoryless Stable Causal Linear Time-invariant
(a)
(b)
()
(d)
(e)
®
(9)
(h)
(i)
()
(k)
{)

OOoOOX X OX x X OOO
o o o o o R Y o R
OOo0OXOXOXgoOodod
X OogooOoXogooXxoXx
o o o o R Y o R

1.65 We are given
y[n] = agx[n] + a;x[n—1] + a,x[n—2] + agx[n—3] Q)

Let
SUx(n} = x(n—K)

We may then rewrite Eq. (1) in the equivalent form
yInl = agx(n] +a,S{X[n]} +a,S{x[n]} +a;S{x[nl}

(ag+ als1 + a282 + a3S3){ X[ n]}
H{x[n]}

where

H = a0+a181+a282+a383

(a) Cascade implementation of operdator

X[n]

17



1.66

1.67

1.68

(b) Parallel implementation of operatedr

[
Xn] yin]

Using the given input-output relation:
y[n] = agx[n] +a;x[n—1] + a,x[n—2] +agx[n-3]
we may write
ly[n]l = |agx[n] + a;x[n—1] + a,x[n—2] +azx[n-3]|
< |[agx[n]| + [a;x[n—1]| +|ayx[n—2]| + [agx[n-3]|
< |ag| My + [ag| My + |ay| M, +|ag| M,
= (Jag * |ag] +[ag] +[ag) )My
where M, = [x(n)| . Hence, provided thi, is finite, the absolute value of the output
will always be finite. This assumes that the coefficiemis, a,, a;, have finite values of

their own. It follows therefore that the system described by the opdtradbiProblem 1.65
is stable.

The memory of the discrete-time described in Problem 1.65 extends 3 time units into the
past.

It is indeed possible for a noncausal system to possess memory. Consider, for example, the
system illustrated below:

X[n] x(n-1)

x(n +K)

yin]
That is, With§{x[n]} = X[n - 1], we have the input-output relation

y[n] = agx[n] +a,x[n+ K +ax[n—1]

This system is noncausal by virtue of the teagx[n + k]. The system has memory by
virtue of the terngx[n - 1].

18



1.69 (a) The operatdt relating the outpug[n] to the inputx[n] is

H=1+S+S

where
Sk{ X[n]} = x[n=K for integek

(b) The inverse operat(bfi”"is correspondingly defined by

H

inv _ 1
1+S'+S
Cascade implementation of the operaktbis described in Fig. 1. Correspondingly,

feedback implementation of the inverse operIaljBYis described in Fig. 2
X[n]

Fig. 1
OperatoH

X[n]

Fig. 2 .
Inverse Operatad™

Figure 2 follows directly from the relation:
X[n] = y[n]-X[n-=1] —x[n-2]

1.70 For the discrete-time system (i.e., the operbfodescribed in Problem 1.65 to be time-
invariant, the following relation must hold

S®H = HS® for integeng (1)
where

S°{x[n]} = x[n—ny]

and

H=1+S+¢

We first note that
S°H = S°(1+S" +S)

No+1

=S°+S
Next we note that

HS® = (1+S'+S)S"®

ng+2

+S (2)

19



Ny 2+n,

=gb+s "My s 3)
From Egs. (2) and (3) we immediately see that Eq. (1) is indeed satisfied. Hence, the
system described in Problem 1.65 is time-invariant.

1.71 (@) Itis indeed possible for a time-variant system to be linear.
(b) Consider, for example, the resistance-capacitance circuit where the resistive
component is time variant, as described here:

i 1RO
I_H__/\' (®) | M ,_r_¢_l 0+
vi(t) @ | c— Volt)
| |

This circuit, consisting of the series combination of the resiB{¢y and capacitoC, is
time variant because &(t).

The input of the circuity,(t), is defined in terms of the outpuyit) by
dv,(t)
ar TV

Doubling the inputv,(t) results in doubling the output,(t). Hence, the property of
homogeneity is satisfied.

vy(t) = R(HC

Moreover, if

N
vy(t) = ZVL k(1)
k=1
then
N
Vy(t) = ZVZ k(1)
k=1
where
dv2’ k(1)

Vi (1) = ROC—45= + v, (1), k=12,.N

Hence, the property of superposition is also satisfied.

We therefore conclude that the time-varying circuit of Fig. P1.71 is indeed linear.

1.72 We are given thgth power law device:
y(t) = x°(t) (1)

20



1.73

1.74

1.75

Let y;(t) andy,(t) be the outputs of this system produced by the inpyi(§ and x,(t),
respectively. Lek(t) = x;(t) + X5(t), and lety(t) be the corresponding output. We then note
that

y(1) = (X (1) + %,(1))P £y, (1) + y,(1) forpz0, 1
Hence the system described by Eg. (1) is nonlinear.

Consider a discrete-time system described by the opErator

Hi: y[n] = agx[n] + ax[n—K]

This system is both linear and time invariant. Consider another discrete-time system
described by the operatbip:

H,: y[n] = byx[n] +bx[n+ K]

which is also both linear and time invariant. The systemis causal, but the second
systemH, is noncausal.

The system configuration shown in Fig. 1.56(a) is simpler than the system configuration
shown in Fig. 1.56(b). They both involve the same number of multipliers and summer.
however, Fig. 1.56(b) requirdéreplicas of the operatdt, whereas Fig. 1.56(a) requires a
single operatoH for its implementation.

(a) All three systems
* have memory because of an integrating action performed on the input,
» are causal because (in each case) the output does not appear before the input, and
» are time-invariant.

(b) H; is noncausal because the output appears before the input. The input-output relation

of H; is representative of a differentiating action, which by itself is memoryless.

However, the duration of the output is twice as long as that of the input. This suggests
thatH,; may consist of a differentiator in parallel with a storage device, followed by a

combiner. On this basibl; may be viewed as a time-invariant system with memory.

SystemH, is causal because the output does not appear before the input. The duration
of the output is longer than that of the input. This suggestsHhahust have memory.
It is time-invariant.

SystenmH; is noncausal because the output appears before the input. Part of the output,
extending fromt = -1 tot = +1, is due to a differentiating action performed on the
input; this action is memoryless. The rectangular pulse, appearing in the output from
t=+1tot=+3, may be due to a pulse generator that is triggered by the termination of
the input. On this basisiz would have to be viewed as time-varying.

21



Finally, the output oH, is exactly the same as the input, except for an attenuation by a
factor of 1/2. Hencesl, is a causal, memoryless, and time-invariant system.

1.76 H, is representative of an integrator, and therefore has memory. It is causal because the
output does not appear before the input. It is time-invariant.

H, is noncausal because the output appeatrs &, one time unit before the delayed input

att = +1. It has memory because of the integrating action performed on the input. But,
how do we explain the constant level of +1 at the front end of the output, extending from
t=0tot=+17? Since the system is noncausal, and therefore operating in a non real-time
fashion, this constant level of duration 1 time unit may be inserted into the output by
artificial means. On this basld, may be viewed as time-varying.

H3 is causal because the output does not appear before the input. It has memory because of

the integrating action performed on the input frars 1 tot = 2. The constant level
appearing at the back end of the output, from 2 tot = 3, may be explained by the
presence of a strong device connected in parallel with the integrator. On thishbasss,

time-invariant.
Consider next the inpu(t) depicted in Fig. P1.76b. This input may be decomposed into

the sum of two rectangular pulses, as shown here:

x(t) %a(t) xg(t)

2T 2 2

1 - 1 1

0 1 2t 0 1 2t 0 1 2t
Response dfi; to x(t):
Y1) Y10 ya(t)

2

[EnY
=N
=N
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Response dfi, to x(t):

Yaa(®) Y2500 vt

2— 2 + 24
\ + 1 | K - h
1 2 2

The rectangular pulse of unit amplitude and unit duration at the front eng(dfis
inserted in an off-line manner by artificial means

[y

—e
]

N P O
—1

[E=Y

'_\

N P O

Response dfi to x(t):

ya(t)
y3al) y3e() 3
2 2 2
+ —_—
1 1 1
| | | |
0 1 2 t 0 1 2 3t 0 1 2 8

1.77 (a) The response of the LTI discrete-time system to the dpu{ is as follows:

yinl
: T
1
SR
-1 1 l 3
_1_
(b) The response of the system to the in@lih- d[n - 2] is as follows
ynl

D

P »

b
=
N
]
—o

(]

Yo
(e)]

N O
=
'
P o
o—
N
w
c— &
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(c) The input given in Fig. P1.77b may be decomposed into the sum of 3 impulse
functions:d[n + 1], -9[n], and BD[n - 1]. The response of the system to these three
components is given in the following table:

Time | o[n+ 1] -o[n] 20[n - 1] Total
n response
-1 +2 +1
0 -1 -2 -3
1 +1 +1 +4 +6
2 -1 -2 -3
3 +2 2

Thus, the total respongfn] of the system is as shown here:

yin]
64 O

5_
4
3 4
2

[
[a} 8]

N
On
a1
(e}

3 -2 -10 1 3
-1

24

34
0

Advanced Problems

1.78 (a) The energy of the signal x(t) is defined by

E = f e (t)dt

Substituting
X(t) = xg(t) +x,(t)
into this formula yields

E = J’f [x.() + x,(t)]2cl
= [ e+ + 2% () x (1)) et

= J'°° x2(t)dt + f xﬁ(t)dt+2ﬁ° Xo(1) X, () dlt

24
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With x(t) even and,(t) odd, it follows that the produgg(t)x,(t) is odd, as shown by
Xe(_t)xo(_t) = Xe(t)[_xo(t)]
= _Xe(t)xo(t)

Hence,

<) 0 0o
[ OO = [ xe(Ox(0+ [ xo(xo(t)cl

= [} R0 + [ x,(0)a

_Io Xo (1) X, (t)dt +J’O Xo(1) X, (t)dt
=0

Accordingly, Eq. (1) reduces to
E = J’°° X(t)dlt + J'°° x2(t)dt

(b) For a discrete-time sign&ln], —eo < n<co, we may similarly write

[ee]

E = Z x2[n]

n=-c

S [xeln] +x,[n]]°

= 3N+ 3 R0 +2 S xdnlxn] (2)
With
X[—N] X [—N] = =X[n]x,[Nn]
it follows that
00 0 00
S xnlxonl = 5 x[nlxnl + 5 xe[nlxe[n]
n=-o n=-co n=-0

[ee]

0
= 3 x[-nlx[-nl + Y x[nlxy[n]

n=-0
O o]
= =Y xnlxg[nl + 3 xo[n]x,[n]
n=0

n=co

=0

25



Accordingly, Eq. (2) reduces to

[oe]

E= Y XIn + Y xln]

n=-o

1.79 (a) From Fig. P1.79,
i(t) = (1) +ix(t) (1)
d'éit) FRiy(t) = 2 i (D) )

—00

L

Differentiating Eq. (2) with respect to tinte

d%i, (1) diq(t
. ;i)”% 2 = L0 )

Eliminatingi,(t) between Egs. (1) and (2):

d%iy(t) dig(t
L ;i LR ';ﬁ’ = 2l i)

Rearranging terms:
2. .

d’iy() | Ry | 1
dt

L O = el @)

(b) Comparing Egs. (4) with Eq. (1.108) for the MEMS as presented in the text, we may
derive the following analogy:

MEMS of Fig. 1.64 LRC circuit of Fig. P1.79
y(®) i1(t)
@n 1/.JLC
Q ok 1L
R RNC
0 Lig)

26



1.80

1.81

1.82

(a) As the pulse duratiahapproaches zero, the area under the pxiég remains equal
to unity, and the amplitude of the pulse approaches infinity.

(b) The limiting form of the pulse,(t) violatesthe even-function property of the unit
impulse:
o(—t) = o(t)

The outpuy(t) is related to the inpu(t) as
y(t) = H{x(1)} 1)

Let Ty denote the fundamental periodxf), assumed to be periodic. Then, by definition,
x(t) = x(t+ Ty) (2)

Substitutingt +T for t into Eq. (1) and then using Eq. (2), we may write

y(t+Tg) = H{x(t+ Ty}

H{x(1)}

y(1) 3

Hence, the outpui(t) is also periodic with the same peridgl

(@) For0D<t<o , we have

XA (1) = 1g

A

At t=A/2, we have
A = x,(A/2)

_ le—A/(zr)

A

Sincex,(t) is even, then

A= x(8/2) = x(-0/2) = &0

(b) The area under the pulsgt) must equal unity for
O(t) = lim x,(t)
A0

The area undety(t) is

27



f x, (1)t = ZI:xA(t)dt

APl 1
= 2.[0 Ae dt

2 —t/T|®
= 20e ]

_ 2
A

For this area to equal unity, we require

I = A
2
(c)
8 T T T T
7k - -A=1 B
A=05
A=0.25
— A=0.125
6k -
5L 4
3]
o
2
Sar 1
S
<
3k -
ok 4
lk -
0 T O] \\\T“¥‘\777¥,
-2 -15 -1 1 15 2

1.83 (a) Let the integral of a continuous-time sigi{gl —o <t < oo, be defined by

y(t) = Ith(T)dT

- Ji, x(t)dt +J’;x(r)dr

28



0
The definite integraJ’ x(t)dt , representing théial condition, is a constant.

With differentiation as the operation of interest, we may also write

x(t) = %

Clearly, the value of(t) is unaffected by the value assumed by the initial condition

0
[ x(at

It would therefore be wrong to say that differentiation and integration are the inverse
of each other. To illustrate the meaning of this statement, consider the two following

two waveforms that differ from each other by a constant valuecfot t < oo

xq(t) Xo(t)

slope =a

0 t 0 I t
dx(t)  dx(t)

= , as illustrated below:
dt dt

Yet, y(t) =

y(t)

(b) For Fig. P1.83(a):
YO+ 5[y = x(t)

ForR/L large, we approximately have

R y(t)dt = x(t)

—00

Equivalently, we have a differentiator described by
<L dx(® R

(1) R W’ L large

29



For Fig. P1.83(b):

v+ D =

For R/L small, we approximately have
L dy(t)_

=

R dt

Equivalently, we have an integrator described by
R

~R( R
y(t) = LLOO x(t)dt 3 small

(c) Consider the following two scenarios describingltRecircuits of Fig. P1.83
» The input x(t) consists of a voltage source with an average value equal to zero.
* The input x(t) includes a dc componé&nfexemplified by a battery).
These are two different input conditions. Yet for lafgé., the differentiator of Fig.
P1.83(a) produces the same output. On the other hand, for Rhzthe integrator of
Fig. P1.83(b) produces different outputs. Clearly, on this basis it would be wrong to
say that these twoR circuits are the inverse of each other.

1.84 (a) The outpuy(t) is defined by
y(t) = Agcos(wgt + @)x(1) (1)

This input-output relation satisfies the following two conditions:

» Homogeneity: If the inpux(t) is scaled by an arbitrary factar the outputy(t) will
be scaled by the same factor.
» Superposition: If the input(t) consists of two additive componentgt) andx,(t),

then

y(t) = yq(t) +y,(t)

where

y(t) = Agcos(wpt + @)%, (t), k=1,2

Hence, the system of Fig. P1.84 is linear.

(b) For the impulse input
x(t) = o(t),

Eq. (1) yields the corresponding output
y'(t) = Apcos(wyt + @)o(t)
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_ E A,cospd(0), t=0
O 0, otherwise

For x(t) = d(t-ty) , Eq. (1) yields
y"(t) = Agcos(wyt + @)d(t—ty)
_ E Apcos(wyty + 9)0(0), t=t,

O 0, otherwise

Recognizing thay'(t) # y"(t) , the system of Fig. P1.84 is time-variant.

1.85 (a) The outpuj(t) is related to the inpuit) as
t
y(t) = cos2mf t+ k[ X(1)dtH (1)
The output is nonlinear as the system violates both the homogeneity and superposition
properties:
» Letx(t) be scaled by the factar The corresponding value of the output is
t

ya(t) = cos%nfct + kaI X(T)d'[%

Fora# 1, we clearly see that(t) # y(t)
e Let

X(1) = xq(t) + X,(t)
Then

t
y(t) = cosorif t+ k[ x(U)dt+k[ x(1)dt2
c o 1 ® 2 0

Zy() +y,(t)
where y;(t) and y,(t) are the values ofy(t) corresponding tax(t) and x (1),

respectively.

(b) For the impulse input
x(t) = 3(t),

Eq. (1) yields
t
y'(t) = cos%nfCHkLwé(T)dTE
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For the delayed impulse inpxu(t) = d(t—t;) , Eq. (1) yields

t
y'(t) = cos%nfCHkJ' 5(T—to)d'[%

= cos(21tf ty+kK), t = tg

Recognizing thay'(t) # y"(t) , it follows that the system is time-variant.

1.86 For the square-law device

y(t) = x(0),

the input

X(t) = Acos(wt + @) + A,cos(w,t + @)
yields the output

y(t) = x(1)

[A,cos(w;t + @) + Aycos(wyt + @,)]°

Aicosz(oolt +@) + Ag cos?(w,t + @)

+ 2A[A,cos(wqt + @) cos(w,t + @)
Al
7[1 + cos(2w;t + 2¢,)]

2
A
+ 72[1 + cos( 2wt + 2¢,)]

+ AL A[ cos((wy + W)t + (@ + @) + cos((wy — )t + (@ — )]
The outputy(t) contains the following components:
 DC component of amplitudeé\i + Aﬁ)/z

» Sinusoidal component of frequenay2 amplitudeAi/Z , and phasep2

» Sinusoidal component of frequenayz? amplitudeAg/Z , and phase2

» Sinusoidal component of frequenay,(- wy), amplitudeA;A,, and phaseg - ¢,)
» Sinusoidal component of frequenay,(+ w,), amplitudeA;A,, and phaseg + @)

1.87 The cubic-law device

3
y(t) = x7(t),
in response to the input,
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x(t) = Acog(wt + @),
produces the output

y(t) = A3cos3(wt + @)
= Ascos3(cot + @) [%(cos((Zoot +2@) + 1))

A3
= 7[cos((Zwt +20) + (0t + @)

3
+ cos( (26t + 29) — (wt + @))] +5-costwt + @)

A A
= ?[cos(Bwt + 309) + cog(wt + )] + Ecos(wt + @)

3
= A?cos(Soot +309) + Ascos(wt + @)

The outputy(t) consists of two components:

» Sinusoidal component of frequenmyamplitudeA?’ and phase
» Sinusoidal component of frequenoga&amplitudeA3/2, and phase¢@

To extract the component with frequency 8.e., the third harmonic), we need to use a
band-pass filter centered orw3and a pass-band narrow enough to suppress the
fundamental component of frequernoy

From the analysis presented here we infer that, in order to generapthth@rmonic in
response to a sinusoidal component of frequanaye require the use of two subsystems:

* Nonlinear device defined by

y(t) = x°(1), P=2,34,..
* Narrowband filter centered on the frequepay

1.88 (a) Following the solution to Example 1.21, we start with the pair of inputs:

1 A
Xq(t) = ZU%JfEE

-1 AQ
X, (t) = Zu%— >0

The corresponding outputs are respectively given by
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_ _a AD

30 A A
y,(t) = =/ 1-e coswn% + E%}u 2%

>l

- A
_1 20 Ap|, .0 AQ
yo(t) = A l-e cosmn%—zm}u >0

The response to the input
Xp (1) = Xq(t) = x,(1)

is given by

() = v+ 5505 -3

_GB 20
—% 7cosB»t+—%h%+

- _%E A D
e P oofh -0 40

D

AsA - 0, Xx,(t) - d(t).We also note that

z(t) = I|m D—[ %+ z%—%g}é

Hence, with z(t) = e‘“tcos(wnt)u(t) , we find that the impulse response of the
system is
y(t) = lim y,(t)

A0

= 3(t) —Q[e‘“‘cos(wnt)u(t)]

= 6(t)— d [e_atcos(w t)] Cu(t) —[e cos(oo t)]dtu(t)

3(t) —[-ae® cos(oont) - wne_ sin(oont)] u(t)

—e “'cos(w,1)3(t) (1)
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Sincee‘atcos(oont) = 1 at =0, Eq. (1) reduces to

y(t) = [ae " cos(w,t) + w,e * sin(w,t)]u(t) (2)
(b) w, = ja, where a,<a

Using Euler’s formula, we can write

jw,t —jw,t —a .t ot
_ eJ n + J n _ e n + e n
cos(w,t) = > = >

The step response can therefore be rewritten as

v = [1-5 e ugy

Again, the impulse response in this case can be obtained as
h(t) — dﬁ(tt) — [1_%(e_(a+an)t + e_(a_an)t):| 6(t)
o o o o o o o

a+d, «a+a)t =0, (a-a,t
+|: n ( n)+ ne( n)

7 © 7 Juct

Oy —a,t O —agt
= —_— + —
[2 e > e }u(t)

wherea; =a - a, anda, =d +d,

1.89 Building on the solution described in Fig. 1.69, we may relabel Fig. P1.89 as follows
x[n] + ylnl

+

yin]

059 [s] [og]

where (see Eq. (1.117))

y'[n] = x[n] + ZO.Skx[n— K
k=1
and

y[n] = y'[n] +0.5'[n-1]
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00 29

x[n] + ZO.Skx[n— K +0.5x[n—1] + ZO.Skx[n—l—k]
k=1 k=1

[ee]

S 0.5x[n— K] + 05y 0.5x[n—1—K]
k=0 k=0

1.90 According to Eqg. (1.108) the MEMS accelerometer is described by the second-order

equation

U0, & O, 2y = @
Next, we use the approximation (assuming Tas sufficiently small)

d 1 TSD TSD

Sy()= Tg[y% +H-vH-5H ©)

Applying this approximation a second time:

dy)_1 d T o T
a2 T iRz

%ﬁ%—s[y(ww Yols
T{E%S[y(t) y(t- s)]m

= ZIy(t+ TY—2y(t) +y(t=T] (3)
-

S

Substituting Egs. (2) and (3) into (1)'

.

SV T)=25(0 + V(=TT + 57 [% F-yH-5H rev = x0 @

Define

OuTs _
Q

2.2 _
W, Ts—2 = a,,
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1.91

1.92

y[nl = y(nTy/2),
where, in effect, continuous time is normalized with respe€y®to gem.

We may then rewrite Eq. (4) in the form of a noncausal difference equation:
y[n+2] +a;y[n+ 1] +ay[n] —a;y[n—1] +y[n-2] = bx[n] )

Note: The difference equation (5) is of order 4, providing an approximate description of a
second-order continuous-time system. This doubling in order is traced to Eq. (2) as the
approximation for a derivative of order 1. We may avoid the need for this order doubling
by adopting the alternative approximation:

S0 = [y(t+ T) —y(0)]

However, in general, for a given sampling peridg this approximation may not be as
accurate as that defined in Eq. (2).

Integration is preferred over differentiation for two reasons:
() Integration tends to attenuate high frequencies. Recognizing that noise contains a
broad band of frequencies, integration has a smoothing effect on receiver noise.

(ii) Differentiation tends to accentuate high frequencies. Correspondingly, differentiation
has the opposite effect to integration on receiver noise.

From Fig. P1.92, we have
i(t) = iq(t) +iy(t)

. 1t .
v(t) = Riy(t) = c _mll(T)dT

This pair of equations may be rewritten in the equivalent form:

i (1) = i(t) - %v(t)

v(t) = (1: t_mil(T)dT
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Correspondingly, we may represent the paraRe€l circuit of Fig. P1.92 by the block
diagram

i(t) i1(t) Vo

é f ot

1

R <

The system described herein is a feedback system with the capadiiggroiding the
forward path and the conductanc® pfoviding the feedback path.

%Solution to Matlab Experiment 1.93
f=20;

k = 0:0.0001:5/20;

amp = 5;

duty = 60;

%Make Square Wave

y1l = amp * square(2*pi*f*k,duty);
%Make Sawtooth Wave

y2 = amp * sawtooth(2*pi*f*k);
%Plot Results

figure(1); clf;

subplot(2,1,1)

plot(k,y1)

xlabel(’time (sec)’)
ylabel("Voltage”)

title('Square Wave’)

axis([0 5/20 -6 6])
subplot(2,1,2)

plot(k,y2)

xlabel(’time (sec)’)
ylabel("Voltage”)
title('Sawtooth Wave’)
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axis([0 5/20 -6 6])

Square Wave

-6 I I I
0 0.05 0.1 0.15

time (sec)

Sawtooth Wave

0.2

0.25

6 T T

-6 I I I
0 0.05 0.1 0.15

time (sec)

% Solution to Matlab Experiment 1.94
t = 0:0.01:5;

x1 = 10*exp(-t) - 5*exp(-0.5*t);
x2 = 10*exp(-t) + 5*exp(-0.5*);
%Plot Figures

figure(1); clf;

subplot(2,1,1)

plot(t,x1)

xlabel(’time (sec)’)
ylabel(Amplitude’)

title(’x(t) = eN{-t} - e"{-0.5t}")
subplot(2,1,2);

plot(t,x2)

xlabel('time (sec)’)
ylabel(Amplitude’)

title(’x(t) = eN{-t} + en{-0.5t})
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X(t) = et - 0t

5 T T
4 -
o 3
£
< 1k
0 -
_1 | | | | | | | | |
0 05 1 1.5 2 25 3 35 4 45
time (sec)
xt)=e "t +e 0t
15 T T
o 101
'?;1
< 5|
O | | | | | | | | |
0 05 1 1.5 2 2.5 3 35 4 45
time (sec)
% Solution to Matlab Experiment 1.95
t = (-2:0.01:2)/1000;
al = 500;
x1 = 20 * sin(2*pi*1000*t - pi/3) .* exp(-al*t);
a2 = 750;
x2 = 20 * sin(2*pi*1000*t - pi/3) .* exp(-a2*t);
a3 =1000;

x3 = 20 * sin(2*pi*1000*t - pi/3) .* exp(-a3*t);
%Plot Resutls

figure(1); clf;

plot(t,x1,’b’);

hold on

plot(t,x2,’k:");

plot(t,x3,r--");

hold off

xlabel(’time (sec)’)
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ylabel(Amplitude’)

title(Exponentially Damped Sinusoid’)
axis([-2/2000 2/1000 -120 120])
legend(’a = 500, 'a = 7507, 'a = 1000’)

Exponentially Damped Sinusoid
T T T

— a=500
a=750
100 ~ — — a=1000

Amplitude

=100

time (sec) X 10"

% Solution to Matlab Experiment 1.96
F=0.1;

n =-1/(2*F):0.001:1/(2*F);

W = cos(2*pi*F*n);

%Plot results

figure(1); clf;

plot(n,w)

xlabel('Time (sec)’)
ylabel(Amplitude’)

title('Raised Cosine Filter’)
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Raised Cosine Filter

1 T T

Amplitude

Time (sec)

% Solution to Matlab Experiment 1.97
t=-2:0.001:10;

%Generate first step function
x1 = zeros(size(t));
x1(t>0)=10;

x1(t>5)=0;

%Generate shifted function
delay = 1.5;

x2 = zeros(size(t));
x2(t>(0+delay))=10;
x2(t>(5+delay))=0;
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%Plot data

figure(1); clf;

plot(t,x1,'b’)

hold on

plot(t,x2,r:’)

xlabel('Time (sec)’)
ylabel(Amplitude’)
titte('Rectangular Pulse’)

axis([-2 10 -1 11])

legend(’Zero Delay’, 'Delay = 1.5);

Rectangular Pulse

—— Zero Delay
Delay = 1.5
10 y
8 - -
6 - -
]
e]
2
=
S
<
4+ |
2 - -
0
| | |
-2 0 4 8 10
Time (sec)
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Solutions to Additional Problems

2.32. A discrete-time LTI system has the impulse response h[n| depicted in Fig. P2.32 (a). Use linear-
ity and time invariance to determine the system output y[n] if the input z[n] is
Use the fact that:

8[n — k] * h[n] hin — k]
(azi[n] 4+ bxe[n]) * hln] = axi[n] * hln] + bxs[n] * hin]

3h[n] — 2h[n — 1]
= 36[n+1]+70[n| — 76[n — 2] + 56[n — 3] — 25[n — 4]

=
S,
I

z[n] = 0[n]+d[n—1]+dn—2]
y[n] = h[n]+hn—1]+ h[n -2
= d[n+1]+46[n]+6d[n — 1] + 46[n — 2] + 26[n — 3] + d[n — 5]

(c) x[n] as given in Fig. P2.32 (b)

8
=,
|

26[n — 3] + 26[n] — 6[n + 2]
2h[n — 3] + 2h[n] — hn + 2]
= —0[n+3]—3n+2]+7n]+35n— 1]+ 80[n — 3] + 46[n — 4] — 26[n — 5] + 26[n — €]

s
=,
I

2.33. Evaluate the discrete-time convolution sums given below.
(a) y[n] = uln + 3] x u[n — 3]

Let u[n + 3] = z[n] and u[n — 3] = h[n]



[[]

-3-2-1

Figure P2.33. (a) Graph of z[k] and h[n — ]

(b) y[n] = 3"u[—n + 3] x uln — 2]

x[K]

K
3

a

Kk

forn—-3< -3

forn—3> -3

123

Figure P2.33. (b) Graph of x[k] and h[n — k]

k

form—2<3

forn—2>14



(c) yln] = (3)" uln] *uln + 2]

[E] h[n-k]

(3)"

12 k n+2

Figure P2.33. (c) Graph of z[k] and h[n — k]

forn+2<0 n < —2
yln] =
forn+22>0 n>—2

k=0
[]747 1 /1\"
=371\
n
yln] = %‘%(%) nz =2
0 n< —
(d) y[n] = cos(Fn)u[n] * uln — 1]
forn—1<0 n<l1
yln] =0
forn—1>0 n>1
n—1

y[n] = Z: cos (gk)

1 n=4w+1, 4v+2
yln] =
0 n=4v, 4v+3

yln] = uln—1]f[n]
where
1 n=4w+1, 4v+2
- {1
n=4v, 4v+3

3



5 (30 ()

yln] =
k=—oc0
substituting p = —k
0o x 1 n+p
yln] = Z coS <§p) <§>
p=—(n—2)
[e'e) P n-+
yln] = Zp:—(n—Q) (71):) (%) +p n even
= P- » .
Yot ey (CDF(3)"" modd
[n] L(-1)" n even
n =
Y %0 (—1)n+1 n odd

(8) y[n] = B uln] x uln 3], 8] <1

forn—3<0 n<3
yln] =0
forn—3>0 n>3
n—3
yln] =Y 8"
k=0

yln] = {(1%2) n=s
0

(h) y[n] = B"u[n] * a™u[n —10], |B| <1, |a/ <1

forn —10< 0 n < 10
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(i) y[n] = (u[n + 10] — 2uln] + u[n — 4]) * u[n — 2]

forn—2< —-10 n < —8
y[n] =0
forn—2<0 —8<n<?2
n—2
yln)= Y 1=n+9
k=—10
forn—2<3 2<n<5b
—1 n—2
ynl= > 1-> 1=11-n
k=—10 k=0
form—22>4 n>06
-1 3

n+9 —-8<n<?2
11-n -2<n<5
6 n>D>y

(i) yln] = (uln +10] = 2u[n] + uln — 4]) * f"u[n], [B] <1

for n < —10
yln] =0
forn<0
n 1 k
=6 3 <B)
k=—10
ﬂn+11 -1
yln] = 71
forn <3

—1 1 k n 1 k
=" Y (5) -2 (5)
2\ 5
/()m+11 _ ﬂnJrl ﬂnJrl -1

5



for n >3

wi=r 3 () -5 ()

/()m+11 _ ﬂnJrl ﬂnJrl _ 677,73

0 n < —10
i ~10<n <0
vl = T S 0<n<s
n+il_ gn+1 n41_ gn—3
ot gt g
(k) y[n] = (u[n 4 10] — 2u[n + 5] + u[n — 6]) * cos(§n)
There are four different cases:
(i) n=4v v is any integer
yn] = ([-1+04+1+0-1]+(-1)0+1+0-1+04+1+0-1+0+1+0]=-2
(i11) n=4v+2
yn] = P +0-14+04+1+(-D0-140+1+0-14+04+140—-1+0]=2
(#ii) n=4v+3
yn] = O-14+0+140+(-1)[-1+0+1+0-140+1+0—-14+0+1]=0
(iv) n=4v+1
yln] = 0
-2 n=4
yln] = 2 n=4v+2

0 otherwise

forn <0
yln] =0
forn>0 n=20,4,8,...
MM:%+1
forn>0 n#0,4,8, ...
-}

where [z] is the smallest integer larger than z. Ex. [3.2] =4

(m) y[n] = Buln] * 3272, 0[n —4p], 8] <1

forn <0



forn >0 n=0,4,8,...

k=0
1 gaE+1)
forn >0 n=15,9,..
y[n] — Zﬁ4k—1
k=0
[n] = 11 g+
B\ T
forn >0 n=2,6,10,...
yln] =Y g2
k=0
1 (1)
forn >0 n=3,7,11,..
yln] =Y g7
k=0
o L (1=
yin =3 11—t
(3)" uln + 2]« 41"
forn+2<0 n< -2
n+2 1 n—k
yln] = (§> v
k=—oc0
1 n n+2 ~y _k
ot = () ()
let | =—k
wi=(3) > ()
I=—(n+2)
(e
il = (5) 4
2y )
= (5) 375
forn+2>0 n>—2

EN|



k=— k=1
yin] = @k_zw )"+ (%)n;ij(zwk

i~ [+ (5257 )

2.34. Consider the discrete-time signals depicted in Fig. P2.34. Evaluate the convolution sums indi-
cated below.

(a) m[n] = x[n] * z[n]

forn+5<0 n<—>5
m[n] =0
formn+5<4 -5<n< -1
n+5
m[n]:Zl:n—l—ﬁ
k=0
forn—1<1 —1<n<?2
3 n+5
mp]=>"142> 1=2n+8
k=0 k=4
forn+5<9 2<n<4
3 n+5
m[n] = Z 1—|—2Zl:9+n
k=n—1 k=4
form—1<4 4<n<b
3 8
mp)= > 1+2) 1=15-n
k=n—1 k=4
formn—1<9 5<n<10

8
mn)=2 > 1=20-2n

k=n—1
forn—12>9 n > 10
m[n] =0
0 n < —5
n—+6 -5<n< -1
2n + 8 —1<n<?2
m[n] = 9+n 2<n<4

15—n 4<n<5
20—2n 5<n<10
0 n > 10

(b) m[n] = x[n] * y[n]

forn+5< -3 n < —8



forn+5<1 —8<n<—4
n+5
m[n}:21=n+9
k=—3
forn—1< -2 —4<n<-1
0 n+5
mp]=> 1-Y 1=-n-1
k=-3 k=1
forn+5<5 -1<n<0
0 n+5
m]= > 1-Y 1=-2n-14
k=n—1 k=1
forn—1<1 0<n<2
0 4
b= 3 1-3 1= 02
k=n—1 k=1
forn—1<5 2<n<6
4
mln] = — Z 1=n-6
k=n—1
forn—1>5 n>6
mln| =
0 n<-—8
n+3 —8<n<—4
-n—1 —4<n<-1
mln] = —2n—-4 —-1<n<0
—n—-2 0<n<?2
n—=06 2<n<6
0 n>06
(c) m[n] = z[n] x fln]
forn+5< -5 n < —10
m[n] =0
forn—1< -5 —10<n< -4
1n+5 1
m[n]:§k;5k:—5n755+§(n+10)(n+11)
forn+5<6 —4<n<l1
n+5
1 21
m[n]:§ k:—(n—l)Jr?
k=n—1
forn—1<6 1<n<?7
5
1
m[n]:ék;lk: (7n){(n1)+—(6n)
forn—1>6 n>"7




m[n] =0

0 n < —10
—5n =55+ L(n+10)(n+11) -10<n < —4
mln] = Tn-1)+% —-4<n<1
(7-n)[(n-1)+16-n)] 1<n<7
0 n>"7
(d) m[n] = z[n] + g[n]
forn+5< -8 n < —13
m[n] =0
forn—1< -7 14 <n< -6
n+5
m[n]:21:n+14
k=—8
forn+5<4 —-6<n< -1
—2
m[n] = Z 1=-n
k=n—1
forn—1< -1 -1<n<0
—2 n+5
m[n] = Z 1+21:72
k=n—1 k=4
forn—1<4 0<n<b
n+5
m[n]:21:n+2
k=4
forn—1<11 5<n<12
10
m]= > 1=12-n
k=n—1
forn—1>11 n>12
mn] =
0 n < —13
n+14 —-13<n<—6
-n —-6<n<-1
min] = -2 -1<n<0

n+2 0<n<5H
12—n 5<n<12
0 n>12

(e) m[n] = y[n] * z[n]
The remaining problems will not show all of the steps of convolution, instead figures and intervals will
be given for the solution.

Intervals
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ylK]

2in-K]

m[n] = y[n]*z[n]

n < -3

—-3<n<l1
1<n<5b
5<n<6
6<n<9
9<n<13
n>13

n-8

Figure P2.34. Figures of y[n] and z[n — k]
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P2.83(e) m[n] = y[n]*z[n]

12

4 T
2, -
of o) .
E
£ o d
g
£
_47 -
-6 o o .
_8 | | | | | | |
-2 0 2 4 6 8 10
Time
Figure P2.34. m[n] = y[n] * z[n]
(£) m[n] = y[n] = g[n]
Intervals
n < —11
—-11<n< -7
—7<n<-5
—4<n<-3
3<n<-1
-1<n<1
1<n<3
3<n<5H
5<n<T7
T<n<9
9I9<n<11
11<n<15
n>15

12



gln-K|
o
o

or 0 O o O O B
n-10 n-4 n+2 n+8

k

Figure P2.34. Figures of y[n] and g[n — k]

\ P2.83(f) m[n] = y[n]*g[n]

mf(n) : amplitude
o =
©
—o
—o
—o
| |

-2+ u
-3r (0] (0] (0] (0] b
-4 I I I I I

-10 -5 0 5 10

13



Intervals

n< =7
—7<n< -3
—3<n< -2
—-2<n<1
1<n<?2
2<n<b
5<n<9
n>9

m[n] = y[n[*wn]

2 T T

-4 -3 -2 -1 0 1 2 3 4
4
3L
2L
1k
n-4 n+4
or o] o]

Figure P2.34. Figures of y[n] and w[n — k]
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P2.83(g) m[n] = y[n]*w[n]

8 (0]

mg(n) : amplitude
o N
T

(o]
—o

_4,
_6,
o
-8t 0]
S
Time
Figure P2.34. m[n] = y[n] *x w[n]
(h) m[n] = y[n] x fn]
Intervals
n < —8
—8<n<—4
—4<n<0
0<n<2
2<n<6
6<n<10
n > 10

15



m[n] = y[n]*w[n]

2 T T

1
N

-3 |

k

Figure P2.34. Figures of y[n] and f[n — k]

P2.83(h) m[n] = y[n]*f[n]

mh(n) : amplitude
o
T
—0
—0

_2 L
_4 -
0] O
-6 [0} 0]
| | | | | | |
-8 -6 -4 -2 0 2 4 6 8
Time

Figure P2.34. m[n] = y[n] * f[n]

(i) m[n] = z[n] * g[n]

16



gln-K]

Intervals

n < —8
—-8<n<—4
—4<n<-1
-1<n<l1
1<n<?2
2<n<4
4<n<?7
7T<n<8
8§<n<11
11<n<13
13<n< 14
14<n<19
n>19
. | m[n]=z‘[n]*g[n] |
oL
T
Lo 1 2 s 4 5 s 71 s
2
15f
1k
0.5f
o—n_10 L 0 0 0 0 0 o e
05k
-1

Figure P2.34. Figures of z[n] and g[n — k|
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P2.83() m[n] = z[n]*g[n]

12 T T T

10 o} (0] © (0]

mi(n) : amplitude
[«
T
©
3]
©

Time

Figure P2.34. m[n] = z[n] * g[n]

(3) mn] = wln] * g[n]

Intervals
n < —12
—-12<n< -7
—7T<n< -6
—-6<n<-3
3<n<-1
-1<n<0
0<n<3
3<n<5H
5<n<T
T<n<9
9<n<11
11<n<15
n > 15
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m[n] = w[n]*g[n]
4 T T T

wik]

o [l

T T
o}

—o

—o
o}

1 1

15F 7

0.5 ,

gln-k]

n-10 n-4 n+2 n+8
-0.5f T

k

Figure P2.34. Figures of w[n] and g[n — k]

P2.83(j) m[n] = w[n]*g[n]

mj(n) : amplitude

or (©) (0] B
-1¢ i i i i 4
_2 I I I I I
-10 -5 0 5 10

Figure P2.34. m[n] = w[n] * g[n]

(k) m[n] = fn] x g[n]

19



gln-k]

Intervals
n < —13
-13<n< -7
—7T<n< -2
-2<n<-1
—-1<n<4
4<n<5
5<n<10
10<n <16
n > 16

m[n] = fin]*g[n]

n-10 n-4 n+2

n+8

Figure P2.34. Figures of f[n] and g[n — k|
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P2.83(k) m[n] = f[n]*g[n]

mk(n) : amplitude

-10 -5 0 5 10 15
Time

Figure P2.34. m[n] = f[n] * g[n]

2.35. At the start of the first year $10,000 is deposited in a bank account earning 5% per year. At the
start of each succeeding year $1000 is deposited. Use convolution to determine the balance at the start
of each year (after the deposit). Initially $10000 is invested.

21



P2.35 Convolution signals
12000 T T T

10000 o} ,

8000 [ 1

6000 [ 1

x[K]

4000

2000

-2 -1 0 1 2 3 4 5 6 7 8

1.5¢ N
(0] (1.05)n—k

0.5

| | | | | | |
-2 -1 0 1 2 3 4 5
Time in years

h[n—k]
o =
T T T
oOFS—m——0
(0]
& I I

Figure P2.35. Graph of z[k] and hn — k]

forn =-1
-1
y[=1]= > 10000(1.05)"* = 10000(1.05)"*"
k=-—1
$1000 is invested annually, similar to example 2.5
forn>0

n
y[n] = 10000(1.05)" " 43 ~1000(1.05)"*
k=0

y[n] = 10000(1.05)" " 4 1000(1.05)" > "(1.05)~*
k=0
+1 1 - (1_%)5)n+1
yln] = 10000(1.05)"** +1000(1.05)" ——5—
~ T

y[n] = 10000(1.05)" 1 + 20000 [1.05" " — 1]

The following is a graph of the value of the account.

22



x 10* P2.35 Yearly balance of investment
16 T T T T T T T

141 .

12+ ]

10 b

Investment value in dollars
[ee]
T
9]
|

L ofl]

-5 0 5 10 15 20 25 30 35
Time in years

Figure P2.35. Yearly balance of the account

2.36. The initial balance of a loan is $20,000 and the interest rate is 1% per month (12% per year). A
monthly payment of $200 is applied to the loan at the start of each month. Use convolution to calculate

the loan balance after each monthly payment.

23



P2.36 Convolution signals
T T T T

20000 - o} -

15000
= 10000 - 1

5000+ T

~5000 I I I I I I I I I
-2

15

(t.oy)™k

=~

Figure P2.36. Plot of x[k] and h[n — k]

forn = -1
—1
yln] = ) 20000(1.01)"~* = 20000(1.01)"**
k=—1
for >0

y[n] = 20000(1.01)" " — > ~200(1.01)"*
k=0

n
y[n] = 20000(1.01)" " — 200(1.01)" > (1.01)~*
k=0
y[n] = 20000(1.01)"** — 20000[(1.01)"+* — 1]

The following is a plot of the monthly balance.

24



x 10 P2.36 Monthly balance of loan
2.2 T T T T T T T

Loan value in dollars
o IS = = = =
o [oe) = N N o [oe]
T T T T T T T
| | | | | | |

I
N
T
I

o
N
T
|

0
-5 0 5 10 15 20 25 30 35

Time in years

Figure P2.36. Monthly loan balance

Paying $200 per month only takes care of the interest, and doesn’t pay off any of the principle of the loan.

2.37. The convolution sum evaluation procedure actually corresponds to a formal statement of the
well-known procedure for multiplication of polynomials. To see this, we interpret polynomials as signals
by setting the value of a signal at time n equal to the polynomial coefficient associated with monomial z™.
For example, the polynomial x(z) = 24322 — 23 corresponds to the signal z[n] = 26[n]+385[n—2]—§[n—3].
The procedure for multiplying polynomials involves forming the product of all polynomial coefficients that
result in an n-th order monomial and then summing them to obtain the polynomial coefficient of the n-th
order monomial in the product. This corresponds to determining w,[k] and summing over k to obtain
y[nl.

Evaluate the convolutions y[n] = z[n] * h[n] using both the convolution sum evaluation procedure and as
a product of polynomials.
(a) z[n] = d0[n] — 26[n — 1) + d[n — 2], h[n] = u[n] —uln — 3]

x(z) = 1—-2z2422
h(z) = 1+4z+2°
y(z) = x(2)h(2)

= 1—2z—-23424

yln] = dn]—dn—1]—d[n—3]—d[n—4]

25



yln] = z[n] xh[n] = hin] — 2h[n — 1] + h[n — 2]
= 0[n]—9d0n—1]—3dn—3]—dn—4]

(b) z[n] = uln — 1] —u[n — 5], h[n] =u[n— 1] — u[n — 5]
x(z) = z4+22+28+2
h(z) = z+22+28+21
y(z) = a(2)h(2)
= 22 422° 432" +42° +320 4227 428
yln] = d[n—2]+20[n—3]+30[n—4]+4[n — 5] + 36[n — 6] + 20[n — 7] + d[n — §]

forn—1<4 n<bhb
forn—4<4 n<8§

forn—4>5 n>9
y[ln] = dn—2]+28[n— 3]+ 30[n — 4] + 46[n — 5] + 3d[n — 6] + 26[n — 7] + d[n — §]

2.38. An LTI system has impulse response h(t) depicted in Fig. P2.38. Use linearity and time invari-
ance to determine themsystem output y(t) if the input x(t) is
(a) z(t) =20(t+2) + o(t — 2)

y(t) = 2h(t+2)+h(t—2)

(b) 2(t) = 6(t — 1) + 6(t — 2) + 6(t — 3)

y(t) = h(t—1)+h(t—2)+h(t—3)
(c) x(t) = 32,2 (= 1)P4(t — 2p)
y(t) = Y (=1)h(t — 2p)
p=0

26



2.39. Evaluate the continuous-time convolution integrals given below.

(a) y(t) = (u(t) —u(t = 2)) *u(t)
A it -]

2 T t

Figure P2.39. (a) Graph of z[7] and h[t — 7]

fort <0
y(t) =0
for t < 2
t
yit)= [ dr=t
0
fort>2
2
y(t):/dT:Q
0
0 t<0
y(t) = t 0<t<?2
2 t>2

Figure P2.39. (b) Graph of z[r] and h[t — 7]

fort+3<0 t<—3
y(t) =0
fort > -3

27



y(t) = % {1 6—3(t+3)}
oo fo t<
v = F[—e3t] 1> -3
(c) y(t) = cos(mt)(u(t + 1) — u(t — 1)) * u(t)
A -
1
_ \ . t T
-1 1
Figure P2.39. (c) Graph of z[r] and h[t — 7]
fort < —1
y(t) =0
fort <1
y(t) = / cos(nt)dr
y(t) = %sin(wt)
fort >1
y(t) = [1 cos(mt)dr
t)=0
ZI g

(d) y(t) = (u(t+3) —u(t —1)) *u(—t+4)

i R

28



Figure P2.39. (d) Graph of z[r] and h[t — 7]

fort—4< -3 t<1
1
y(t):/ dr =4
-3
fort—4<1 t<5
1
y(t):/ dr=5—1t
t—4
fort—4>1 t>5
y(t) =0
4 t<1
y(t) = 5—t 1<t<5b
0 t>5

(e) y(t) = (tu(t) + (10 — 2t)u(t — 5) — (10 — t)u(t — 10)) * u(t)

fort <0
y(t) =0
for0<t<5
t
y(t):/ rdr = —t?
0
for 5 <t <10
y(t):/ TdT+/(107T)dT —§t2+10t—25
0 5
for t > 10
5 10
y(t):/ TdT+/ (10 — 7)dr =25
0 5
0 t<O0
142 0<t<5
y@t) = S
L2 110t-25 5<t<10
25 t>10

() y(t) = 262 (u(t + 1) —u(t — 1)) * 2u(t + 2)

fort+2< -1 t<—3
y(t) =0
fort+2<1 —3<t< -1
t+2 4
y(t) :2/ 272dr = 3 [(t+2)°+1]
—1
fort+2>-1 t> -1



y(t)

t< =3
—-3<t<~1
t> -1

[(t+2)% +1]

wloo win O

(g) y(t) = cos(mt)(u(t + 1) —u(t — 1)) * (u(t +1) —u(t — 1))

fort+1< -1

fort+1<1

fort—1<1

fort—1>1

t< =2
y(t) =0
—2<t<0

t+1
y(t) = /1 cos(mt)dr = %Sin(w(t +1))

0<t<?2

/tll cos(mt)dr = —% sin(rw(t — 1))

t<—2
-2<t<0
0<t<?2
t>2

(h) y(t) = cos(2mt)(u(t + 1) —u(t — 1)) * e tu(t)

fort < —1

y(t) =0

fort <1 -1<t<1

t
y(t) = / e~ =) cos(2rt)dr
-1
G t
y(t) =’ 15 a2 (cos(27T) + 27 sin(277)) B
() = cos(2nt) + 2 sin(2mt) — e~ (D)

v = 1+ 4n2

fort>1 t>1

1
y(t) = / e~ =) cos(2rt)dr
-1
T 1
y(t) =e" 112 (cos(27T) + 27 sin(277)) »
ef(tfl) — e*(t+1)
t p—
y(t) e
0 t<—1
y(t) _ C05(27Tt)+271'1812(227rt)—e*(“rl) l<t<—1
+4m -

1+472

30
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(i) y(t) = (20(t +1) 4+ 5(t = 5)) xu(t — 1)

fort—1< -1 t<O0
y(t) =0
fort—1<5 0<t<6

By the sifting property.

y(t) = /t_126(t—|— 1)dr =2

—o0
fort—1>5 t>6
t—1
y(t) :/ (28(t + 1) + (¢t — 5)) dr = 3
— 00
0 t<0
y(t) = 2 0<t<6
3 t>6

() y(£) = (3(t+2) + 6(t — 2)) * (tu(t) + (10 — 26)u(t — 5) — (10 — t)u(t — 10))

fort < -2
y(t) =0
for t < 2 —2<t<?2
t
y(t):/ (t—7)0(r+2)dr =t+2
t—10
fort—5< -2 2<t<3
t t
y(t):/ (t—T)5(T+2)dT+/ (t—71)0(r —2)dr =2t
t—10 t—10
fort—5<2 3<t<7

t t

y(t) = / [0 — (t — 7)]6(r + 2)dr + / (t — )3(r — 2)dr = 6
t—10 t—10

fort—10 < -2 7T<t<8

t t

y(t) = / [10 = (t — 7)]3(r + 2)dr + / [10 — (t — 7)]6(r — 2)dr = 20 — 2t
t—10 t—10

fort —10 < 2 8<t <12

y(t) = /Ho[m (=75 — 2)dr = 12 — ¢

for t — 10 > 2 t>12
y(t) =0
0 t< —2
t+2 —2<t<?2
2t 2<t<3
y(t) = 6 3<t<T

20-2t 7T<t<8
12—t 8<t<12
0 t>12
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(k) y(t) = e " u(t) * (u(t +2) — u(t))
fort < —2

fort <0

fort >0

fort <0

fort >0

for0<t<?2

for2<t<4

ford <t<6

for 20 <t <20+ 2

y(t) =0
—-2<t<0
t

y(t) = / e =" dr

-2

1

— T |1 o(tt+2)

y(t) 5 {1 e }

0
y(t) = / e Ty
-2
{e*’ﬂ _ 6*7(t+2)}

t< -2
-2<t<0
t>0

[1 — efv(t+2)]

[e_’yt — 6_7(t+2):|

y(t) =0

o) = | Z (3) stt— 29— ryar

y(t) = i G)p /Ot et — 2p — 7)dr

p=0
Using the sifting property yields

=3 (i) e 120y — 2p)

p=0

(m) y(t) = (25(t) +8(t — 2)) = 300 (2)7 6(t — p)

p=
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let 21(t) = i (%)p 5(t — p)

p=0
fort <0
y(t) =0
fort < 2
y(t) = 26(¢t) * z1(t) = 2x1(¢)
fort>2
y(t) = 20(t) * z1(t) + 0(t — 2) * x1(t) = 221 (t) + z1(t — 2)
0 t<O0
y(t) = § 235, (3)"6(t—p) 0<t<?2
25 (4 6= ) + S50 (3) S —p—2) ¢ 0
(n) y(t) = e u(t) * ePtu(—t)
fort <0
y(t) = / ePte=B+NT qr
0
ePt
t) =
y(?) B+
fort >0
y(t) = / ePte=B+NT 41
t
ePt
)= — =B+t
y(t) 51y
e~
t) =
y(?) B+
Bt
< t<0
y(t) = { s
pry 120
et t<0
= h =
(0) y(t) = u(t) * h(t) where h(t) { RV
fort <0
t
y(t) z/ e*dr
y(t) = %6%
fort >0
0 ¢
y(t) = / e2Tdr —|—/ e 3Tdr
— 00 O
I N
y(t) = 5T 3 [1 ]



2.40. Consider the continuous-time signals depicted in Fig. P2.40. Evaluate the following convolution

integrals:.
(a)m(t) = =(t) * y(t)

fort+1<0

fort+1<2

fort+1<4

fort—1<4

fort—1>4

fort+1< -1

fort+1<0

fort+1<1

fort—1<0

fort—1<1

fort—1>1

t< -1
m(t) =0
-1<t<1

t41

m(t):/ dr=t+1
0

1<t<3

2 t+1
m(t):/ dT+/ 2dr =t+1
¢ 2

-1
3<t<H

4
m(t) :/ 2dr =10 — 2t
t

-1

t>5
m(t) =0
0 t<—1
t+1 -1<t<1
t+1 1<t<3
10-2t 3<t<5H
0 t>5
t< =2
m(t) =0
—2<t< -1
t+1
m(t)z—/ dr = —t —2
—1
-1<t<0
0 t+1
m(t):—/ d7’+/ dr =t
—1 0
0<t<1
0 1
m(t):—/ dTJr/ dr =t
t—1 0
1<t<2
1
m(t):/ dr=2—t
t—1
t>2
m(t) =0



0 t< -2
—t—2 -2<t<-1
t —-1<t<0
m(t) =
t 0<t<1
2—1 1<t<?2
0 t>2
(c) m(t) = x(t) = f(t)
fort < —1
m(t) =0
fort <0 -1<t<0
t
m(t) = / e” N dr =1 — =+
—1
fort <1 0<t<1
t
m(t):/ e tdr =1 —¢7?
t—1
fort <2 1<t<?2
1
m(t) = / e Tgr = elt _ o1
t—1
fort > 2
m(t) =0
0 t<—1
l—e D _1<t<0
m(t) = 1—e! 0<t<1
el7t—e™l 1<t<?2
0 t>2

(d) m(t) = z(t) * a(t)

By inspection, since z(7) has a width of 2 and a(t — 7) has the period 2 and duty cycle %, the area under

the overlapping signals is always 1, thus m(t) = 1 for all ¢.

fort < —1

fort <0

fort <1

fort <2

m(t)
-1<t<0

m(t):—/t dr=—-t—1
0<t<1 -

0 t
—/ d7'+/d7':—1—|—t
—1 0

1<t<?2

m(t)
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fort—2<1

fort—4<0

fort—4<1

fort>5

fort <0

fort <1

fort <2

fort <3

fort—4<0

fort—4<1

fort—4<3

fort>7

t—2 0 1
m(t):fQ/ de/ dT+/ dr=—-t+1
-1 t—2 0
0 t—2 1
m(t):—Z/ dT+2/ d7'+/ dr=t—-3
-1 0 t—2

3<t<4

0 1
m(t):—Z/ dT+2/ dr=2t—6
t 0

—4
4<t<b

1
m(t):2/ dr =10 — 2t
t

—4

m(t) =0
0 t<—1
—t—1 —-1<t<0
-1+t 0<t<1
—t+1 1<t<?2

t—3 2<t<3
2t—-6 3<t<4
10-2t 4<t<5b
0 t>5

m(t) =0
0<t<1

m(t):/oth:t

1<t<2

1 ¢
m(t):/de/dT:th
0 1

2<t<3

t—2 1 t
m(t)=2/ dT+/ dT—/deO
0 t—2 1

3<t<4

1 t—2 3
m(t)zQ/ dT—2/ dT—/ dr=3—1
0 1 t—2

4<t<bH

1 t—2 3
m(t)=2/ dT—2/ dT—/ dr =11 -3t
t—4 1 t—2

b<t<7

3
m(t)=—2/ dr=2t—14
t—a
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0 t<0
t 0<t<1
2—1 1<t <2
m(t) = 0 2<t<3
3—t 3<t<4
11-3t 4<t<5
A—14 5<t<T
0 t>7
for t < —1
m(t) =0
fort<1 -1<t<1
m(t):/t rdr = 0.5[t* — 1]
fort—2<1 1§t<31
t—2 1
m(t):/ 2Td7+/ Tdr = 0.5t> + 0.5(t — 2)* — 1
fort—4<1 3§t<51 o
m(t):/1 27dT =1 — (t — 4)*
fort>5 o
m(t) =0
0 t<—1
0.5[t* — 1] —1<t<1
m(t) = 0.5t2+05(t—2)2 -1 1<t<3
1—(t—4)° 3<t<5
0 t>5
fort+2<0 t< =2
m(t) =0
fort4+2<2 -2<t<0
m(t) =1
fort—1<0 0<t<l1

t
m(t):/ dr+2=t+2
0

for t < 2 1<t<?2

t
t—1
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fort <3

fort < 4

fort <5

fort—2<4

fort>6

fort+1<0

fort+1<1

fort<1

fort—1<1

fort>2

2<t<3
2 t
m(t)z—l—i—/ d7+2/ dr=t—2
t—1 2
3<t<4
t
m(t):—1+2/ dr =1
t—2
4<t<bH
4
m(t):—2+2/ dr =8 -2t
t—1
h<t<6
m(t) = -2
m(t) =0
0 t< -2
1 —-2<t<0
t+2 0<t«1
3 1<t<?2
= t—2 2<t<3
1 3<t<4
8—-2t 5<t<5b
-2 5<t<6
0 t>6
t< —1
m(t) =0
-1<t<0

t+1
m(t) = 7/ e Tdr =e D 1
0

0<t<1

t 1
m(t) = / e Tdr — / e Tdr=1+e ! =271
0 t

1<t<?2
1
m(t) = / e Tdr = —e e (D
t—1
m(t) =0
0 t<-—1
e~ 1 ~-1<t<0
l+e =271t 0<t<1
—e Tl e D 1<t <2
0 t>2
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fort+1< -1

fort+1<0

fort <0

fort—1<0

fort—1<1

fort>2

fort+1< -3

fort+1< -2

fort < -2

fort—1< -2

fort—1> -2

t< =2
m(t) =0

—-2<t< -1
m@%z—/ﬂfMT:—Qﬂ@+U2—H

-1
-1<t<0

t+1 t
m@%=—[ 'MT+/¥nh:—é(u+U2—ﬁ)+%@2_Q
0<t<1
mit) = /t rdr — / rdr = 0.5[2 — (t—1)%] — 0.5[1 — ]

1<t<?2

m(t) = /til rdr = 0.5[1 — (t — 1)?]

0 t< -2
—0.5[(t+1)2 —1] —2<t< -1
-5 ((t+1)? =) +5(#*—-1) —-1<t<0
05[t2 —(t—1)?]—-05[1—¢?] 0<t<]1

0.5[1 — (¢ — 1)?] 1<t<?2
0 t>2
t<—4
m(t) =0
—4<t< -3

m(t) = — /Hl(T +3)dr = —0.5(t +1)* + g -3(t+1)—-9

-3

-3<t< -2
t —2 t 11
m@y:/ ﬁ+3ﬂrf/i(T+3M77/,d7:ﬁ+ﬂt+§—
-3 t -2
—2<t< -1

2 t t+1 1
m(t):/ (T+3)d7+/ de/ d7:12f§(t71)272t
t—1 t

-2
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0 t<—4
—0.5(t+1)2=3(t+1)—5 —-4<t<-3

m(t) = t2 45t + 5 —3<t< -2
12-1t—-1)2 -2t —2<t< -1
0 t>2

(1) m(t) = w(t) * g(t)

fort < —1
m(t) =0
fort <0 -1<t<0
t
m(t) = —/ rdr = —0.5t> + 0.5
-1
fort <1 0<t«1
¢ t—1
m(t) = / TdT — / rdr = 0.5t> — (t —1)2 + 0.5
t—1 -1
fort—1<1 1<t<2
t—1 1
m(t):—/ TdT+/ rdr =1—(t—1)2
—1 t—1
fort—3<1 2<t<4
1
m(t) = —/ rdT = 0.5(t — 3)2 — 0.5
t—3
fort—3>1 t>4
m(t) =0
0 t<—1
—0.5t* 4+ 0.5 -1<t<0
0.5t2 - (t—1)24+05 0<t<1
m(t) = 2
1—(t—1) 1<t<?2
0.5(t—3)2-0.5 2<t<4
0 t>4
(m) m(t) = w(t) * a(t)
1 0<¢t<1
let a'(t) = -
0 otherwise
then a(t) = Z a'(t — 2k)
k=—o00
consider m/(t) = w(t) * a'(t)
fort <0
m'(t)=0
fort <1 0<t<1



fort—1<1 1<t<?2

t—1 1
m’(t):—/ dT+/ dr =3 —2t
0 t—1

fort —3<0 2<t<3
1
m’(t)z—/ dr = -1
0
fort—3<1 3<t<4
1
m'(t):—/ dr =t—4
t—3
fort—3>1 t>4
m/(t) =0
0 t<0
t 0<t<1
3—2t 1<t<?2
m(t) = ='=
-1 2<t<3
t—4 3<t<4
0 t>4
m(t) = Y m'(t—2k)
k=—o
(m) m(t) = f(t) = g(t)
for t < —1
m(t) =
fort <0 —-1<t<0

t
m(t) = —/ re=Tdr =t — 1+ 2e~HD
-1

fort <1 0<t«1
t
m(t):/ e dr =t — 1 — (t —2)e !
t—1
fort—1<1 1<t<?2

1
m(t) = / e~ dr = —e 1t -2)
t—1

fort—2>1
m(t) =0
0 t<—1
t—14+2"FD  1<t<0
m(t) = t—1—(t—2)et 0<t<1
—e Yt -2) 1<t<2
0 t>1
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let

then

consider

for t < —1

fort<0

fort<1

fort—1<1

U
=
~—

I
[+
~
—~
o~
I

>

~—

m(t) = Z m'(t — k)
k=—o0
fort <0
() =0
fort <1 0<t<1
t
m't)= [ e e Tdr =tet
0
fort <2 1<t<?2
1
m/(t) = e_t/ eTe Tdr = (2 —t)e!
t—1
fort>2
m/(t) =0
0 t<0
te~t 0<t<1
m'(t) = ¢ S
2—tet 1<t<2
0 t>2
m(t) = Y m(t—k)
k=—o

() = et 0<t<1
N 0 otherwise

oo

dit) = > d(t—k)

k=—o0

m/(t) = z(t) * d'(t)

m/(t) =0

-1<t<0
t

m'(t) = / —e T dr = =D g
—1

0<t<l

0 t

m'(t) = —/ —e~ =g —|—/ e~ dr =14 et —2e7?
t—1 0

1<t<2

1
m/(t) = / e dr = e~ (7 _ 7!
t—1
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fort—1>1 t>2

m/(t) =0
0 t<—1
e~ (D 1 —1<t<0
m'(t) = l+e -2t 0<t<1
e (=) el 1<t <2
0 t>2
m(t) = Y m(t—k)
k=—o0

2.41. Suppose we model the effect of imperfections in a communication channel as the RC' circuit de-

picted in Fig. P2.41(a). Here the input z(t) is the transmitted signal and the output y(t) is the received
signal. Assume the message is represented in binary format and that a “1” is communicated in an interval
of length T by transmitting the symbol p(¢) depicted in Fig. P2.41 (b) in the pertinent interval and that
a “0” is communicated by transmitting —p(t) in the pertinent interval. Figure P2.41 (c) illustrates the
transmitted waveform for communicating the sequence “1101001”. Assume that T'=1/(RC).
(a) Use convolution to calculate the received signal due to transmission of a single “1” at time ¢ = 0.
Note that the received waveform extends beyond time T and into the interval allocated for the next bit,
T < t < 2T. This contamination is called intersymbol interference (IST), since the received waveform at
any time is interfered with by previous symbols.

The impulse response of an RC circuit is h(t) = %e‘ RO u(t). The output of the system is the convolution
of the input, x(t) with the impulse response, h(t).

yp(t) = h(t) *p(t)
fort <0
Yp(t) =0
fort<T 0<t<T
t
)
yp(t):/o ot ™ dr
Yp(t) =1— e~ e
fort>T
T
1 _¢-n
Yp(t) = : Rot dr
_@=-7) ot
yp(t) — e "RC — ¢ RC
0 t<O0
y(t) = 1—e wo 0<t<T
_@=7) t

e rRC —e ®RC t>T

(b) Use convolution to calculate the received signal due to transmission of the sequences “1110” and
“1000”. Compare the received waveforms to the output of an ideal channel (h(t) = d(t)) to evaluate the
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effect of ISI for the following choices of RC':
(i) RC =1/T

(i) RC =5/T

(iii) RC = 1/(5T)

Assuming T'=1

—~
—
~—
8
—~
~
~
I

p(t) +p(t — 1) +p(t — 2) — p(t - 3)
yp(t) + yp(t -1)+ yp(t —2) +yp(t—3)

y(t) =

Received signal for x ='1110’
1 T T T

1/5
o
o e
\
|

RC =
o
T

Figure P2.41. x = “1110”

(2) =x(t) = p@)—pt—-1)—pt—-2)-pt-3)
y(t) = ) =yt —1) —yp(t —2) +y,(t = 3)
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Received signal for x = '1000’

1 T T T

RC =5

1/5
o
o e
\
|

RC =
.S
= (53] o
T T
!

Figure P2.41. x = “1000”

From the two graphs it becomes apparent that as 7" becomes smaller, ISI becomes a larger problem
for the communication system. The bits blur together and it becomes increasingly difficult to determine

if a ‘1’ or ‘0’ is transmitted.

2.42. Use the definition of the convolution sum to prove the following properties
(a) Distributive: z[n] * (h[n] 4+ g[n]) = x[n] * h[n] + x[n] * g[n]

LHS = z[n]* (h[n] + g[n])
= Z z[k] (h[n — k] 4+ g[n — k]) : The definition of convolution.
k=—o0
= Z (z[k]h[n — k] 4+ x[k]g[n — k]) : the dist. property of mult.
k=—oc0
= Z z[k)h[n — k] + Z z[k]gln — k]
k=—oc0 k=—o00

= z[n] x h[n] + z[n] * g[n]
= RHS

(b) Associative: z[n] * (h[n] * g[n]) = (z[n] * h[n]) * g[n]

LHS = z[n]* (h[n] xg[n])
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o0

> 2l

l=—o00

> 3

> hlklgln — K]

k=—o0

(

)

> kgt~ k—1

k=—o0

)

(z[l]hlk]g[n — k = 1))

l=—0c0 k=—00

Use v = k + 1 and exchange the order of summation

- ¥ (Z x[l]h[v—l}) gln — ]
= > (xv] % hlv]) gln — v]

RHS

(¢) Commutative: x[n] * h[n] = h[n] x z[n]

LHS

(x[n] * h[n]) * g[n]

> alklh[n — k]

k=—o0

Usek=n-—1

o0

> aln =[]

l=—00

> hllaln -1

l=—00

RHS

2.43. An LTI system has the impulse response depicted in Fig. P2.43.

(a) Express the system output y(t) as a function of the input z(t).

y(t)

x(t) * h(t)

z(t) * (%5(15) - %6(75 — A))
1

() — (i — &)

(b) Identify the mathematical operation performed by this system in the limit as A — 0.

When A — 0
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. .ox(t
ilgoy(t) N ilglo A

is nothing but <Lz (t), the first derivative of z(t) with respect to time ¢.

(c) Let g(t) = lima_oh(t). Use the results of (b) to express the output of an LTI system with im-
pulse response h™(t) = g(t) x g(t) * ... * g(t) as a function of the input z(t).

9(t) = lim h(?)
h™(t) = g(t)*xg(t) *...xg(t)
n times
YUt = wlt) b ()
= (z(t) x g(t)) * g(t) * g(t) * ... x g(t)
(n—1) times
let zV(t) = z(t) x g(t) = 2(t) % iiino h(t)
= iiglo (x(t) = h(t))
d
= Em(t) from (b)
then y"(t) = (ac(l)(t) * g(t)) xg(t) * g(t) *...x g(t)
(n—2) times
Similarly
d2
dO(0) e glt) = ol
Doing this repeatedly, we find that
y'(t) = 2"TV() xg(t)
= ()« glt)
Therefore
S0 =

2.44. If y(t) = x(t) = h(t) is the output of an LTI system with input z(¢) and impulse response h(t),

then show that J J
G0 =0 (5100)

00 = (520 +ntt)

and

Sult) = Salt)<h(t)
= % oo36(7')h(t—7)d7'



Assuming that the functions are sufficiently smooth,

the derivative can be pulled throught the integral

%y(t) = /:’0 .T(T)%h(t —T1)dt

Since z(7) is independent of ¢

G0 = a0 (Gn)

dt

The convolution integral can also be written as
d d [~
Ey(t) = — h(T)z(t — 7)dr

dt |
_ /ooh< 14t~ v
=/ T) % T)dT

- (%x@)*mw

2.45. If h(t) = H{5(t)} is the impulse response of an LTI system, express H{5 (t)} in terms of h(t).

H{® ()} = h(t) =6 (1)
= /wh@wQQ—Tmf

—0o0
By the doublet sifting property

— %mw

2.46. Find the expression for the impulse response relating the input x[n] or x(¢) to the output y[n] or
y(t) in terms of the impulse response of each subsystem for the LTI systems depicted in
(a) Fig. P2.46 (a)

y(t) = @) * {hi(t) — ha(t) * [h2(t) + hs(t)]} * hs(t)
yln] = z[n]* {—hi[n] * ha[n] x ha[n] + hi[n] = hg[n] * hs[n]} * he[n]

y() = (@) *{[=m @) + ha()] * h3(t) * ha(t) + ha(t)}
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2.47. Let hy(t), ha(t), hs(t), and hy(t) be impulse responses of LTI systems. Construct a system with
impulse response h(t) using hi(t), ha(t), ha(t), and h4(t) as subsystems. Draw the interconnection of
systems required to obtain

(a) A(t) = {ha(t) + ha(t)} = ha(t) * ha(t)

hy(H

h{t) h(t) ——

h()

Figure P2.47. (a) Interconnections between systems

(b) h(t) = hi(t) * ha(t) + ha(t) * ha(t)

hy(H (1)

D—

hyt) h,(H

Figure P2.47. (b) Interconnections between systems

(c) h(t) = ha(t) * {ha(t) + hs(t) * ha(t)}

h()

hy(H

hy) h,(H

Figure P2.47. (c) Interconnections between systems

2.48. For the interconnection of LTI systems depicted in Fig. P2.46 (c) the impulse responses are
hi(t) = 6(t — 1), ho(t) = e 2u(t), hs(t) = 6(t — 1) and hy(t) = e 3H+2y(t + 2). Evaluate h(t), the
impulse response of the overall system from x(t) to y(t).

h(t)

(=0t — 1) + e 2u(t)] * 6(t — 1) e 3Dyt +2) + (¢ — 1)
- [—5(75 C9) e 20Dy — 1)] w e 3Dy (4 4 2) 6t — 1)

= —etut) + e 20Dyt — 1) % e 3Dyt +2) +6(t — 1)
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= —f—“u@)+(e—%“4>—e—““%014t+1)+5&-n

2.49. For each impulse response listed below, determine whether the corresponding system is (i) mem-

oryless, (ii) causal, and (iii) stable.

(i) Memoryless if and only if h(t) = ¢d(t) or hn] = cd[k]
(ii) Causal if and only if h(t ) = O fort <0or hin]=0forn <0
(iii) Stable if and only if [ [h(t)|dt < co or Y57 |h[k]| < oo

(a) h(t) = cos(mt)
(i) has memory
(ii) not causal
(iii) not stable

(b) A(t) = e~ u(t — 1)
(1) hab memory
(ii) causal
(iii) stable

(c) h(t) = u(t+1)
(i) has memory
(ii) not causal
(iii) not stable

(d) h(t) = 35(t)
(i) memoryless
(ii) causal
(iii) stable

(e) h(t) = cos(xtyu(t)
(i) has memory
(ii) causal
(iii) not stable

() hln] = (=1)"u[-n]
(i) has memory
(ii) not causal
(iii) not stable

(2) hin] = (1/2)"
(i) has memory
(ii) not causal
(iii) stable

() hfn] = cos(En){uln] — uln — 10]}
(i) has memory
(ii) causal
(iii) stable

(i) hln] = 2u[n] — 2u[n — 5]
(i) has memory
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(ii) causal

(iii) stable
(5) hln] = sin(3n)

(i) has memory

(ii) not causal

(iii) not stable
() hln] = S5, 8l — 2]
(i) has memory

(ii) not causal

(iif)

iii) not stable

2.50. Evaluate the step response for the LTI systems represented by the following impulse responses:

(a) hln] = (=1/2)"u[n]

forn <0
s[n] = 0
forn >0
st = 322"
k=0
-3 (2)

forn <0
s[n] =0
forn=20
s[n] =1
forn>1
s[n] =0
1 n=0
sl = {o n+0
(¢) hln] = (=1)"{u[n + 2] — u[n — 3]}
forn < —2
sln] =0

for —2<n<2
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1 n=42,0
s[n] =
{ 0 n==1
forn >3
sfn] = 1
(d) h[n] = nuln]
forn<0
sin] =0
forn>0
s[n] = Z k
k=0
n(n+1) >0
_ 2 -
sln] - = { 0 n <0
(e) h(t) = e
fort <0

fort >0
0 t
s(t) = / etdr —|—/ e Tdr=2—¢"
oo 0
) = et t<O0
5 o 2—et t>0
() h(t) = 63 (t)
fort <0
s(t)=0
fort >0

() h(t) = (1/4)(u(t) — u(t —4))
fort <0

fort < 4
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fort > 4

fort <0

fort >0

s(t) =

V)

—~

~+~

~

I
A~ =

t
1

/dT:—t
0 4

0 t<0
gt 0<t<4
1 t>4
s(t)=0
t
s(t):/dT:t
0
0 t<0
t t>0

2.51. Suppose the multipath propagation model is generalized to a k-step delay between the direct and

reflected paths as shown by the input-output equation

y[n] = x[n] + axn — k]

Find the impulse response of the inverse system.

R [n] + ah'™[n — k] =
R10] 4+ ah™[—k] =

hinv [0] —

hinv [Tl] —

R™[n] =

The inverse system must satisfy
d[n]

1

Implies

1

For the system to be causal
—ah™[n — K]

Which means h"*[n] is nonzero

only for positive multiples of k
o0

> (—a)Ps[n — pk]

p=0

2.52. Write a differential equation description relating the output to the input of the following electri-

cal circuits.
(a) Fig. P2.52 (a)
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Writing node equations, assuming node A is the node the resistor, inductor and capacitor share.

va(t) — x(t) d B
(1) y(t) + —F——+Cvat) =0
For the inductor L:
d
(2) valt) = Lay()
Combining (1) and (2) yields
1 d? 1 d 1
mw(t) = @y(t) + %Ey(t) + ﬁy(t)

(b) Fig. P2.52 (b)
Writing node equations, assuming node A is the node the two resistors and Cy share. i(¢) is the current
through Rs.

(1) 0 :<z%mw+wﬁé“”+un
Implies
i) = ~Capyte) - 1020
For capacitor Ch
_ it
—V01(t) = o
y(i) = i(t)Ry + Veu(t)
@) ) = Rei)+ )
Combining (1 )and (2)

d? 1 1 1 d 1 _ 1 d
a0 + (ot + oo + o) () + crommm () = Grommm () + ol ()

2.53. Determine the homogeneous solution for the systems described by the following differential equa-

tions:
(a) B%y(t) + 10y(t) = 2x(t)

or+10 = 0
r = =2
Y0 = ac?
(b) sz y(t) + 6.4y (t) +8y(t) = a(t)
r“+6r+8 = 0
r = —4,-2
y(h)(t) = e M fpe
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244 = 0
o= 442
y M) = e 4 cpeI?
2
(d) F=y(t) + 245y(t) +2y(t) = x(t)
?4+2r4+2 = 0
ro= —14j
y (t) = crel 71D 4 oy e (1)
2
() dmy(t) +24y(t) +y(t) = fa(t)
rP4+2r+1 = 0
r = —1,—-1
y M) = cret +egte™

2.54. Determine the homogeneous solution for the systems described by the following difference equa-
tions:

(a) y[n] — ay[n — 1] = 2z(n]
r—a = 0

yMn] = ca

(b) yln] — Jyln — 1] = gyln — 2] = z[n] + z[n — 1]
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r = 4j
3 n 3 n
P - () v ()

(d) y[n] + y[n —1] + %y[n — 2] = z[n] 4+ 2z[n — 1]

1
2
Z =0
r+r+4
11
T Ty T

y Bl = o (—%)n—chn (-%)n

2.55. Determine a particular solution for the systems described by the following differential equations
for the given inputs:

(a) 5%;/(15) + 10y(t) = 2x(t)

(i) (t) = 2
y(p)(t) k
10k = 2(2)
o= 2
)
2
@@ = Z
y (1) :
(i) z(t) = et
y® (t) = ket
—bke " +10ke™" = 2e7'
2
E = =
)
2
yP(1) = 5e_t
(iil) x(t) = cos(3t)
yP)(t) = Acos(3t) + Bsin(3t)
%y(p) (t) = —3Asin(3t) + 3B cos(3t)
5 (—3Asin(3t) + 3B cos(3t)) + 10A cos(3t) + 10Bsin(3t) = 2cos(3t)
—-15A+10B = 0
10A + 158 2
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y?(t)
Akt + 4k,
k1

ko

y(p) ()

y(p) ()

= kit+ ke

Bl wWwiks]lw © W

y(p)(t) = ket
ke=t +4ke”t = —3e7t

Yy = et

(iil) z(t) = (cos(t) + sin(t))

—Acos(t) — Bsin(t) + 4Acos(t) + 4Bsin(t) =

“A+4A =
~B+4B =
A =

B —
yP(1) =

o7

65
_ 5
- 65
4 6
= & cos(3t) + o sin(3t)

Acos(t) + Bsin(t)
—Asin(t) + B cos(t)

—Acos(t) — Bsin(t)
—3sin(t) + 3 cos(t)
3

-3

1

-1

cos(t) — sin(t)



y P (t) = ke 3

ke 3t — ke 3 + ke ™3t = —3e7 3
3
k = ——
4
3
y (1) = —16_‘%

(ii) 2(t) = 2~

Since e~? and te~! are in the natural response, the particular soluction takes the form of

y(p) t) = kt?e~t
d
Ey(p) (t) = 2kte™ ' — kt?e™?
d2
ﬁy(p) (t) = 2ke ' —dkte™' + kt?e™?
—2e7t = 2ke™' —dkte™t + kt?e™! +2(2kte™" — kt?e™t) + kt?e !
E = -1
yP) t) = —t2e

(iii) (t) = 2sin(t)

y(p) (t)
d

2@
e (t)

Ly )

—Acos(t) — Bsin(t) — 2Asin(t) + 2B cos(t) + A cos(t) + Bsin(t)
—-A-2B+ A

—-B—-2A+B

A

B

y(p) ()

A cos(t) + Bsin(t)
—Asin(t) + B cos(t)

—Acos(t) — Bsin(t)
2 cos(t)

2.56. Determine a particular solution for the systems described by the following difference equations

for the given inputs:
() yln] — Zyln — 1] = 2z[n]
(1) z[n] = 2u[n]

yPln] = kuln]



1)

yPn] = Acos(%n) + Bsin(gn)
2COS(§’I7,) = Acos(gn) + Bsin(g n) — i Acos( 7 (n—1))+ Bsin(g(n - 1)))
Using the trig identities
sin(f £ ¢) = sinfcos¢ £ cosfsin ¢
cos( £¢) = cosfcos¢p Fsinbsing
y®n] = 2.6381cos(gn) +0.9170 sin(gn)
(b) yln] — Jyln — 1] — gyln — 2] = z[n] + z[n — 1]
(i) #[n] = nuln]
yPn] = kinuln] + kouln]
k1n+kgfi[k1(n71)+k2]7%[1431(7172)4*]{32} = TL+TL*1
oo B
o -
Wi = - 1%
vl = D) - D)
(ii) @[n] = (3)"uln]
1 n
WOl = k(g) b



Wl = <1(g)
(iii) z[n] = 71" u[n]
yPn] = kelituln)
peidn _ Lpeito-1) _Lpite-2) _ ife | g3
k= 1 1:26 f T
1—ge 75 —gke /2
(iv) z[n] = (3)"uln]
Since (%)n u[n] is in the natural response, the particular solution takes the form of:
yPn] = kn <%) uln]
1 n 1 1 n—1 1 1 n—2 1 n 1 n—1
n(3) —ie-n(3) —me-a(s) = () ()
E = 2
1 n
VOl = 20 (5) b
() y[n] +yln — 1] + 3y[n — 2] = z[n] + 2z[n — 1]
(i) [n] = u[n]
yPllln] = kuln]
1
k+k+ ik = 242
o= o
5
8
YOl = zul
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2.57. Determine the output of the systems described by the following differential equations with input
andinitial conditions as specified:

(a) fry(t) +10y(t) = 2x(t), y(07) =1, 2(t) = u(t)

t>0 natural: characteristic equation
r+10 = 0
r = —10
y(n)(t) _ Ceflot
particular
1
YO = kult) = zu(t)
1
y(t) = ;e
5
(O_) 1 ! +
= = —_ C
Y 5
4
c = =
5
1
y(t) = s [1+4e™ " u(t)

(b) y(t) +5Ly(t) +4y(t) = La(t), y(07) =0, Ly(t)|,_, = 1.2(t) = sin(t)u(?)

t>0 natural: characteristic equation
P 4+5r+4 = 0
r = —4, —1
y ™M) = cre ™ 4 cpe
particular
yP(t) = Asin(t) + Bcos(t)
5 . 3
= sin(t) + Y cos(t)
_ 5 3 —at —t
y(t) = 2 sin(t) + 3 cos(t) + cre™ " + coe
_ 3
y(07)=0 = @4—614—02
d 5
—y(0 =1 = — —4c¢ —
a0 _ gg T
_ 13
T TE
1
co = =
2 6
5 3 13 1
y(t) = ey sin(t) + v, cos(t) — H(f“ + ¢ t

(0)ay(t) + 6:5y(t) + 8y(t) = 2x(t), y(07) = —1, &y(t)],_- = L, 2(t) = e~"u(t)
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t>0
r’+6r+8 =
T =

y"m(t) =

<

—~
~

=

(d) Loy(t) +y(t) = 3La(t),

t>0
r?4+1
r

y™(t)

y(p) ()

d2
W?J(p) (t)

—2ke™ " + kte™" + kte™"
k

y(p)(t)

y(t)

y(07)

u(t)

natural: characteristic equation
0

—4, —2

016_2t + cze_4t

particular

ke tu(t)
2
3¢ u(t)

2
ge_tu(t) +cre % + cpe™

C C
3 1 2

—— —2c1 — 4
3 C1 C2

5

[\

Wl N O Ot
|
N
&
+
<t
<.bl
S
~~

®
L
<
~
=
SN~—
|
| Ot
®

y(07) = =1, Ly(t)|,_, = 1,2(t) = 2te~"u(t)

natural: characteristic equation

= 0
= Acos(t) + Bsin(t)

particular

= kte tu(t)

= —2ke '+ kte™?

= 3[2e7" —2te™]

= -3

= —3te lu(t)

= —3te "u(t) + Acos(t) + Bsin(t)
= —-1=0+A4+40

= 1=-34+0+2B

= —3te ‘u(t) — cos(t) + 4sin(t)
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2.58. Identify the natural and forced response for the systems in Problem 2.57.
See problem 2.57 for the derivations of the natural and forced response.
(a)

(i) Natural Response

r+10 = 0
r = —10
y(n) (t) — cle—lot
y(O_) =1 = ¢
y(n) (t) _ 6710t
(ii) Forced Response
D) = L pe-t0t
y(t) 3 + ke
1
y(0) =0 = - +k
1 1
D(4) = = _ Lg-10t
y (1) F T Ee
(b)
(i) Natural Response
y(") (t) = cre” + coet
y(07)=0 = c+e
d
—y(t =1 = —dec; —
40 . 1= e
1 1
y™M) = —§C_4t + ge_t
(ii) Forced Response
y D)y = 5 sin(t) + 3 cos(t) +cre™* 4 cpe™!
34 34
3
y(0)=0 = 3—4—!—01 + ¢
d 3
e —0 = 4 —
a’/D 3g T
) 3 4
y D)y = 3 sin(t) + Y cos(t) + ae““ - Ee_t
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()

(i) Natural Response

YO = e g
y(O_) =—-1 = c+c
d
—y(t =1 = —4 -9
dty( ) o C1 Co
1
y(n) t) = 5674t _ 26721&
(ii) Forced Response
2
y(f)(t) = 3¢ bu(t) + cre2u(t) + coe Mu(t)
2
y0) =0 = s+ate
d 2
-yt =0 = -5 -2 -4
pr0) L S~ 20— dep
2 1
y (1) = e tult) — e *u() + geu(t)
(d)
(i) Natural Response
y™M(t) = ¢ cos(t) + cysin(t)
y(Oi) =-1 =
d
—y() =1 C2
dt t=0-
y™M(t) = —cos(t) +sin(t)
(ii) Forced Response
y (1) = —=3te  u(t) + c1 cos(t)u(t) + cosin(t)u(t)
y(0)=0 = ca+
Dy =0 = “s+e
at’ =0 ?
yt) (t) = —3te u(t)+ 3sin(t)u(t)

2.59. Determine the output of the systems described by the following difference equations with input

and initial conditions as specified:
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(b) yln] -

n>0 natural: characteristic equation
1

r—- = 0
2

Ol = e(3)

particular

Wt = k(-3) ul

Wt = (=3) ub
Translate initial conditions
vl = yln— 1]+ 2eln]
Jlo] = %3 9 7
i = (-3) ubol+e(3) ulo
; = 1l+c¢
L
2 n
i = (=3) ubl+3(3) b

gyln — 2 = 2[n — 1], y[-1] = 1y[-2] = 0, z[n] = u[n]

natural: characteristic equation

0
41
3
\" \"
c1 (g) + c2 <—§)
particular

wlowlo =
£
=)
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yin] = %u[n] b (%) t o (-%)

Translate initial conditions

1
yin) = guln—2+afn —1]
1
1 10
1] = -1+1=—
y[1] gitl=15
= g+c +c
= 3 1 2
10 9 1 1
Y 61— 362

() ylnl+ Jyln — 1] = gyln — 2] = 2n] + 2[n — 1], y[-1] = 4,y[-2] = =2, 2[n] = (=1)"u[n]

n=>0 natural: characteristic equation
T2+lr—l = 0
4 8
11
T T
1\" 1\"
o= o3 o)
particular
yP ] = k(-1)"uln]
forn >1
1 1
B + kg ()7 kg ()" = (1) (1) =0
kK = 0

i = o) va(-1)

Translate initial conditions

1 1
yln] = —Zy[n—1]+§y[n—2}+$[n]+ﬂf[”—1]
11 1
— A4 (D 41+0=—=
y[0] 1 +8( )+1+40 1
1/ 1\ 1 9
1] = ——(—=)4-44-14+1=—=
vl 4(4)+8+ HRRRET;
L oy
4 = Co
9 1 1
16 297 1@

OS]

66



n>0 natural: characteristic equation
1
TZ—ZT—F— =0
11
r o= -, =
4’2
1\" 1\"
(n) — z il
= (3 +o ()
particular
yP[n] = kuln]
3 1
k—k-+k- = 4
4+ 8
32
k = —
3
32
YOl = uln

yin] = 33—2u[n] +e (%)n o (i)n

Translate initial conditions

3 1
yln] = 1 [nfl]*gy[n*2]+2$[n}
31 39
= 21 St 422 =2
ol = 21 rae =
3739\ 1 241
11 = 2(2) 2149202 =22
i = 3 (%F)-grra=2
L -
g g rare
241 32 +1 L
32 3 2971
] = 32 ufr] 27 (1 ”+23 1\"
yimb =3 1 \2 24 \ 4

2.60. Identify the natural and forced response for the systems in Problem 2.59. (a)
(i) Natural Response
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(ii) Forced Response

o = 4+ ()

Translate initial conditions

vl = yln—1]+ 2]

0] = S(0)+2=2
yl0)=2 = k+1

k=1

o = (3 (2

(b)

(i) Natural Response

Q/\
2
=
Il
| =
—~ O
Wl =
~__
3
£,
=)
|
| =
/|\
W —
~
3
£,
=)

(ii) Forced Response

9 1\" 1\"
y(f)[n] = gu[n}—i—cl (3) u[n] + c2 (—5) uln]
Translate initial conditions
1
sinl = gl —2)+afn 1
1
] = fori-1
il = G0+1=
9
y[0]=0 = §—|—c1—|—02
9 1 1
y[l]—l = g 501—582
9 3 /1\" 3 \"
(H _ 7 I et e
O = Gl =3 (5) bl 3 (-3) i



(i) Natural Response

16,

o)
A
le/—\/‘\/\
N~ NI~ N
N~
| | B
[ V]
+
7 N
e~ =
~

| =

1\" 1\
O = Bl e (<5) alil e (§)
Translate initial conditions
1 1
sl = — gyl — 1+ gyln— 2]+ aln] + aln 1]
1 1
yl0) = —J0+ 0+1+0=1
1 1 1
yl] = 71+ 0-1+1=—2
16
yj=1 = —+a+
1 16 1
=3 = 5 3mt g™
16 14 \" 37 (1
N - (-1 S R
VO = Pevradnl - (<3) o+ 3 (5)

=
=,
_|_

> =
NN
e

£
=)

[ V)
+
Q
N~ —
| |
—

N= N= N =
N N

N —
=
=

|

x/:\_/vv
| | S
+
wlw /N /N

~lot @

o o
— =
/\A/—\/—\
7 N
| =
~_
3
£,
=)

D
=)



(ii) Forced Response

32 1\" \"
y ] = gu[n]—kcl (§> uln] + c2 (Z) uln)
Translate initial conditions
3 1
yln] = Jyln —1] = gyln — 2] + 22[n]
3 1
= -0—--04+2(2)=14
y[0] 10— 50+2(2)
3 1
] = 24--0+22) =7
i = 4= loraw)
32
y[O]:4 = §+61+02
32 1 1
yllj =7 = §+§C1+162
32 1\" 4 (1\"
(H _ 22 _ - [z
V0 = St =5 (3) a5 () ol

2.61. Write a differential equation relating the output y(¢) to the circuit in Fig. P2.61 and find the
step response by applying an input xz(¢) = wu(t). Next use the step response to obtain the impulse
response. Hint: Use principles of circuit analysis to translate the ¢ = 0~ initial conditions to t = 0F
before solving for the undetermined coefficients in the homogeneous component of the complete solution.

o(t) = inlt) +in(H) + i)
wo) = inlt)
n o= 1l
ylt) = Lgi
i = 1 /0 y(r)dr +ir(07)
(1) = Cay)
o) = vO)+ [ wrdr+in07) + ¢4
Salt) = Oyt + Syl + ()

Given y(07) =0, Zy(t)|,_, =0, find y(0%), Ly(t)|,_:-
Since current cannot change instantaneously through an inductor and voltage cannot change instanta-

neously across a capacitor,

ir(07) = 0
y(0") = y(07)
Implies

ir(0T) = 0



Solving for the step response,

d

r? +5r + 20

.
y™(t)

Wo

ic(0t) = 1 since
d

ic(t) = Coy(t)
d ic(0T) 1
a?') —or CC - C

d? d
@y(t) + 5%@(1?) + 20y(t)

Finding the natural response
0
—5+ 555
2
cle” 3t cos(wot) + coe” 31 sin(w,t)

V55

2
Particular

k

u(t)

0+ 0+ 20k

0

Step Response
y" (1)

Using the initial conditions to solve for the constants

C1
CoWyp

—efgtsin(w t)

Wo °

10 _s, . Vb5
——¢ 2 sin(——¢
= (-1

2.62. Use the first-order difference equation to calculate the monthly balance of a $100,000 loan at 1%
per month interest assuming monthly payments of $1200. Identify the natural and forced response. In

this case the natural response represents the loan balance assuming no payments are made. How many

payments are required to pay off the loan?

y[n] —1.01ly[n —1] = z[n]
xz[n] = —1200
Natural
r—101=0



y"n

y[—1] = 100000
y"™[n]
Particular

y(p) [n]

cp — 1.01¢,

y(p) [n]

Forced

= ¢,(1.01)"
= cu(1.01)71
= 101000(1.01)™

= ¢
= —1200

= 120000

Translate initial conditions

= 1.01y[—1] + z[0]

= 1.01(100000) — 1200 = —1200

= 120000 + ¢f(1.01)"

— 120000 + ¢;

= 120000 — 121200(1.01)"

To solve for the required payments to pay off the loan, add the natural and forced response to obtain the

complete solution, and solve for the number of payments to where the complete response equals zero.

y'9[n]
y ) =0
n

— 120000 — 20200(1.01)"

179

1%

120000 — 20200(1.01)

n

Since the first payment is made at n = 0, 180 payments are required to pay off the loan.

2.63. Determine the monthly payments required to pay off the loan in Problem 2.62 in 30 years (360

payments) and 15 years (180 payments).

1.01
100000
b

The homogeneous solution is

cn(1.01)"

The particular solution is

a[n]
Solving for ¢,

b
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¢y = —100b

The complete solution is of the form

yln] = ¢p(1.01)" —100b
Translating the initial conditions
y[0] = 1.01y[-1] + «[0]
= 101000+ b
101000 +b = «¢p, — 1000
c, = 101000 + 101b
y[n] = (101000 + 101b)1.01™ — 100b

Now solving for b by setting y[359] = 0
—101000(1.01)3%°

= —1028.61
(101)1.0135% — 100

Hence a monthly payment of $1028.61 will pay off the loan in 30 years.

Now solving for b by setting y[179] =0

_ —lo1000(Lon)*™ o
~ (100101 — 100 '

A monthly payment of $1200.17 will pay off the loan in 15 years.

2.64. The portion of a loan payment attributed to interest is given by multiplying the balance after

T
100

if y[n] is the loan balance after the n*" payment, the portion of the n*” payment required to cover the

the previous payment was credited times where 7 is the rate per period expressed in percent. Thus

interest cost is y[n — 1](r/100). The cumulative interest paid over payments for period n; through ns is
thus

n2

I'=(r/100) > yln —1]

n=ni

Calculate the total interest paid over the life of the 30-year and 15-year loans described in Problem 2.63.

For the 30-year loan:

359
I = (1/100) ) y[n — 1] = $270308.77
n=0

For the 15-year loan:

179
I = (1/100) > y[n — 1] = $116029.62

n=0
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2.65. Find difference-equation descriptions for the three systems depicted in Fig. P2.65. (a)

2

M~
—

x[n] f[n] f[n-1] E Y[ni

= ﬁ/

-2

Figure P2.65. (a) Block diagram

flnl = —2y[n] + =z[n]
yln] = fln—1+2fn]
= —2yln— 1]+ z[n — 1] — 4y[n] + 2z[n|
Sy[n] +2yln—1] = z[n— 1]+ 2z[n]

e
VE

X[n=1] . f[n] fln-1] y[n]

Figure P2.65. (b) Block diagram

fln] = yln]+2z[n—1]
fln—1]
yln — 1] 4+ z[n — 2]

=
S,
I
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x[n] f[n]

y[g]

Figure P2.65. (c) Block diagram

fol = o] = gyl
nl = aln—1]+ fln—2)
il + gun =2 = a1+ o -2

2.66. Draw direct form I and direct form II implementations for the following difference equations.
() yln] — Lyln — 1] = 6]n]
(i) Direct Form I

X[n] yIn]

Vo

V

~
=

N
2

Figure P2.66. (a) Direct form I
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ML B i
N
S
-1
(ii) Direct form IT 4
Figure P2.66. (a) Direct form II
(b) yln] + 3yln — 1] = gyln — 2] = z[n] + 2z[n — 1]

(i) Direct Form I

X[n] @ @ \ y[n]
S

s o=

1
38

V

ol

v

Figure P2.

o

6. (b) Direct form I

[ ] y[n]
x[n S @
@

(ii) Direct form IT
Figure P2.66. (b) Direct form IT

VN

A

A OOk
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() yln] — 5yln — 2] = 2[n — 1]
(i) Direct Form I

y[n]

é[n] < @ \

A ©l

Figure P2.66. (c) Direct form I

)

S
y[j]
S

1
9

(ii) Direct form II

Figure P2.66. (c) Direct form II

(d) y[n] + Lyln — 1] — y[n — 3] = 3z[n — 1] + 2z[n — 2]
(i) Direct Form I

7

V



X[n]

S =
2 2
- ) T

Figure P2.66. (d) Direct form I

X[n]
— )

y[n]

AI\JIL
Vo

VN

(ii) Direct form IT
Figure P2.66. (d) Direct form II

2.67. Convert the following differential equations to integral equations and draw direct form I and

direct form IT implementations of the corresponding systems.
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(a) Ly(t) + 10y(t) = 2z(t)

Direct Form I

X(t) 2 y()
B~ f +@ =

Figure P2.67. (a) Direct Form I

Direct Form II

x(t) <:>

/
-10 | 2 Y

Figure P2.67. (a) Direct Form II

(b) xy(®) + 55u(t) + dy(t) = (1

Direct Form I
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t y(t)
X(t) . \

V
|
%{;
—

Figure P2.67. (b) Direct Form I

Direct Form II

X(t)

y(t)

Figure P2.67. (b) Direct Form II
() dmy(t) +y(t) = 3gx(t)
y) +y@ ) = 3D
y0 = 300 -y

Direct Form I
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t y(t)
o O1*

Jw

Figure P2.67. (c) Direct Form I

Direct Form II

X;t)_@}

/

/

-1

Figure P2.67. (c¢) Direct Form II

(@) Loy(t) +2Ly(t) + 3y(t) = 2(t) + 3L (1)

)+ 22 + 3y (1) = 2@ () +322 (1)
y(t) = 2@ @)+ 302 ) - 29D (1) - 3y (1)

Direct Form I
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yo

~
—

Figure P2.67. (d) Direct Form I

Direct Form II

J

/

]
/
Ny
Tw

=3

Figure P2.67. (d) Direct Form II

[l

2.68. Find differential-equation descriptions for the two systems depicted in Fig. P2.68.

(a)

<
—~
~
~—
|
[\~
<
—~
o~
~—
Il
8
—~
~
~—
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w0 = 2000+ 2900~y )
o) —2 0 vyt = L)

2.69. Determine a state variable description for the four discrete-time systems depicted in Fig. P2.69.

(a)

gln+1] = —2qn] + 2[n]
3z[n] + qn]

=
=,
[

(b)
an+1] = —gln] + 2z[n]
1 1
@h+1] = 7 [n] + 5(12[”] — x[n]
yln] = —2q2[n]

|
—
= O
D= |
—_
I
=n
I
—
Lo
—_
| S
(¢]
|
L—
|
[\
(en)
[
-
|
=

(©
aln+1 = —gasln] + aln)
@ln+1] = il + ol + 200
w1 = alnl— Jasl] + 3o
yln] = qs[n]
00 —3 1
A=|10 ! b=[2|, c=[0 0 1], D=
01 —3 3
(@
ali+1] = =gl + gal) + i)
@n+1] = qn]+ qln] + 2zn]
ul = el - aln)
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I
| — |
o |
IS
= ol
—
=n
Il
—
N =
| I
¢]

I
—
o
=
—_—
I
I
=

2.70. Draw block-diagram representations corresponding to the discrete-time state-variable descrip-

tions of the following LTT systems:

(a) A = i 0%], =l” c=[1 1], p=[
1
aln+1 = qln] - 5612[71] + z[n]
@eh+1 = %ql [n] + 2z[n)
yln] = qi[n] + ga2[n]
1
n+1 n
X[ ] al ain| @ y[n]
> Z —=— S = @ —

~

3

(1) s anl

g n+1]

Figure P2.70. (a) Block Diagram

(b)A:[i _%], b=

;] c:{l 71}, D = [0]

an+1 = aln] - 5aln] +zn]
@n+1 = %ql [n] + 2z[n)
yln] = ai[n] - ¢2[n]
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VN

qz[ n+1] qz[ n] 1 yIn]

L qi”]é@% : o

A
\
V

_1
(c)A—l(l) i] b= (1)] c=[1 0], D=1
3
alnt1] = el
@l +1] = ol ~ gl + 2l
i) =l + oo

1
3
+1 +1
X @g;] . ng:] ql[n>] S
-1 2 ql[n]

Figure P2.70. (c) Block Diagram

(d)A:[g H b:[i}, c:{l _1}, D =[0]

an+1 = 2z[n]
@n+1] = qln]+ 3zn]
yln] = an] - g[n]
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x[n] , 9[n+]] . anl @ y[n]
B B B B u B

ajri

/AR

30 i

Figure P2.70. (d) Block Diagram

A

2.71. Determine a state-variable description for the five continuous-time LTI systems depicted in
Fig. P2.71.

(a)

A=[-1, b=0], c=[,
(b)
UEINY

1 -2 0
(c)

= —q(t) +z()
2q(t) + 6(t)

—8qa(t) — 3q3(t) + (2)

q1(t) + 4qa(t) + 3x(t)

= 2q1(t) + q2(t) — g3(t)

q3(t)
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0 -8 -3 1
A=|1 4 0|, b=1]3 ,c:[()Ol},D:[O]
2 1 -1 0
(@
d
a(t) = Q1(t)R+LEQ1(t)+Q2(t)
1) Sa®) = ~Ta®- e+ 1)
wlt) = Chal)
Q) Gel) = sul
a(t) = a(t)R+y(t)+q(t)
B v = ~Ra) - e + )

Combining (1), (2), (3)

>
Il
| —— |
|
[l
o |
il
_ 1
o
Il
| — |
O =
| I
)
Il
—
|
=
|
—
R
)
Il
=

<
(0
o) = YR+ )
B) ) = —pal)+ )
W) = CSa®)+ e
1 1 d
_qu(t) + E:r(t) = Cﬁfh(t) + q2(t)
(1) %ql(t) = —R—qu(t)—%qz(t)+%x(t>
a) = L%QQ(t)
@) Sub = ta®
Combining (1), (2), (3)
as| ] e ] el o) oe
L

2.72. Draw block-diagram representations corresponding to the continuous-time state variable descrip-

tions of the following LTT systems:

1 _
(a) A= 80%], =[211,c={11},17=[0]
Sa) = a0
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2l = ) +22()
y(t) = a(t)+q(t)
~1/2
O 2 40 e
1 1 y(®)
i §
q,(t) q,(t)
% R
Figure P2.72. (a) Block Diagram
(b)A=“ (1)] b:[_;]’ c:[o —1}, D = [0]
L) = al)+al) )
%%(ﬁ) = qi(t) +2z(t)
y(t) = —q2(t)
1
a® — a9 1y

= a(t) —q()




< B
—~
4~ o+
~— —
|-
»QI
fin
(=)
~ N
~
~
~—
+
ot
=
—
~
~—

- 1.(6)

x 5 —am an _; —4%O a0 yo

f = = @% f = =
-1 2

Figure P2.72. (c) Block Diagram

1 -2
(d)A:[1 , ] b=

L) = 0l - 200+ 22()
L) = @) +aalt) + 3000
y(t) = a(t)+q(t)

=
N/
0.
N~
N/

O
N~
N/

—
]
—

Y

il
N
NN
\J
]
=

X(t) | 2 th(t)

-2

Figure P2.72. (d) Block Diagram

2.73. Let a discrete-time system have the state-variable description

A:[ _o%]’ b:[i], c=[1 1], D=0

= =

3
(a) Define new states ¢ [n] = 2q1[n], ¢4[n] = 3¢g2[n]. Find the new state-variable description A’, b’, ¢/, D’.
, 120
a1 = 0 3 q1

Thus the transformation matrix T is
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9
T = 0
0 3
13 0
T ! = -
1
1
1 0 3
1 1
03 Lo 0o 1
_ 1—%]
L3 O
b — |20 1
0 3
e
16
1y
c=cT ! = {1—1}[2 1]
0 3
=[5 -]
D'=D = 0

(b) Define new states ¢} [n] = 3¢2[n], ¢5[n] = 2q1[n]. Find the new state-variable description A’,b’,c’, D’.
10 3

19 o a1

Thus the transformation matrix T is

/

q:

T 0 3
N 2 0
T*l—_l 0 -3
6] =2 0
_ 'o%]
- 1
3 0
A'=TAT ! = 0 %]
-1
]
6
b'=Tb = 1
2
_ -1 _
¢ =cT = —%%}
D=D = 0
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(c) Define new states ¢i[n] = q1[n] + g2[n], ¢4[n] = q1[n] — ¢2[n]. Find the new state-variable description
AV, D).

The transformation matrix T is

-1 1] -1 =1
2] -1 1
(1 1 1
_ 2 2
1 _1
L 2 2
[ 5 1
A/:TAT71 — 112 172
| T2 12
3
b'=Tbh = ]
-1
d=cT! = 0 1}
D=D = 0

2.74. Consider the continuous-time system depicted in Fig. P2.74.

(a) Find the state-variable description for this system assuming the states ¢;(¢) and ¢2(t) are as labeled.

%ql(t) = oqi(t) +biz(t)
%QQ (t) = aaga(t) + bax(t)
y(t) = aalt) +ea(t)

A:

a; 0 by
0 (65) bz

(b) Define new states q¢j(t) = q1(t) — g2(t),¢5(t) = 2q1(t). Find the new state-variable description
AV, ¢, D).

N[— D=

— N =
=
[N}
I o S
| I



A —TaTt = | %2 2(0—a2)
O (5]
b—Tbh — | 1"
2b,
¢ =cT! = —cz 3 (c1+c2) ]

(¢) Draw a block diagram corresponding the new state-variable description in (b).

The corresponding differential equations are:

Dar) = 0nma(t) + g or — a2)ar(t) + (b — ba)e(t)
Laplt) = maa(t) + 2ra()
y(t) = —01Q1(t)+%0102%(t)

"a’ will replace « in the following figures.

%

—
|

v

6.5(cl+ C,)

= JZ\ =
\ﬁ 0.5(a— &) @)ﬂb
V2b -
?

Figure P2.74. (¢) Block Diagram

(d) Define new states ¢} (t)
tion A’,b’,c’, D’.

%ql(t),qé(t) = boq1(t) — b1g2(t). Find the new state-variable descrip-



L by
A= TAT™! = o 0
L 5152(041 - 042) Q2
1
b=Tb = ]
0
¢ =cT ! = c1b1 + cabs —Z—? :|
D=D = 0

(e) Draw a block diagram corresponding the new state-variable description in (d).

The corresponding differential equations are:

%%(t) = a1qi(t) +=(t)
%QQ(t) = hb22(a1 — a2)qi(t) + aoga(t)
v@) = alb+b)al) - o)

X(t) 40 a0 bh@-a) - 40

] a,

[

Figure P2.74. (e) Block Diagram

Solutions to Advanced Problems

2.75. We may develop the convolution integral using linearity, time invariance, and the limiting form
of a stairstep approximation to the input signal. Define ga (t) as the unit area rectangular pulse depicted
in Fig. P2.75 (a).

(a) A stairstep approximation to a signal z(t) is depicted in Fig. P2.75 (b). Express Z(t) as a weighted
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sum of shifted pulses ga(¢). Does the approximation quality improve as A decreases?
Bt) = > a(kA)galt—kA)A
k=—00

As A decreases and approaches zero, the approximation quality improves.

(b) Let the response of an LTI system to an input ga(t) be ha(t). If the input to this system is

Z(t), find an expression for the the output of this system in terms of ha (¢).

Let the system be represented by H{.} such that H{ga(t)} = ha(t).

H{z(t)} = H{ i x(kA)gA(tkA)A}
By t];;ﬁearity of H
- i (H{2(kA)ga(t — kA)A)
= a(kA)H{galt — KA)A
'é?ﬁﬁe time-invariance of H
H{z(t)} = ki w(EA)Yha(t — kA)A

(c) In the limit as A goes to zero, ga(t) satisfies the properties of an impulse and we may interpret
h(t) = lima_0 ha(t) as the impulse response of the system. Show that the expression for the system

output derived in (b) reduces to z(t) * h(t) in the limit as A goes to zero.

When A — 0
h(t) = Alglo ha(t)
. 2 - . B
Alglo H{z*(t)} = ilino 2 x(EA)ha(t — EA)A

As A — 0, the limit is a Riemann sum, which represents an integral.

y(t) = /OO x(T)ha(t — 7)dr

—0o0

Using the fact that h(t) = iimo ha(t)

() = /jo 2(F)h(t — 7)dr
y(t) = z(t) * h(t)

94



2.76. Convolution of finite-duration discrete-time signals may be expressed as the product of a matrix
and a vector. Let the input z[n] be zero outside of n = 0,1,...L — 1 and the impulse response h[n]
zero outside n = 0,1,... M — 1. The output y[n] is then zero outside n = 0,1,...,L + M — 1. Define
column vectors x = [z[0], z[1],---z[L — 1]]" and y = [y[0],y[1],- - y[L + M —1]]". Use the definition of
the convolution sum to find a matrix H such that y = Hx.

oo

yln] = D x[khln - k]
j;;plying the appropriate range for z[n] and h[n], starting with n =0
y[0] = «[0]n[0]
Since all other values of z[n] and h[n| are 0, similarly
y[1] = =[1]r[0] + 2[0]A[1]
yl2l = =[2]p[0] + 2[1]A[1] + [0]A[2]

Which can be written in matrix form as

zm [ o] 0 0 0 ] .
s h[1] ho] 0 0 o
: = z[2]
ST 1] WM —1] h[M — 2] ho] 0 0 E
: z[L — 1]
JL A1) 0 0 KM -1 ho] |

Yields a solution of the form

y = Hx

Where y is an (L 4+ M — 1) by 1 matrix, His an (L + M — 1) by L matrix, and x is L by 1.

2.77. Assume the impulse response of a continous-time system is zero outside the interval 0 < t < T,,.
Use a Riemann sum approximation to the convolution integral to convert the convolution integral to a
convolution sum that relates uniformly spaced samples of the output signal to uniformly spaced samples

of the input signal.

y(t) = x(t) *h(t)
To
= / h(m)x(t — 7)dr
0
Since h(t) is zero outside of that interval.

The Riemann sum approximation is
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T, N—-1

flrydr = fEA)A
0 k=0
T,
Where A = N
Using this approximation
N—1
y(t) = > h(kA)z(t — kA)A
k=
Evaluate at t = nA
N-1
y(nA) = h(EA)z(nA — kEA)A
k=0
Setting
yln] = ynA)
hlk] = h(kA)
xzlk] = xz(kA)
Implies
N—1
y(nA) =y[n] = hlk]z[n — k]
k=0

Which is the discrete time convolution sum.

2.78. The cross-correlation between two real signals z(t) and y(¢) is defined as
Tay(t) = / x(1)y(r — t)dr
This is the area under the product of z(t) and a shifted version of y(t). Note that the independent
variable 7 — t is the negative of that found in the definition of convolution. The autocorrelation, 7, (t),
of a signal x(t) is obtained by replacing y(t) with x(t).
(a) Show that r(t) = z(t) * y(—1)

ray(t) = /OO z(T)y(r — t)dr

— 00

= [ atmw--mar
—o0
First assume 7., (t) can be expressed in terms of a convolution integral, i.e.,
[e.e]
ray(t) = / f1(7) fa(t — T)dr
fr(t) * f2(t) (2)

By (1), we can see that (1) and (2) are equivalent if:

fi(v1) = x(v1), and

96



fa(v2) = y(-v2)

where v1, and vo are arguments, for this case v1 = 7 and vy =t — 7, then

Toy(t) = fi(t) * fa(t)
= z(t) xy(-1)

(b) Derive a step-by-step procedure for evaluating the cross-correlation analogous to the one for evaluat-

ing convolution integral given in Section 2.2.

1. Graph both z(7) and y(7 —t) as a function of 7. To obtain y(r — t), shift y(7) by ¢.

2. Shift ¢ to —oo.

3. Write a mathematical representation for x(7)y(r — t).

4. Increase the shift until the mathematical representation for x(7)y(r —t) changes. The value ¢ at which
the change occurs defines the end of the current set and begins a new one.

5. Let ¢ be in the new set. Repeat (3) and (4) until all sets of the shifts by ¢ and the corresponding
representations for z(7) and y(7 — ¢) are identified, i.e., shift ¢ until it reaches co.

6. For each set of shifts for ¢, integrate z(7) and y(r — ¢) from 7 = —o0 to 7 = oo to obtain r4,(t) on

each set.

(c) Evaluate the cross-correlation between the following signals:
(i) z(t) = e tu(t), y(t) = e 3tu(t)

fort <0
ray(t) = /OO eSte 4 dr
0
_ L
fort>0

o0
Tay(t) = / ete 4 dr
t

Tey(t) = {

(ii) z(t) = cos(mt)[u(t + 2) — u(t — 2)], y(t) = cos(2nt)[u(t + 2) — u(t — 2)]

et t<0
e t>0

NN
|
o+

fort < —4
Tzy(t) =0
for —4<t<0
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Tay(t)

for0<t<4

Tay(t)

fort >4

Tay(t)

Tay(t)

t+2
cos(nT) cos(2nT — 27t)dT
-2
42
cos(mT) [cos(2mT) cos(2mt) + sin(27T) sin(27t)] dr

Il
— —

-2
42 t+2
cos(2mt) / (cos(mT) + cos(3wT)) dr + % sin(2mt) / (sin(77) + sin(377)) d7

-2 —2

H[\.‘)I»—l

1 1 1
= 3 cos(2mt) {sin(ﬁt) + 3 sin(37rt)] ~ 5 sin(27t) [cos(m) + 3 cos(3mt) — g

2
= / cos(m7) cos(2mT — 27t)dT
t—2

= /t_2 cos(mT) [cos(2mT) cos(2nt) + sin(277) sin(27t)] dr

= % cos(2mt) /t_2 (cos(mT) + cos(3wT)) dr + % sin(27t) /t_2 (sin(w7) + sin(377)) d

1 1 1 1 4
= 5 cos(2mt) {sin(ﬂ't) + 3 sin(37rt)} + o sin(27t) [cos(ﬂ't) + 3 cos(3mt) — 3

=0
0 t<—4
B 5= cos(2mt) [sin(mt) + g sin(3mt)] — 5= sin(2wt) [cos(mt) + & cos(3mt) — 3] —-4<t<0
B — 5= cos(2t) [sin(mt) + L sin(37t)] + 2L sin(2nt) [cos(nt) + 3 cos(3mt) — 2] 0<t<4
0 t>4

(iil) z(t) = w(t) — 2u(t — 1) + u(t — 2),y(t) = u(t + 1) — u(t)

fort <0
ray(t) = 0
for0<t<1
ray(t) =t
forl1 <t<?2
ray(t) = 3 -2t
for2<t<3
ray(t) = t—3
fort >3
ray(t) = 0
0 t<0
t 0<t<1
rey(t) = { 3-2 1<t<?2

t—3 2<t<3
0 t>3

(iv) z(t) =u(t —a) —u(t —a—1),y(t) = u(t) —u(t — 1)
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fort<a-—1

ray(t) = 0
fora—1<t<a
ray(t) = t+1—a
fora<t<a+1
ray(t) = a+1—t
fort >a+1
ray(t) = 0
0 t<a-1

t+1—a a—1<t<a
a+l1—t a<t<a-+1
0 t>a+1

Tey(t) =

(d) Evaluate the autocorrelation of the following signals:

(i) z(t) = e tu(t)

fort <0

Tee(t) = / ele™*7dr
0

= -e
fort>0
o0
Tea(t) = / ele™*dr
t
= —67t
1t
se t<0
Tee(t) = 2
za:( ) { %6715 t>0

(ii) z(t) = cos(mt)[u(t + 2) — u(t — 2)]

fort < —4

Toa(t)
for —4<t<0

Tox(t)

cos(m) cos(mT — wt)dr

t+2 1 t+2
cos(mt) / (1+ cos(2n7)) dr + 5 sin(7rt) / sin(277)dr

—2 —2

42
/ cos(m) (cos(nT) cos(nmt) + sin(n7) sin(nt)) dr
1
2
1
2

1 1
os(mt) |t + 4+ — sin(2nt)| — —— sin(wt) [cos(27t) + 2]
2 4
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for0<t<4

Tox(t)

fort >4
Tox(t)

Tox(t)

cos? (m7)dr

cos(m) (cos(wT) cos(nt) + sin(77) sin(nt)) dr

2 1 2
cos(mt) / (14 cos(277)) dr + yp sin(7rt) / sin(277)dr
t—2 t—2

7

cos(mt) {4 —t— % sin(27rt)} + ﬁ sin(mt) [2 + cos(27t)]

0
3 cos(mt) [t + 4+ 5= sin(27t)] —
1 cos(mt) [4 —t — 5= sin(2nt)] +
0

(iii) 2(t) = u(t) — 2u(t — 1) +u(t — 2)

(iv)z(t) =ult—a) —ult—a—1)

for t < —2
re(t) = 0
for —2<t< -1
rea(t) = —t—2
for —1<t<0
ree(t) = 3t+2
for0<t<1
ree(t) = 2—3t
for1<t<?2
ree(t) = t—2
for t > 2
rea(t) = 0
0
—t—-2
Tea(t) = :;tj;
t—2
0
fort < —1
ree(t) = 0
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-+ sin(rt) [cos(2mt) +2] -4 <t <0
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t>4

t< =2
—2<t< -1
—-1<t<0
0<t<1
1<t<?2
t>3



for —1<t<0

rex(t) = t+1
for0<t<1
ree(t) = 1—1t
fort>1
ree(t) = 0
0 t< -1
ron() = t+1 —-1<t<0

1-t 0<t<1
0 t>1

(e) Show that 74y (t) = rys(—t)

ray(t) = /OO z(T)y(r — t)dr

Letu=7—1¢

oo

raylt) = / () (u + t)du
rmy(t) = /OC y(r)x(r + t)dr

— 00

Tay(t) = Tye(=1)

(f) Show that ryy(t) = r44(—t)

rzz(t) = /oo :C(T){E(T - t)dT

—00

Letu=7—1
ra:x(t) = /_oo 37(7')1'(7' + t)dT
Tzx (t) = Twa:(_t)

2.79. Prove that absolute summability of the impulse response is a necessary condition for stability of

a discrete-time system. Hint: find a bounded input z[n] such that the output at some time n, satisfies

[ylro]l = 2ok= oo 1PIFII-

let n, =0
ylo] = D hlklz[-k]
k=—o00
let x|—k] = sign {h[k]}
then hlk]x[—k] = |h[K]]
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k=—o00
oo
ol = | > k]
k=—o0
= Y |hlk]]
k=—oc0
Hence there exists an input for which |y[n,]| = Y re . |R[k]|, and >"72 _ |h[k]| < oo is a necessary

condition for stability.

2.80. Using the Fresnel approximation, light with a complex amplitude f(z,y) in the zy-plane prop-
agating over a distance d along the z-axis in free space generates a complex amplitude g(z,y) given
by

g(z,y) = / / f@ g (e — o',y —y')da'dy’

where

h(;m y) = hoe—jk(x2+y2)/2d

Here k = 27/ is the wavenumber, \ the wavelength, and hy = j/(\d)e7k4.

(a) Determine whether free-space propagation represents a linear system.

Suppose f(z',y') = afi(z',y") + bf2(2’,y"). The system is linear if g(z,y) = ag1(z,y) + bga(x, y)

g(z,y) = / / f@' y" )z — ',y —y)da'dy’

= /; \/7 [afl(a:/,y/) +be(:r/’y/)]h(szfl,y—y/)dl:/dy/

o oo o0 [oe}
/ / afi(@’,y)h(x — o',y —y)da'dy’ + / / bfo(a!,y" ) h(z — o'y — ' )da'dy’
— 00 — 00 — 00 — 00

agi(z,y) + bga(, y)

(b) Is this system space invariant? That is, does a spatial shift of the input, f(z — xo,y — yo) lead to the
identical spatial shift in the output?

) = [ [ —ghta =y~ ity
let 2 =2 — 20, w=19y —yo
o0 o0
g (z,y) = / / fz,w)h(z — 2o — 2,y — Yo — w)dwdz

= g(x—a:o,y _yo)
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This shows that the system is space invariant since a shift in the input produces a similar shift in the

output.
(c) Evaluate the result of a point source located at (z1,y1) propagating a distance d. In this case

f(z,y) = 6(x — 21,y —y1) where §(z,y) is the two-dimensional version of the impulse. Find the “impulse

response” of this system.

g(z,y) = / / F@' v (e — o'y —y)dx'dy

o0 o0
g(z,y) = / / 6(x — 1,y —y1)h(z — 2’y —y)dz'dy’
Using the sifting property
soy) = [ ow-whte—ay )y

= h(z—z1,y— 1)

(d) Evaluate the result of two point sources located at (z1,y1) and (x2,ys) propagating a distance
d. To account for the two point sources, f(z,y) is of the form f(z,y) = fi(z1,y1) + fo(z2,y2) =
6(z —x1,y —y1) +0(z — 32,y — y2)

9(z,y) = / / fa' y" Yz — ',y —y)da'dy'

sw) = [ [ By + o - any - )bl — oy~ o )da'dy
Using linearity and the sifting property yields
9(z,y) = h(z—z1,y—y)+h(z—22,y — y2)

2.81. The motion of a vibrating string depicted in Fig. P2.81 may be described by the partial differential

equation
0? 1 02
wy(lvt) = C—Q@y(l»t)
where y(I,t) is the displacement expressed as a function of position | and time ¢, and ¢ is a constant

determined by the material properties of the string. The intial conditions may be specified as follows:

y0.0) = 0, ylat)=0, >0
y(1,0) = z(), 0<l<a

0

ay(l,t) T g(1),0<l<a

Here z(l) is the displacement of the string at ¢ = 0 while g(I) describes the velocity at ¢ = 0. One
approach to solving this equation is to assume the solution is separable, that is, y(I,t) = ¢(1)f(¢), in
which case the partial differential equation becomes

1) S50(0) = 6(0) 5 o2 ()
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This implies
d? d?
< o(l L f(t
d”¢(): az(?) O0<l<a, 0<t

o) Aft)’

For this equality to hold, both sides of the equation must be constant. Let the constant be —w

2 and

separate the partial differential equation into two ordinary second-order differential equations linked by

the common parameter w2,
d2
-/ () + W Pf(t) = 0, 0<t
d2
200 +w’p(l) = 0 0<l<a

(a) Find the form of the solution for f(t) and ¢(1).

The homogeneous solution for f(t) is of the form:

24w = 0
r = ZLjcew
f(t) = a ejwct + aze—jwct

4w = 0
r = Tjw
o) = bre? 4 bye ¢!
o(l) = djcos(wl)+ dysin(wl)

(b) The boundary conditions at the end points of the string are

P(0)f() =0 ¢(a)f(t) =0

and, since f(t) = 0 gives a trivial solution for y(l,t), we must have ¢(0) = 0 and ¢(a) = 0. Determine

how these constraints restrict the permissable values for w and the form of the solution for ¢(1).

?(0)=0 = djcos(w0)+ dssin(w0)

implies
d =0
¢pla) =0 = dgsin(wl)
implies
w = % where k is any integer.
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(c) Use the boundary conditions in (b) to show that constant (—w?) used to separate the partial differ-

ential equation into two ordinary second-order differential equations must be negative.

If (—w?) is positive:

r“—w® = 0
r = Zw
H(l) = bre?t 4 boge !
$(0)=0 = by +bo
pla) =0 = bl 4 boe "
implies
by=b = 0

(—w?) being positive is the trivial solution, hence (—w?) must be negative.

(d) Assume the initial position of the string is y(I,0) = z(I) = sin(nl/a) and that the initial velocity
is g(I) = 0. Find y(I,1).

y(l,t) = o()f ()
) (lml) { ) <k7rct) (kwct)}
= dosin| — | |egsin [ —— ] + e3 cos
a a a
y(1,0) = sin <ﬂ> = daeysin <@)
a a
Implies
k=1
d262 =1
%y(l,t) - =0 = dysin <%> el7r_c cos (lmrct)
Implies
€1 = 0
y(l,t) = sin <7T—Z> cos (W—Ct)
a a

2.82. Suppose the N-by-NN matrix A in a state-variable description has N linearly independent eigen-
vectors e;,7 = 1,2,..., N and corresponding distinct eigenvalues \;. Thus Ae; = \;e;,t1=1,2,..., N.
(a) Show that we may decompose A as A = E AE~! where A is a diagonal matrix with i-th diagonal

element \;.

Ae1
A62
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This can be written as

Ale; e] = [eg eg][/:)l ;)2]
Define
E = [e1 eg]
=
AE = EA
Which can be rewritten as
AEE™! = EAE™!
A = EAE™!

(b) Find a transformation of the state that will diagonalize A.
The transformation A’ = TAT ! will diagonalize A. Setting T = E~L.

A’ = E'AE
A’ = E'[EAE'|E
Al = A
0 -1 2
(c) Assume A = , b= ) C:[l O]a D = [0].
2 -3 3

Find a transformation that converts this system to diagonal form.

1 1
The eigenvalues and eigenvectors are A\; 2 = —1,—2 and e; = l ) ] , € = l 5 ] respectively. The
transformation is
-1 0
A'=E'AE =
0 =2
1
b=E"' = ]
1
c=cE = 11 }

D=D = 0

(d) Sketch the block-diagram representation for a discrete-time system corresponding to part (c).
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%ql[”ﬂ <0
y[n]

aintll gn]

X[n]

Figure P2.82. Block diagram of diagonal form
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Solutions to Computer Experiments

2.83. Repeat Problem 2.34 using MATLABSs conv command.

P2.83(a)-(d)
12 4
© 0]
10 o o

8

ma(n) : amplitude
(2]

mb(n) : amplitude
o N
—o0
—®o
—o

o N =
—o
—o
———-m10
———-m10
| |
» N
o
o
o

~

o
©
©
©
©

mc(n) : amplitude
o N b (o2}

md(n) : amplitude

w £ o

)

-10 -5 0 5 -10 -5 0 5 10
Time Time

Figure P2.83. Convolution of (a)-(d) using MATLABs conv command

fﬂ Ml sl

N

=

o

£

4

N

N

.
l

me(n) : amplitude

| |
AN
mf(n) : amplitude
o
o—
o—
o—
o—
97
o—

Time Time

mg(n) : amplitude
o
o
(e}
(e}
o
mh(n) : amplitude

Al

-5 0 5 -5 0 5
Time Time

Figure P2.83. Convolution of (e)-(h) using MATLABs conv command
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P2.83(i)-(k)

12
(o}¥o} (o3} 8 (o} Ko} (o}ie}

10 (0] (0] © ©
o L 6
R E
s g

4

g6 §
€4 €2
€ €

2 0,0 (0]

TT b &\& X
0 -2
-5 0 5 10 15 -10 -5 0 5 10
Time Time

6
22
% 0 OT TO OT
E4
-6
-10 —é O 5 iO 15

Time

Figure P2.83. Convolution of (i)-(k) using MATLABs conv command
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2.84. Use MATLAB to repeat Example 2.5.

P2.84 Investment Computation
25000 T T

T

20000

15000 - 1

10000

T

Investment value in dollars
3)
3)
3)

5000 [ 1

0 5 10 15 20 25
Time

Figure P2.84. Investment computation

2.85. Use MATLAB to evaluate the first twenty values of the step response for Problem 2.50 (a) - (d).

P2.85

16 16
<0.8 =08
sm 0] .CD
5 ? 5
o 0.6 o 0.6
(2] [72]
c c
<3 g
go4 04
Q. o
Il ;o]
n 0.2 N 0.2

0 0 )

0 5 10 15 0 5 10 15
Time Time
16 ) )
©

=08 <150 P
so s‘c (0]
2 0.6 o
2 2 100
<3 S
goa4 g
& g 50
»n 0.2 n TT

0 Iy CYYo! (ol ? ? T

5

0 5 10 15 0 10 15
Time Time

Figure P2.85. Step response for P2.50 (a)-(d)
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2.86. Consider the two systems having impulse responses

)

0<n<3

otherwise

n=20,2
n=13
otherwise

Use the MATLAB command conv to plot the first 20 values of the step response.
P2.86 Step Response of hl[n] and hz[n]

=

o o o
I o o
T T T

Step response of hl[n]

o
)
T

o

Q

0.25¢

Time

12

14 16 18

(=)
o o o
[ (6] N
T T T

Step response of h,[n]

o

o

G
T

& & o &

2 4 6 8 10
Time

Figure P2.86. Step Response of the two systems
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2.87. Use the MATLAB commands filter and filtic to repeat Example 2.16.

P2.87-1
& 00OPOOOPPOPPPPPPPPPPIPPPPPOPPVPPPPOPOO
3F .

0 25F -

f

[7]

‘(7) 1, -
0.5+ B
bt
0 5 10 15 20 25 30 35 40 45

Time

0.3F B
0.2+ —

_!‘20.1* B

% 0—(£ i&ooOOOoooooooooooooooooooooooooooooooooooooz
M |
0 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5

Time
Figure P2.87. Step response and output due to no initial conditions.
P2.87-2

2 1] il TS

'cg: m;OTT TTOA) J)o?T T?OJ) J)O?T T?o

) e
0 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5

Time
27 T O\ T O\ T ]

R 1 11 [ T

s Aol [T ? ? ol 11 ol 1T 1

3 b é é b
—2r ! ! ! ! ! ! ! ! ! q
0 5 10 15 20 25 30 35 40 45

Time

o 06 | .

3 04f T T -

ool T Tl ettt T T T 0ol T T

2 of CHIPS ol ¢ ? 1o b s 1° ¢ ? 1o ol

R Vi S U Y O R O O A Y
0 5 10 15 20 25 30 35 40 45

Time

Figure P2.87. Output due to sinusoids of different frequencies.
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P2.87-3

80

(o2}
o

Price per share
N
o

20

0
1998 1999 2000 2001

80 T T

60

)
b
(.

R

Filtered Output

20

0 -
1998 1999 2000 2001
Year

Figure P2.87. Input and filtered signals for Intel Stock Price.

2.88. Use the MATLAB commands filter and filtic to verify the loan balance in Example 2.23

x 10* P2.88 Loan Balance
2.2 T T T T T T T T T T

1.8F B

1.6 ® B

1.4+ ¢ E

1.2 B

y[n]

0.6 b

0.4r B

0.2 b

0
-2 -1 0 1 2 3 4 5 6 7 8 9

Time

Figure P2.88. Loan Balance for Ex. 2.23
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2.89. Use the MATLAB commands filter and filtic to determine the first fifty output values in Prob-
lem 2.59.

P2.89
4 - - - - - - - -
1.2
(O QSRR I A O SOOI ORSRSSRISIONIID
3 110
< 2 a 0.8
)= =
© T 0.6
o a Y.
1
ﬁ 04
)
0 ”ﬁW0!01~IoIolol~I~IoIolol~I0I0I0l01~l0l0I0I~I~IoI0I0l0l0I0Iol0l~I~I’l¢l~I~I’I¢I’X¢l~I¢}b 0.2
-1 N N N N
0 10 20 30 40 0 10 20 30 40
12
0.6F o0 RO R S D0 AR B ARG ID
10
[0
0.4r
8
o 0.2} ©
= =
: |9 5 °
0 (L no\"l‘m0I0l0l0I0I’I0l010I0I0I0l0l0l’l0I0I0I0I0I’I0l0l’I0I0l’l’l’l’l’l’lﬁ’l’l’l’l’l‘ID
4
-0.2
2
-0.4}
0
0 10 20 30 40 0 10 20 30 40

Figure P2.89. Output of first 50 values for Problem 2.59
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2.90. Use the MATLAB command impz to determine the first 30 values of the impulse response for
the systems described in Problem 2.59.

P2.90
25
1.2
2 1fo
15 0.8
e e
J:m _C-DOG
1
0.4
0.5 T 02
0 ?CPOKWWWVW\ TVt eV vaVatat:)\ o5 ? o )
0 5 10 15 20 25 0 5 10 15 20 25
1 P
0.8 15
£ 0.6 =
(8] k=]
= < 1
0.4
0.2 0.5 T
0 N C)O@O(X)OOOOOOOOOOOOOOOOOOO( 0 ?QOO(\ )
0 5 10 15 20 25 0 5 10 15 20 25

Figure P2.90. The first 30 values of the impulse response.
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2.91. Use MATLAB to solve Problem 2.62.

5
X 10 P2.91
T T T T T
@
%]
s
a4l
24
9]
24
©
2 2r Y |
< P
=z
0
-2
0
@
1)
5
o -2
@
9]
24
o
-4
2
g
-6 I I I I I I I I I 4
-20 0 20 40 60 80 100 120 140 160 180
x 10° time
10 A T T T T T T T
b .1rvmmm11mpmm»mrvm»:wrvprvmmm 7
g y n~x»rw~1»mmr»prafru»nmum
Uy _
3 ""‘""‘"’4"['1%7p,.,,,~ iy
3 o
x gl i
9 11
<@ Wt
= tiy
5
O
0 N
-20 0 20 40 60 80 100 120 140 160 180

time

Figure P2.91. Using Matlab to solve Problem 2.62

2.92. Use MATLAB to solve Problem 2.63.

x 10% P2.92, Paying off Loan Balance in 30 years

1 0Gm

Loan Balance

0 50 100 150 200 250 300 350 400

T T T T T

Loan Balance
N

-2 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
time

Figure P2.92. Plots of different loan payments, 30 vs. 15 years
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2.93. Use the MATLAB command ss2ss to solve Problem 2.73.
P2.93 :

x1 x2
x1 1 -0.3333
x2 0.50

ul
x1 2
x2 6

CcC =
x1 x2
y1 0.5 -0.3333

d:
ul
yl10

Sampling time: unspecified
Discrete-time model.
Part (b) :

x1 x2
x1 0 0.5
x2 -0.3333 1

ul
x1 6
x2 2
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Cc =
x1 x2
y1-0.3333 0.5

d:
ul
yl10

Sampling time: unspecified
Discrete-time model.
Part (c) :

x1 x2
x1 0.4167 0.9167
x2 0.08333 0.5833

ul
x1 3
x2 -1

x1 x2
yl101

d:
ul
yl 0

Sampling time: unspecified
Discrete-time model.

2.94. A system has the state-variable description

s

Wl M=

0

N

|



(a) Use the MATLAB commands Isim and impulse to determine the first 30 values of the step and impulse
responses of this system.
(b) Define new states g1[n] = q1[n] + g2[n] and g2[n] = 2q1[n] — g2[n]. Repeat part (a) for the transformed

system.
P2.94
0| | | ©TP0000000C00CO0OCO00000 0d, | | ©TP0CO0C000000000CO0O00NE
-0.2 i -0.2 L
'_
(]
8-04 g-04
Q. =}
Q.
£ o6 E-06
-0.8f (4 08110
-1 -1
0 5 10 15 20 25 0 5 10 15 20 25
e 0%
-05 -0.5
'_
Q.
g g -t
(2]
-1.5} -1.5
o o
-2t HOOOBABOOEHEOOODDDOOODDMD -2 HOOOBBBEEOOOOOOOOODDDDDA
0 5 10 15 20 25 0 5 10 15 20 25

Figure P2.94. System step and impulse response
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Solutions to Additional Problems

3.48. Use the defining equation for the DTFS coefficients to evaluate the DTFS representation for the
following signals.

6 m
z[n] = COS(1—771+§)
1

_ 2 ( J(Fn+3) +e—j<?—¢n+§>)
2

_ 1 (ejgej(:a)%—’;n n e—j§6j<—3>§—;n>
2

By inspection

%ej% k=3
X[k]=4 Lte95 k=-3
0 otherwise on k = {—8,-7,...,8}
(b) N=19,Q,=2F
] = 2sin(amn) + cos(an) + 1
= in(— —
z[n sin(1g7) + cos(gn
= l[e]%" - eij%"] + —[ejllg_gr" + eij%{"] +1
J
SR IOF N RICOE TR RIOF SIICOE 0 JIFIOR 2
2
By inspection
3 k=-5
i k=-2
1 k=0
X[k] = ‘
—j k=2
5 k=5
0  otherwise on k = {9, -8, ...,9}
(© .
zn] = Y [(=1)"(8[n — 2m] + 5[n + 3m])]
Graph to find N =12, Q, = &
1 :
X[k] = D z[n]e=IkEn
n=-—>5
1

_ = [e—j(—4)%k 4+ e I3Fh _omi(=2Fk L 9 _ o=i@2)Fk L =i Fk e—j(4)%k}
12
2T

1 1 s 1 T 1
= 5 cos(?k) + 8 cos(ik) ~ 3 cos(gk) + 6

1



(d) x[n] as depicted in Figure P3.48(a)
N=8Q,=1
1 o :
X[ = > alnJe kEn
n=-3
L —i-2%k | i@k
= g[ te ]
—J

= sm(gk) ke{-3-2,..4}

(e) x[n] as depicted in Figure P3.48(b)

N=10,9,= %
1 < .
X[k = — z[n]e k5
10
n=-—>5
= 1—10 He]’(‘g%k + %efj“?’)%k + Zefj(fz)%k + eI (-DFk ke {-5—4,..,4}

3.49. Use the definition of the DTFS to determine the time-domain signals represented by the following
DTFS coefficients.

(@) N=21,Q, =2

8w

X[k = cos(>k
K = cos(ih)
_ ;[ (- 4>2—"k+% @3k

By inspection

2Ly =44
zln] =4 2
0 otherwise on n € {-10,-9,...,10}

10 4
X[k = cos(l—;k) +2j sin(l—gk)

ol:l

S E L (O S CUE - LRSS DR 1

By inspection

3 n=45

-19 n=2
x[n] = B

19 n=-2

0 otherwise on n € {-9 -8, ...,9}

2



()

Graph to find N =12, Q, =

z[n]

> (=1)™(8[k — 2m] — 25[k + 3m)])]

m=—0o0

X[k] =

jus
6

6 .
= > X[k]eFsn

k=—5

— DI | 9 (=3)En | Li(-DFn _ | _ i(Fn

126 EN | (W EN _ 3,i(6)En

2
= 2cos(?ﬂn) + 4cos(gn) - 2cos(§n) —1-3(-1)"

(d) X[k] as depicted in Figure P3.49(a)

N=14,Q,=1%

z[n] =

7 .
> X[k]e*n
k=—6
eI (DI | (0T J(-DFn | 5BV En | —iF (@0
3 4
2cos(7ﬁn + g) + 200s(777n - g)

(e) X[k] as depicted in Figure P3.49(b)

— _ 27
N=70,=2

3

S X[k]etFn

k=—3

i
=)
I

S VE P ICOL

[N

2 1
= 2005(771-71) ~3

(f) X[k] as depicted in Figure P3.49(c)

N=15Q,=22

9

> X[k]ertiEn

k=—5

4
_ Z efj%kejkzl—gn
k=—4
letl=k+4
8

= Y et

=0

a[n]



_sin(F(32 - 1)
sin((3(22 = 1)

3.50. Use the defining equation for the F'S coeflicients to evaluate the F'S representation for the following
signals.
(a) Ty = %, T = %, T=lIlem(Ty,Tz) =2, wo =7

lem is the least common multiple.

xz(t) = sin(3wt) + cos(4nt)
1 . 1 . 1 . 1 .
— = i@t . — L j(=3)7mt = j(d)wt - j(—4)mt
2je 2je + —e +2€
By inspection
%1 k=44
X[ =4 %,
% k=-3
0 otherwise
(b)
ad m 2m
2t = Y (DI )+ o+ =50

Graph to find T = %, W, = 37“

By the sifting property

X = O dem oy
6 3 3m
= 173 cos(gk)
(c)
a(t)y= > [eFms(t—2m)]
m=—o0
Graph to find T'= 14, w, = 7
X[k} = i ’ m(t)efjkgt dt
14/,
By the sifting property
= 1—14 [ej(k_l)%" BRI E SOV [CES VR SR [CESOE SN[ CES DR SV [(SOR &
1 6 1 o 1
- = {cos((k —1)7) Feos(k — 1)) +cos((k — 1)T0) + 5



(d) x(t) as depicted in Figure P3.50(a)

z(t) = | sin(nt)|

T=1, w,=2m

1 [ . .
X[k] = — [e]ﬂ't o e—jﬂ't]e—_jk27'rt dt
27 Jo
1 1 . 1 )
- = Jm(1—2k) _ 1} _ { —jm(142k) _ 1}
2j [jm —2k) {e jr(1+2k) \°
4k
m(1 —4k)
(e) x(t) as depicted in Figure P3.50(b)
T=2 w,=m
1! :
X[k] = —/ e te Ikt gt
2.Jo
1! :
= —/ 67t(1+‘7kﬂ—) dt
2Jo
1 — e—1(1+jkm)
 20mk 4+ 1)
(f) z(t) as depicted in Figure P3.50(c)
2m
T=3, wo=—
=3
1! —jk2E¢ 1 /2 —jk2x¢
X[k = = te™ /S tdt+ = | (3—2t)e7 /P dt
3/ 3/
_J2 sin(Zk) — 4% cos(Zk) + e ™" cos(Zk) — jde ™F sin(Zk)
- 4m?
3

By L’Hopital’s rule, X[k] =0 for k = 0.

3.51. Use the definition of the FS to determine the time-domain signals represented by the following
FS coefficients.
(a) X[k] =jolk —1] — jolk + 1] + [k — 3] + 0[k + 3], w, =27

oo

> X[k]e??H

m=—0o0

_ jej(l)ZTrt _jej(—l)QTrt 4 ej(3)27rt + ej(—3)7rt

x(t)

= —2sin(2nt) + 2 cos(67t)
(b) X[k] = j6[k — 1] — jo[k + 1] + 6[k — 3] + 6k + 3], wo — 47
{,C(t) — jej(1)47rt _jej(—1)47rt + ej(3)47rt +ej(—3)47rt

= —2sin(4nt) 4+ 2 cos(127t)

5



(C) X[k]:<_ )‘k|7 wo =1

W=

(oo}

1

") = 3 (gt
R < W P VRN < DI S TVE
= (—gej) + Z(—ge %)
m=0 m=1
L1 e
1+ zeit 14 teit
_ 8
10+ 6cos(t)
(d) X[k] as depicted in Figure P3.51(a).
Wo =1
xz(t) = Z X[k]ed™rt

= 9025 i(—A)mt | j0.25m (i (=B)mt | ,—j0.25m j(3)mt
1 0ed0-25m j(4)mt
= 4cos(4nt 4 0.257) + 2 cos(3wt — 0.257)

(e) X[k] as depicted in Figure P3.51(Db).
Wo = 2m.

sin(9rt)
sin(7rt)

(f) X[k] as depicted in Figure P3.51(b).

Wy = .
X[k =k -4<k<d4

xz(t) = 8cos(4nt) + 6 cos(3mt) + 4 cos(27t) + 2 cos(mt)

3.52. Use the defining equation for the DTFT to evaluate the frequency-domain representations for
the following signals. Sketch the magnitude and phase spectra.
(a) z[n] = (§)"uln — 4]

oo

X (%) = Z x[n)e I

m=—0o0

6



o0
— 3 n_ —jQn
m=4
0
_ 3 —jayn
m=4
(3e=79)!
o1 3¢-19
; "
X)) =
(22 — 2 cos(02))0
; 3sin(N)
(X (7)) = —4Q t —_—
() - arctan (4 — 3COS(Q))
1.4 15
121 N
10- N
1k |
5| |
= 2
< 0.8 B g
@ £
§ S of |
=) (=%
g 3
- [
5L |
041 N
10+ |
0.2 N
0 . . . _15 . .
-4 -2 0 2 4 -4 -2 0 2 4
Omega [-pi,pi] Omega [-pi,pi]

Figure P3.52. (a) Graph of the magnitude and phase

(b) z[n] = al” Ja| <1

X =) (ae )"+ i(aeﬂ’ﬂ)*n

n=0 n=-—1
1 ae’®?
T 1 gei% + 1— aei®
1—a?

1+ a? —2acos(2)

X (€7?) is completely real and nonnegative, thus:
1—a?

1+ a? —2acos()

[X(EY = 0

X7 =




[X(exp(j omega))|

()

[X(exp(i omega))|

argX(exp(j omega))

3 1

0.8 N

251 B
0.6 N
0.4r N

2b 4
0.2 N
15 N b oF N
—0.2} 4

1k 4
—04} 4
—0.6} 4

051 N

0 . . . 1 . . .
-4 -2 0 2 4 -4 -2 0 2 4
Omega [-pi,pi] Omega [-pi,pi]

Figure P3.52. (b) Graph of the magnitude and phase for a = 0.5

2fn] = % + %cos(%n), In| <N
0, otherwise

N . g
: 1 eINT 4 eTINT .
Y - —70n
X% = > (It ————)e
n=—N
_ Lsin%0)  1sin(5R Q- ) | 1sin(5 @+ £))
2 sin(30) 2 sin(3(Q- %)) 2 sin(3(Q+ %))
8 35
7+ i sl M7 mEnEE
6 i
25
5r 1 =
)
o 2
5
ar 1 =
%1.57
3t i S
1L
2+ i
1t i 05
0 L L L 0 I I |
-4 -2 0 2 4 4 ) 0 2 2
Omega [-pi,pi] Omega [-pi,pi]

Figure P3.52. (¢) Graph of the magnitude and phase for N =7
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(d) z[n] = 26[4 — 2n)]

1 e}
X (%) = 3 > 20[4 —2n)e 7"
n=—oo
— 267]'29
[X(e)] = 2
LX) = —20
3 8
2.8 B
6l A
2.6 B
4l A
241 B
~ 2F B
%2.2 r B g
2 £
g 2— ~ g 0, -
= g
s %
X 18F 1 g-z— ]
161 B
—al A
14r B
6 A
1.2 B
1 . . . -8 . . .
-4 -2 0 2 4 -4 -2 0 2 4
Omega [-pi,pi] Omega [-pi,pi]

Figure P3.52. (d) Graph of the magnitude and phase

(e) z[n] as depicted in Figure P3.52(a)

X(ejQ) = % Z x[n}efjﬂn

n=—oo

= oMy 20 4 —j20 40

= 2co0s(2Q2) + 2j sin(49Q)

|X (7Y = (4cos®(2Q) + 4sin(4Q))%
j B sin(42)
/X (e’?) = arctan (cos(ZQ))



2.8 E 051 1
ol |
26 N
_os5k |
241 B
E2af |8
o
£ S ]
g, d
L 4 1 X
x 2 ot 4
©
181 B
o5l |
16 N sl ]
14t 1 a5l ,
12 , , , " , , ,
-4 -2 0 2 4 -4 -2 0 2 4
Omega [~pi,pi] Omega [~pi,pi]

Figure P3.52. (e) Graph of the magnitude and phase

(f) xz[n] as depicted in Figure P3.52(b)

XY = —j2[sin(Q) + sin(2Q) + sin(3Q) + sin(4Q) + sin(5Q)]
X (7| = 2](sin(Q) 4 sin(2Q) + sin(3Q) + sin(4Q) + sin(5Q)]
LX (7Y = —gsgn (sin(Q2) + sin(292) + sin(3Q) + sin(49Q2) + sin(582))
8 2
7 s [T
6 1
:5 r = 0.5
=4 g °
3t ®-05
2 -1
1 -15 L U Lo
0 : ‘ -2 : : :
-4 -2 0 2 4 -4 -2 0 2 4
Omega [—pi,pi] Omega [—pi,pi]

Figure P3.52. (f) Graph of the magnitude and phase
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3.53. Use the equation describing the DTFT representation to determine the time-domain signals
corresponding to the following DTFT’s.
(a) X (e7) = cos(292) + jsin(29)

1 g . )
x[n] = o X (7)™ dQ)
— 1 " 122+ 10
2 J_,

by orthogonality
= dn+2]

(b) X (&) = sin(Q) + cos($)

1 [™ eI i % 4%
(—; 2
1 cos(mn) 1 cos(mn)

1 1
— 1] - b1+ — S
TR R v L el e - Sl ey

)el M dQ)

x[n] o |

1, w/4<|Q| < 37n/4,

X () = —40
0 otherwise arg{X (%)}

(c) [X ()] = {

1 0757 1 0257
z[n] = — M= 4o 4 — / 7= 4O
27 Jo.25x 21 J_0.75x
_ sin(0.75m(n — 4)) — sin(0.257(n — 4))
B w(n —4)

(d) X (e’®) as depicted in Figure P3.53 (a)

10 o L[ o
z[n] = — efln+1) dQ+—/ e?n=1 4O
2 —r 2 0
1+e ™ (—-1)"
m(n?+1)

(e) X (e’*?) as depicted in Figure P3.53 (b)

0 fud
[n] = — — sin(Q)e?>?e/ " dQ) + L /2 sin(Q)e2ed M 40
2 J = 27 J
= L : sin(Q2) [eij@*”)ﬂ + ej(2+n)9} dQ
2 Jy
_ 1 /2 sin() cos((2 + n)Q)dS
™ Jo
1 %
= [ sin(Q(=1—n)) +sin(Q(3 + n))dQ
2m Jo
_ 1 l-cos(5(n+1)) 1 cos(5(n+3))—1
2w n-+1 2 n+3

11



L locos(Gnt)) 4 L cos(BOmaB)—1 g g

.’IJ[?’L] — { 27r1 n+1 n+3

5= n=-1,-3
(f) X(e’?) as depicted in Figure P3.53 (c)
1 /0 i 1 2 9
z[n] = — e ITel " dQ + —/ e dQ)
2 _% 21 0
_cos(gn)—1
N jmn
cos(fn)—1 0
x[n] = g 7
0 n=>0

3.54. Use the defining equation for the FT to evaluate the frequency-domain representations for the
following signals.

(a) z(t) = e 2tu(t — 3)

(o)
X(jw) = / Ye 9wt dt
—_ /OO —2t —jwt dt
3
e~ 3(24+jw)
T 24w Jw
(b) z(t) = eI
0 .
X(jw) = / e Altemiwt gt
_oo 0
= / e Memiwt gt +/ ette=Iwt gt
0 —00
_ 8
16+ w?
(c) z(t) = te tu(t)
X(jw) = / te~te It dt
0
_ 1
(e

X(jw) = / Za’"é m))e It dt

m=0

oo
= E (ae J‘” m
m=0

1
1—aeiv

12



(e) x(t) as depicted in Figure P3.54 (a)

0 1
X(jw) = / e_j”tdt—/ eIvt gt
0

—1
2cos(w) — 2
Jw

X(jw) = “7

260s]§z)—2 w 7&0
0

(f) z(t) as depicted in Figure P3.54 (b)

0 2
X(jw) = / ele It dt +/ e teTIwt dt
-2 0

1— 67(17jw)2 1— ef(l+jw)2

1—jw + 1+ jw
2 — 2e72 cos(2w) + 2we™? sin(2w)
14 w?

3.55. Use the equation describing the FT representation to determine the time-domain signals corre-
sponding to the following FT’s.

(a) X (jw) :{ cos(2w), |w|< T

0 otherwise
x(t) = L~ X (jw)edt dw
27 J_ o
1 (0257 2w | o—j2w
_ 1 I eI
21 J_0.25% 2
0.257m 0.257m
_ Lotiow g L / Lit-2w g,
21 J_0.257 2 21 J_0.257 2
_ sin(0.257(t +2)) | sin(0.257(t — 2))
27(t +2) 2rr(t — 2)

sin(0.257 (t42)) + sin(0.257 (t—2)) ¢ 7& 2, -2
a(t) =

27 (t+2) 27 (t—2)
t =22

ool

b) X (jw) = e 2 u(w
(
1 > —2w jwt
z(t) = — e~ Yl dw
27'(— 0
 t=2)
_ el Jjt— wd
o /. e w

27(2 — jt)

13



(¢) X(jw) =21l

1 [~ .
x(t) = — e 2lwle=iwt gy,
2m J_ o
[eS) 0
_ L 6—2we—jwt dw + i eQwe—jwt dw
2 0 2 — 0o
_ 2
w4 +12)
(d) X (jw) as depicted in Figure P3.55 (a)
1 2 —J2w —jwt
z(t) = — e eIV dw
2 —92
_sin(2(t - 2))
B w(t —2)
sin(2(¢t—2)
l’(t) — w(t—2) t 7&2
2 t =2
(e) X (jw) as depicted in Figure P3.55 (b)
1 22 .
z(t) = — Zjwel“t dw
2 _3 3
_ 2cos(3t)  2sin(3t)
N 27t 32
2cos(3t)  2sin(3t) _—
.lﬁ(t) _ Tt 3mt? ?_é
0 t =0
(f) X (jw) as depicted in Figure P3.55 (c)
.0 o2
x(t) = R et dw — L/ eIt dw
2 J_, 21 Jo
1 —cos(2t)
B mt
1—cos(2t)
— t#0
z(t) = i 7
0 t =0

3.56. Determine the appropriate Fourier representation for the following time-domain signals, using
the defining equations.
(a) z(t) = e~ cos(2mt)u(t)
Continuous and Nonperiodic, use FT.

X(jw) = / 2(t)e=It dt
_ l/oo eft(ej%rt +€7j27rt)efjwt dt
2 0

14



/ e—t(l—j27r+_]w) dt + _/ e—t(1+327r+jw) dt
0 2 0

1
2
1 1 1

2 [1—j(27r—w) i 1+j(27r+w)]

cos({gn) + jsin(fHn), [n| <10
0, otherwise
Discrete and Nonperiodic, use DTFT.

(b) x[n] =

9

Z z[n)e~ (5 —Hn

n=-—9

X(ejQ) =

_Q) 1-— e_jg(%_ﬂ)
1 — e_j(llo_Q)
—-9))

)

— eI
sin(L2( %

Sin(%(llo -

(c) x[n] as depicted in Figure P3.56 (a)

Discrete and Periodic, use DTFS.

N=7 Q,=2

choose n,k € {0, ....,6}

P8 g

1 6x
X[k = (14 e Fh —eIFh)

(d)z(t) = etHtu(—t + 2)
Continuous and Nonperiodic, use FT.

2
X(jw) = el/ eIt gy

e3—]2w

1—jw

(e) x(t) = |sin(27t)|
Continuous and Periodic, use FS.

T = %, wo = 4m
0.5 jomt _ ,—j2mt
X[k = 2 / Lt gy
0 2j
0.5 0.5
_ _j/ pi2m(1=2k)t gy j/ o2 (12Kt gy
0 0
_ 1— (71)17210 1— (71)(1+2k)
on(1—2k) | 2n(l+2k)

(f) z[n] as depicted in Figure P3.56 (b)
Discrete and Nonperiodic, use DTFT.

X = %j(sin(Q) + 25in(2Q) + 3sin(3Q) + 4sin(4Q))

15



(g) z(t) as depicted in Figure P3.56 (c)
Continuous and Periodic, use FS.

T=4, w,=7%
1 (% . I
X[k = —/ e*ﬂa’“dw—/ 3e IEkt gt

4 1 4 2

2(—1)F 4 e I%k _ 3e=i Tk

B jork

2(—1)F eI EF_ge I FH

1 k=0

3.57. The following are frequency-domain representations for signals. Determine the time-domain sig-

nal corresponding to each.

e kT2 k| < 10 . . o .
(a) X[k] = Fundamental period of time domain signal is T' = 1.

0, otherwise

FS;2n
Discrete and Nonperiodic «—— Periodic and Continuous, use FS.

9
z(t) = Ze*j%ke*jz’rk
k=—9
9

_ Z (e~Im(2=05))k

k=-9
sin(¥7(2t — 0.5))
sin(37(2t — 0.5))

(b) X[k] as depicted in Figure P3.57 (a)
DTFS; 2x
Discrete and Periodic «———— Discrete and and Periodic, use DTFS.

N =5, Q, = 2F Choose n,k € {-2,-1,...2}

2
gln] = > X[kl Frn
k=-2

am 4w 2m _s2m
= TN e IEN L] I EN e iFN

2 4
= 1-2j sin(%n) —2j sin(%n)

. cos(¥) 4+ gsin(¥), |w| <
(©) X(jw) = § O HImE, <7
0, otherwise

FT
Continuous and Nonperiodic «——— Nonperiodic and Continuous, use FT.

1 g Fw

z(t) = - el T el dw
™ —T

sin(m(t 4+ 0.25))

m(t +0.25)

16



sin(7(¢t+0.25)) 1
SU(t) _ { m(t4+0.25) k 7é

1
4

_ 1

1 k=—3

(d) X (jw) as depicted in Figure P3.57 (b)

F
Continuous and Nonperiodic «——— Nonperiodic and Continuous, use FT.
1 , 1 [? ,
z(t) = — —e?ed“v dw + —/ e Yel“ dw
27T _9 27T 0
o245t 1 Q20t-1) _ g

o+ ) 2n(ji—1)
e ?t(cos(2t) + 1)
Jm(l14+t2)

(e) X (e’*?) as depicted in Figure P3.57 (c)
DTFT
Continuous and Periodic «——— Periodic and Discrete, use DTFT.

1 (™ 2Q .
zn] = — — e 4Q
2t J_, w
Use integration by parts.
2 cos(mn)
jmn

2cqs(7m) 0

z[n] = { 0 jmn n#
n=20

(f) X[k] as depicted in Figure P3.57 (d)
FS;n
Discrete and Nonperiodic «—— Periodic and Continuous, use FS, T =2, w, =7

x(t) = 2[sin(3nt) + sin(4nt) + sin(57t) + sin(67t) + sin(77t)]

(8) X(e7) = [sin(Q)]
DTFT

Continuous and Periodic «——— Nonperiodic and Discrete, use DTFT.

z[n] = o | sin(§2)]e*™ dS
T™J -7
LI PR LI A
= — —sin(Q)e’*" dQ + — —sin(Q)e?*" dQ
2 J_, 2m Jo
_cos(m(n—1)) =1  cos(m(n+1))—1
N 2m(n — 1) 2m(n + 1)

cos(m(n—1))—1 cos(m(n+1))—1
afn] =4 D T aemen) - KA 2
0 k=2,-2
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3.58. Use the tables of transforms and properties to find the FT’s of the following signals.

(a) xz(t) = sin(27t)e " tu(t)

x(t) = sin(2nt)e ‘u(t)
1 . 1 )
— 2_je]27rte—tu(t) o Z —j27rt6—tu(t)
FT
e tul(t) ! .
14 jw
o FT
2g(t) s S(j(w - 2m))
1 1 1
X(j = — -
(je) 25 [T+ —21) 1+ j(w+2m)
(b) 2(t) = te=3t-1l
o3l FT 6
9+ w?
FT .
s(t—1) «—— e 7YS(jw)
tw(t il 2 Wiy
w(t) e J-W(jw)
d ; 6
(i _ cd |, 6
(je2) T o [e 9+ wQ}
- 6e I B 12jw™I%
N 9+ w?  (9+w?)?
(C) x(t) _ |:25ir;(?7rt):| |:sin‘(n2t7rt):|
sin(Wt) FT 1 w<W
wt 0, otherwise
FT 1 ) )
si(t)s2(t)  ——— S Si(jw) * S2(jw)
5— |°;—| T < |w| <5
X(jw) =4 4 lw] <7
0 otherwise
(d)
x(t) = ite_% sin(t)u(t)
dt
d Jt —Jjt
= —te*%u(t)6 ,6
dt 27
FT 1
te2tu(t
®) (2 + jw)?



, FT
e's(t) —— S(j(w—1))

d FT _ .
dts(t) — jwS(jw)

. 1 1 1
XGw) = Jwgs [(2+j(w1))2 INCEFIESE

(e) I(t) _ fioo sin(277) dr

T

sin(27t) FT 1 w<2r
mt

0, otherwise

/t s()dr 7, Suw)

- j—w + 75(j0)d(w)
mo(w) w=0
X (jw) = jL lw| <27, w#0
0 otherwise
(f) z(t) = e " 2u(t — 2)
. FT 1
e u(t) 1+ jw
FT ,
st—2) ——— e 2S(jw)
) 1
. —Jj2w
X(]W) € 1 + jw

(g) (1) = (220) o [ (22120

3(t) = a(t) #b(t) ———  X(jw) = A(jw) B(jw)
sin(W't) FT { I w<W

mt 0, otherwise

d y FT oS (i
ES() — jwS(jw)

X(w) = {jw L=t

0, otherwise

3.59. Use the tables of transforms and properties to find the inverse F'T’s of the following signals.
(a) X(jw) = gdioe

1 FT 4

(ERmE te” u(t)
FT d

jwS(jw) ——— —s(t)

dt

19



(b) X(]w) _ 4sin(2w—4)  4sin(2w+4)

2w—4 2w+4
2 si FT 1 |f<1
sin(w) rect(t) = It = )
w 0, otherwise
) FT 1t
S(j2w) —— 53(5)

FT .
S(iw=2) ——— &s(1)

z(t) = rect(%)ej275 - rect(%)e‘ﬂ’5
= 2jrect(%) sin(2t)
(©) X(jw) = 5507 — (W)
Lo s il ¢
o Tmolw) (Y
1 Fr —2t
57w e “u(t)
FT
2 (w) —— 1
1 1
X5 = —0. 5— +0.570(w) — 1.5w6
(jw) 05(jw—|—2) +O5jw +0.57(w) 5md(w)

X(jw) e—— a(t) = —0.5¢ "2 u(t) + 0.5u(t) — %

(d) X(jo) = & [4sin(4) 2222

S1(jw) = 28in(4w)S(jw) s 51 (£) = —js(t+4)) + js(t — 4))
X() = L 51(jw) s alt) = —jtsa(1)
z(t) = —trect(2(t + 4)) + trect(2(t — 4))
(e) X (jw) = 25n)
_ 2sin(w) FT )1 <t
S1(jw) = w s1(t) = { 0, otherwise

20



1 FT

Sa(jw) = Got9) s9(t) = e 2tu(t)
x(t) 51(t) * s2(t)
0 t <-1
a(t) = L1—e20HD] 1<t < -1

—2t 2

e —e?  t>1

€

. 2sin(w FT 1 <1
S(je) = 2) s=q L=t
w 0, otherwise

Mﬂ:{Q—ﬁ|t§2

0 otherwise

3.60. Use the tables of transforms and properties to find the DTFT’s of the following signals.
(a) afn] = (3)" ufrn + 2]

] = () uln+?]
= ()7 b+
(é)"u[n] DTFT — ;ejﬂ
s[n + 2] L 1225 (7%
292
X = ﬁiﬂ

u[n + 4] — u[n — 5] sm(é)
ns[n <———>DTFT jd%S(eJQ)
d bln(%) bm(%)
=[] dQ sm(%) a sm(%)
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(¢) ol = cos(En) (b uln — 2]

o] cos(Tn) ()" uln 2]
cos(n) 1(5)"uln — 2
o) = (pruln] A =
bl = afn— 2 L B(I?) = e 722 4>

DTFT _ 1 o 1 o
z[n] = cos(%n)a[n —2] ——— XY = 53(63(9—1)) n §B(6J(Q+Z))

e J2(Q=%) o—32(2+%)

1—1e (=9 Tz 1e=i(@+%)

X = % [

™ m(n—8)

(d) z[n] = [Sm%n)} . [sin(%m—s»}

oty = G FT s<ejﬂ>={1 ol <3

o 0, T<|Q <7

DTFT , 4 4
bin] = sln —8] ———— B(e/?) = ¢ 7825(e7?)
—_i8Q -
X = BEesEn =] < UG
07 % < |Q| S s

s 2 .
(e) Z‘[’I’L] _ |:sm(5n):| % sm(gn)

™ ™

sln] = sin(fn)  DTFT (e = I Q<3
™m 0, F<Q <
DTFT ‘ 1 A ,
sa[n] = sn)s[n] ——— Sy(e’?) = %S(em) * S(e?) = { = ‘%l |Q| < 7, 27 periodic.
1 g <z
X (7% — S5 (7S () = 2 2 | =2
(&) T R B

3.61. Use the tables of transforms and properties to find the inverse DTFT’s of the following signals.

(a)

X(%) = jsin(4Q) -2
1. 1
— AR Z 40 9
2¢ 2¢
1 1
z[n] = 55[n+ 4] — 5§[n — 4] — 28[n]

(b) X (e7) = |:efj252 Sin(%ﬂ)] ® [sin(gg)]

sin(§) sin(Z)
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Let the first part be A((e’®!)), and the second be B(e’*).

_ 1 |n—=2|<7
aln] = { 0, otherwise
bn] = { (1) Lz‘llegr\iise
X((¢?) = A(&?)@ B(e’?) L 2[n] = 2ra[n]bln]

2 |n] <3
0, otherwise

(©) X(e) = cosa0) [232]

sin(

It

e
—

, in(3Q DTFT 1 <1
A(ejQ) _ Sl.n(QQ ) G/[TL} _ |TL| -
sin(%) 0, otherwise
‘Q ‘Q DTFT 1 1
X (e’") = cos(4Q)A((e’*")) ——— z[n] = ia[n +4] + §a[n — 4]
i 4<1,ln—4<1
- SR ESNEE
0, otherwise
) —j4Q = Q 3
(d) X(e/) =4 © 4<|.|<4 , for | < 7
0 otherwise
) —Jj4 Q= s
X = ¢ | 2|.<4 , for |9 <
0 otherwise
z[n] = ej%"bm&(n_@

JQ) — i (AQ+E) d 2
(e) X(e/™) =e 2an 14le @1 + L4le i)

Q _ . _ n
S = T s1ln) = 2(—)"uln]
51(67(Q—§) ﬂ eﬁ”sl[n]
(e HE) L g )
S(e7?) = 8, (7)) 4 Gy (/) L s[n] = 2cos(=n)s1[n]
—jeitn d%s(em) DTFT_) —(n —4)s[n — 4]
ol = Al cos(F(n— 4)(~ )" Huln 4
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1 ¢l <1 FT
0 otherwise

and the FT properties to evaluate the frequency domain representations
for the signals depicted in Figure P3.62 (a) — (g).

() y(t) = 2(52)

X(jw) _ 2 sin(w)

w

3.62. Use the FT pair x(t) =

Y(jw) = e_j2“2X(j2w) = eI 72 Sizllgw)
(b) y(t) = sin(mt)x(t)
. 1 ) 1 .
Y(jw) = Q—jX(J(w 7)) — 2—jX(J(w +))

sin(w—m)  sin(w + )
jlw-m)  jlw+m)

V(o) = X(w) - eI EXGY)
_ ejw25in(w) % 2sin(%)
(d) y(t) = 2t2(t)
jta) e Lo
Y (jw) _ ‘%2512((41)
Y (jw) _ 2‘7‘(2005((,0) B 2811)12(44)))
(e) y(t) = x(t) * x(t)
.2
Y(jw) = 45122@))
(£) y(t) = [ a(r)dr
Y(jw) = Q“Iidﬂjiwﬂ(m(w)
sin(w)
= 2 T + 2m6(w)
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V(o) = juain®)

w
= j2sin(w)

s\In| DTFT
3.63. We have z[n] = n (1)

given by:
(a) Y(e7%) = e 742 X (7%

X (7). Without evaluating X (e/), find y[n] if Y (/%) is

(b) Y (e/?) = Re{X (e/*)}

Since z[n] is real and odd,

X (e7?) is purely imaginary, thus y[n] = 0

(c) Y(e/?) = 35X (/)

i = —jnaln] = —juA ()"
(d) Y(e7?) = X ()@ X (e7(?=m/2))
il = 2mofolar)
nln] = €3]
yln] = 2mn? (Z)anlewn
(€) Y (&%) = X (e5%9)
R IS vt
In|
LI P v
(f) Y(e7) = X (7)) + X (e7%)
sinl = aln] + 2l-n) = () —n(3)" =0

25



(g) Y(eI%) = % {e—jm [X(ej(Q-‘r%)) +X(ej(Q—%))}}

yln] = —jn [e‘j%("_‘l)x[n — 4+ Ty — 4]}
3
= —jn [2cos(2(n —4))(n — 4)()"
4 4
FS;m
3.64. A periodic signal has FS representation z(t) «——— X[k] = —k27!*l. Without determining

x(t), find the FS representation (Y[k] and w,) if y(¢) is given by:
(a) y(t) = =(3t)

Y] = —k271* o =3r.
(b) y(t) = G(t)
Y[k] = jkwoX[k] = jk?n27Fl o = 7.
(c) y(t) = z(t —1)
Y[k] = e X[k] =e k2R o =7

FS;n
(d) y(t) = Re{z(t)} «——— Y[k] conjugate symmetric

Re{Y[k]} = -even{Re{X[k]}}
Re{V[k]} = w
— k27 1kl 4 g2 Ik
- 2
-0
Im{Y[k]} = odd{Im{XIk]}}
-0
(e) y(t) = cos(dnt)x(t), w, =7
y(t) = %ej“t:v(t) + %e*j‘l’rtx(t)
ViR = %X[k 44 %X[lc 1 4)

1 1
= —5k- 4)2~ k=4l 5k + 4)2~ Ik+4l
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() y(t) = (W)@ x(t - 1)

T=2, Wo =T
@) T TX[EZ[K]
FS;m

)

z(t—1) —— eI X[k]
Y[k] = 2e kT (— k2~ IFl)

. sin(ll—"n) DTFS; 15 . . . .
3.65. Given z[n] = — (2,? ) X[k], evaluate the time signal y[n] with the following DTFS
Sin ﬁn
coefficients using only DTFS properties.
DTFS; & .
(a) Yk] = X[k — 5] + X[k + 5] «—— [e?2" + e 72" |x[n]

7 sin(3Tn)
= 92 o 20
vl cos( 2 n) sin(g57)

(b) Y[K] = cos (kZ) X[K] o)

= %[m[n—2]+a:[n+2]]

yln] = 1 sin(lgl—oﬂ(n —2)) sin(%’r(n +2))
2 | sin(g5(n —2)) sin(Z5(n + 2))
DTFS; %

n 20
yinl sin®(Zn)
DTFS; &
(d) Y[k] = Re{X[k]} «——— even(x[n])
y[n] — a:[n] +2x[—n]
_ sin(4n)
sin(g57)

3.66. Sketch the frequency response of the systems described by the following impulse responses. Char-
acterize each system as lowpass, bandpass, or highpass.
(a) h(t) = 6(t) — 2= u(t)

2
T 24 jw
Jw
2+ jw

1

Y(jw)
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Highpass filter

(a) The magnitude of X(exp(j omega))

(a) The phase of X(exp(j omega))
T

T 2 T T
1.5F b
5t 4
1l 4
~10}F 4
[%2]
g g 05 1
= b=l
= 8
© c
T =
~15}+ 4 [} L 4
g 15 2 0
g g
j=2] =
g =
5] g -0.5F 1
—20} 4
1+ 4
25} 4
~151 4
-30 L L L -2 I I |
-40 -20 0 20 40 -40 -20 0 20 40
Omega Omega

Figure P3.66. (a) Graph of the magnitude and phase

(b) h(t) = 4e~2! cos(50t)

—2t mr . Jw
alt) = e Tult) ——— A(w) = 37—
h(t) = 4cos(50t)a(t) L H(jw) =2A(j(w — 50)) + 2A(j(w + 50))
. 2 2
H(jw) =

- + -
24+ j(w—50) 2+ j(w+50)

Bandpass filter with maximum gain at w = 50, —50.
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(b) The magnitude of X(exp(j omega)) (b) The phase of X(exp(j omega))
T T T

10 T 2 T T
15F
ol A
1k
_10F A
(2]
S 5 osf
£ k]
= 19
=
—20}k 4 < L
g 20 > 0
g 5
> =]
g 3
5] 2-05F
_30 - 4
“1F
40 A
-15F
-50 : s 2 s ‘ s
-100 -50 0 50 100 -100 -50 0 50
Omega Omega

Figure P3.66. (b) Graph of the magnitude and phase

1
H(?) = 78
1— Lfe—i0
8
Low Pass filter.
(c) The magnitude of X(exp(j omega)) (c) The phase of X(exp(j omega))
0 T T 1.5 T T T
1l
51 4
2 g osf
£ =]
2-10f . g
< £
54 =
<
5 2 ol
=) £
[=% o
8 g
X _15| 4
5718 &
o X
Q S-o0s
—20} 4
1
=25 L L L -15 I | |
-4 -2 0 2 4 -4 -2 0 2
Omega Omega

Figure P3.66. (c) Graph of the magnitude and phase
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(=" |n| <10
0 otherwise

™ |n| <10
hin] = .
0 otherwise
H(e?) = sin(ZH(Q — 7))
T Q-
2
High pass filter.
(d) The magnitude of X(exp(j omega)) (d) The phase of X(exp(j omega))
30 T T T 35 T T T
20 1 sl |
10 B
25F B
g 5
£ of B ]
©
§ 10l . g
g 5
g =l |
X g
8-201 1 X
<] 2
N ©
1k A
_30 - 4
—a0k ] 0.5F J
-50 . . . 0 | . 1
-4 -2 0 2 4 -4 -2 0 2 4
Omega Omega

Figure P3.66. (d) Graph of the magnitude and phase

3.67. Find the frequency response and the impulse response of the systems having the output y(t) for
the input z(t).
(a) 2t) = eult), y(t) = e2ult) + eSu(t)

, 1
X(jw) = T+ /0
. 1 1
Y(jw) = 2+jw+3+jw
_ 5+ 25w
2403+ jw)
. Y (jw
Hiw) = X@&

5+ Tjw + 2(jw)?
2+ jw)(3 + jw)
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(b) (t) = e~*u(t),

y(t) = e 302yt — 2)

2
25(t)

2
+jw 3+ jw
- (e_2t + 26_3t)u(t)

X(jw) = 3+1jw
Ye) = e_j2w3+1jw
H(jw) = e 92¢
h(t) 5t —2)
. y(t) = 2te=2u(t)
X() = 330
. 2
YU e
. 2
EAUCEY ™)
h(t) = 2e u(t)
)" uln)
X = =
2
1 1 1
Y(BJQ) = Z (1 — %6_j9> 1 %B_jﬂ
H(e?) = %ﬁ_%z:z
4
W) = qolnl + ()bl = ()"l — 1)



Y(GJQ) = 1 _ 1e_jQ 1 le_jQ
H(Y) = 1—e79
h[n] = d[n] —d[n—1]

3.68. Determine the frequency response and the impulse response for the systems described by the
following differential and difference equations.

(a) gy(t) +3y(t) = (1)

juY (jw) +3Y () = X(jw)
B 1
 jw+3
h(t) = e 3tu(t)

(b) ;_;y(t) +5:Ly(t) + 6y(t) = —a(t)

(jw)?Y (jw) + BjwY (jw) + 6Y (jw) = —jwX(jw)
. —Jjw
H = —
() (jw)2 + 5jw + 6
B 3 n 2
34 jw 2+ jw
h(t) = (=3e73" 4 2e72")u(t)
(c) yln] — jyln — 1] = gyln — 2] = 3z[n] — z[n — 1]
I _io 1 _isg Q —jQ Q
(1- 3672 2Py (%) = (3- e )X(e)
) 3 — 330
Jj2 1
H(e ) - 1— ie_jﬂ _ 16_]29
B 1 2
1= Lle—i0 T 14 1e—i0

(d) yln] + 5yln — 1] = z[n] — 22[n — 1]

1 . . . .
(1+§e*J“)Y(eJQ) = (1-2e77)X (Y
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3.69. Determine the differential or difference equation descriptions for the systems with the following

impulse responses.

() h(t) = Le~Fu(t)

) _ Y(jw)
HU9 = ¥ (w)
_ 11
N a%Jrjw
C 4V () = X(w)
4V () = X(w)
Syl + Syt = ()
(b) h(t) = 2e~2u(t) — 2te~2tu(t)
. 2 2
HGw) = 5550 arjor
2452w
24w
(4+4jw+ ()Y (jw) = 2+ 52w) X (jw)
a0+ 4y + Ty = 2e(t) +2.0a(1)
(¢c) h[n] = a"uln|, |af <1
j o Y(ejg)
H(e Q) X(ejQ)
1
R
V() (1 —ae ) = X(29)
yln] —ayln —1] = zn]
(d) h[n] = 8[n] +2(3)" uln] + (F)" uln]
H(e®) = 14— !



4+ 1e7 — Lemy20
N lfie*jZQ
iQ 1 _iag I o 1 _i iQ
Y(e )(I—Ze ) = (4—|—§e ~ ¢ )X (e7*)
] - Syln—2 = defn]+ seln—1] - ~afn—2)
yln] — Jyln = daln] + 5zin 2%

3.70. Determine the differential or difference equation descriptions for the systems with the following

frequency responses.
. N
(a) H(](AJ) — 2+3JOJ73(jUJ)

T+ 2jw
24 3jw —3(jw)?
N 1+ 2jw
(1+2j0)Y(ju) = (24 3jw—3(jw)*) X (jw)
YO+ 2y(0) = 20(t) + 3 () 3 ()
(b) H(jw) = 2%
d2
Lou) -t = () - Lo
(¢) H(jw) = Gorsrsn
. _ 1+ jw
HUW) = Gortajw o
2
o0+ 3050 +2y(t) = 2+ Ta)
(d) H(e?®) = o'y
eI
HEY =
3yln] +yln—2] = z[n]+zn—1]
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e I%

e ar e

(e) H(e??) =1

yln) =yl — 1] = Syl —2)

09

(1—1e ) (14 1e799)
3,—350 1_—52Q

1+ Ze 75— ge J

1,-j20

1+

_ 1,50 _
1—ze77

3
+ -z

x[n] 1

[n—1] — éx[n—Q]

3.71. Consider the RL circuit depicted in Fig. P3.71.
(a) Let the output be the voltage across the inductor, yr,(t). Write a differential equation description for

this system and find the frequency response. Characterize this system as a filter.

High pass filter.

yr(t) +yr(t)
()R + yL(t)
1 t
i
yr(t)
JwlL
1+ jwL

yr(r)dr +yr(t)

d
+ L—yL(t)

dt

(b) Determine and plot the voltage across the inductor if the input is the square wave depicted in

Fig. 3.21 with T =1 and T, = 1/4.
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One period of the output for yL(t)

Y, (®
o

-0.8

-1 L L L L L L L I I J
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure P3.71. Plot 1 of 2

(c) Let the output be the voltage across the resistor, yr(t). Write a differential equation description

for this system and find the frequency response. Characterize this system as a filter.

z(t) = yr(t)+yr(t)
= () + Loy(t)
H(jw) = ﬁ

Low pass filter

(d) Determine and plot the voltage across the resistor if the input is the square wave depicted in Fig.
321 with T =1 and T, = 1/4.

<
—~
o~
N2
I
<
—
~
N2
*
>
—~
o~~~
~—
I

= (1—e T)u(t)
yr(t) = wv(t+0.25) —v(t+0.25)
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One period of the output for yR(t)

0.9
0.8+
0.7

0.6

®

Y,

0.1+

Figure P3.71. Plot 2 of 2

3.72. Consider the RLC circuit depicted in Fig. P3.72 with input z(¢) and output y(t).
(a) Write a differential equation description for this system and find the frequency response. Characterize

this system as a filter.

x(t) = y(t)+L%y(t)+é/_ooy(T)dT
%z(t) = %y(t) fL%y(t) + éy(t)
H(jw) = o

& +iw+ L(jw)?

Bandpass filter centered at w. = \/@ .
(b) Determine and plot the output if the input is the square wave depicted in Fig. 3.21 with T = 27%1073
and T, = § %1073,
Assume L = 10mH.
This filter picks off the first harmonic of the signal, thus ignoring the smaller terms, y(t) ~ % sin(1000¢).
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(i) L = 10mH, One period of the output for y(t)
0.8 T T T T

0.6 ,

0.2 b

y(®)
o

_0 8 | | | | | | |
-4 -3 -2 -1 0 1 2 3
x 10"

Figure P3.72. Plot 1 of 1

3.73. Use partial fraction expansions to determine the inverse FT for the following signals.

(a)
‘ 6jw + 16
X(w) = —w = =
(jw)? + 5jw + 6
A B
= — t+ —
3+ jw 24 jw
6 = A+ B
16 = 2A+3B
2 4
X =
() 34 jw 21 jw
z(t) = (2e73" +4e ?)u(t)
(b)
. jw—2
X = ——
() —w? +5jw+4
_ 4 B
44w 14w
1 = A+B
-2 = A+4B
2 1
X(jw) = -
() 1t jw 14 jw
z(t) = (27 —e Hu(t)
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X(jw)

_ Jw
- (jw)? +6jw + 8
A B
= —+ —
44+ jw 24 jw
= A+B
= 2A+4B
2 1

4+ jw 2+ jw
= (27 — e 2)u(t)

—(jw)? —4jw — 6
((jw)? + 3jw + 2)(jw + 4)
A B C
2—|-jw+ 1—|—jw+4+jw

A+B+C
5A+ 6B+ 3C
4A+ 8B +2C

1 1 1
24 jw  1+jw 4+ jw
(e72t — et — e (1)

2(jw)? + 12jw + 14
(jw)? 4+ 6jw +5

4
2+ - -
(54 jw)(1+ jw)
A B
24—+

S5+ jw 14 jw
A+ B
A+5B
1 1
5t e 14w
20(t) + (7t — e P)u(t)

Jw+3
(Jw + 1)2
A B
— + —
1+ jw (14 jw)

= A
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3 = A+B
1 2
X =
() T+jw (Lt jw)p?
z(t) = (e '+ 2te Hu(t)

3.74. Use partial fraction expansions to determine the inverse DTFT for the following signals.

(a)
; 2e77%
Q
X(ej ) 1 _ %e_j2Q
B A, B
C1-lemi9 14 Lemi0
11
2 = -A—--B
272
0 = A+B
, 2 2
X(el) = — — :
(™) 1—1e779 14 1e99
1 n 1 n
ol = (23)" - 2-3)") ubi
(b)
. 94 L=
Q _ 4
X(e™) = —Lle—j20 4 Lo—j0 4 q
8 4
B A B
C 14 iei® 1 Lemif
1 1,1
S = —ZA+:B
4 TR
2 = A+ B
. 1 1
X(e??) = , ‘
(™) 1+ 3¢9 * 1— 3e799
1., 1.,
ol = (5 + Q)b
(c)
, 2
Jj\
X(@D) = —e 72 4 eI + 6
B A, B
T 1+ie? 01— Lei0
1.1
0 = —-A+:-B
3473
1
o 1 2
X = P+ — P —
(™) 1+ 3792  1—1e 7@
1, 1, 2.1,
zln] = (g(—g) +E(§) )U[n]
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6 — 277 4 %e‘jm

X% = , :
(6 ) (_ieszg + 1)(1 _ iefjﬂ)
B A B c
14 3e77%  1— 179 1 1ei0
6 = A+B+C
3 1
-2 = —-A+-B
1471
1 1 1 1
Z - ZA_--B_--=
2 8 8 40
, 4 4 2
iQ _ _
X)) = 14 599 N 1—3e7%  1— 379
1 1 1
_ 4(—=\" 4(=\ — 9(=\"
il = (-5 + a5 - 2" ub
(e)
X = Soatl g
—66_]29 + 66_]9 =+ 1
= 1+ A + 5
- 14 3e7%  1— 279
5 = A+B
1 1 1
—-—— = —-A+-B
2 3 + 2
‘ 4 1
Jy
X)) = 1+1—|—%e—j9+1—%e—j9"
1 n 1 n
aln] = |4(=5)" +(3)" ) uln] + d[n]
3.75. Evaluate the following quantities.
(a)
2 DTFT 1
— (3)ul)
T 2 2 _ - n 2
A= LD SO R
oo 1 N
= syl
n=0
- 8T
= e
= 9m
(b)
sin(k% FS;m 1 |t <&
X[k] _ bln( 8) x(t) _ | | = 8w, )
mk 0, g <ltl=<Z7



2 sin? sin” (k7 /8) w2 0'5T| 9
= — x(t)|* dt
Z —mE 7)o
Tog
= % / 112 dt
2 J_ =
S8wo
_ we2m?
B 2(8)w,
_
B 8
(c)
: 2(2) FT ot
X() = r(t) = e~
1 [ 4\’ > )
= 271'/ e M at
0
— il
B 2
(d)
sin(7t FT . 1 |w <7
(t) = 2000 X(w)={ L =7
mt 0, otherwise
%) . 2 %)
7T/ Sln(ﬂ't) dt _ 1/ |X(jw)|2dw
oo i 2/
1 K
= —/ 1dw
2 -7
7
3.76. Use the duality property to evaluate
(a)
FT
2(t) —— e u(jw)
2t Fr 1
t
e u(=1) 2 jw
thus
1 FT L
— ——— 2me “u(w)
2— gt
1 1
t - -
z(?) o2 — jt
(b)
X(jw) :
w
’ 2+t
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FT 1
te 2 u(t
¢ 2+ jw)?
thus:
1 FT
-9 2w, (—
ST Twe Y u(—w)
X (jw) = —2nwe* u(—w)
(c)
i si.n (121_6%) DTFS; 7 X[
sin (%n)
Wo = 110 implies N =20
1 |n|<5 DTFS; 75 sin(4Tk)
0, 5<n| <10 sin(g5k)
implies
sin(bfk) DTFSifs 1 [ 1 |k <5
sin(g5k) 201 0, 5<kl <10
Lkl <
XK = 2 [kl <5
0, b<|kl <10
X[k +iN] = X[k +i20] = X|[k] where k,i are integers.

3.77. For the FT X (jw) shown in Figure P3.77, evaluate the following quantities without explicitly

computing z(t)

(a)
/OO x(t)dt
(b)
o | IXGw)a
S [/_3(w+5)2dw+/_1(— —1)2
- 2r -5 -3 “
16
Y
()
/OO x(t)el3dt

43

X(50)

lz(t) | dt

1
dw+/
-1

(w4 1)%dw + /13(—w + 3)2dw]



(d) arg{z(t)}

X (jw) is a real and even function shifted by 1 to the left, i.e. X(jw) = X (j(w —1)). Since X (jw) is
real and even, so is z(t), thus 2(t) = z.(t)e 7t = |z.(t)|e 7D which means,

arglz(t)] = —t
(e)
_ 2i U_Bw+5 dw—i-/:(—w—1)dw+/_11(w+1)dw+/13(—w+3)dw}
_ 4

DTFT 4
3.78. Let z[n] «——— X (e7}) where x[n] is depicted in Figure P3.78. Evaluate the following without
explicitly computing X (e7?).
(a) X(e’%)

X ) = Y ]

(b) arg{X (e’?)}

z[n] is a real and odd function shifted by 2 to the right, i.e. z[n] = xo[n — 2]. Since m,[n] is a real
and odd, X,(e/®?) is purely imagniary, thus X (e/?) = | X, (e/?)|e=72%¢/% | which means,

arg{X (e/")} = T — 20
©
[ xEmpae < o 3 jalulp

- n=-—o00

= 287

/ X (730 = 2rx(3)

—1T

(e) yln] s Re{e22X (72}
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= 0
Since X (¢7?) is purely imaginary, see part (b).
3.79. Prove the following properties.
(a) The FS symmetry properties for
i) Real valued time signals.
If 2(t) is real-valued: x(t) = x * (t)
I :
Xk = = i x(t)e Ikwot gt
e jkwot
X'k = = ¥ (t)e? ot dt
T Jo
I ,
Xk = o | a()e IRt gy
T Jo
— X[H
ii) Real and even time signals.
Further, if () is even: z(—t) = x(t)
I :
X[-k] = ”T/o x(t)edFot at
I 4
X[-k] = T/o x(—t)edFwot qt
1T ,
X[-H = _T/o w(r)e Ik g
T=—t, dT = —dt
Then flip order of integration.
X[k = XIK
X[=k] = X"[K]

Therefore, X[k] is real valued or Im{X[k]} = 0

(b) The DTFT time shift property.

1 /7 o
x[n — ny) = oy X(eJQ)eJQ("_%) dQ
1 s

= — X (e7)ed Mo 7 Q)
2w g\ e’
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x[n — ny)

DTFT X ()¢9

(c) The DTFS frequency shift property.

(d) Linearity for the FT.

FT
Let ax(t) + by(t) ——— S(jw)

S(w) =

6jkDQon

= Y

[%Mﬂﬂ+®@kﬁ“ﬁ

oo
a/
—00

aX (jw

(oo}

z(t)e It dt + b/
)+ bY (jw)

FT
Therefore az(t) + by(t) ——— aX (jw) + bY (jw)

(e) The DTFT convolution property.

DTFT

Let z[n] * y[n] «— C(e7?)

ejkoQDneijDn

ej(k_ko)Qon

y(t)e 9@t dt

C (&) Z Z z[lly[n — l]e= "
n=—0o0 |[=—o0
= Z x[l] Z yln — l]e 7 n=h g=iU
l=—0o0 n=-—oo
Y (ei%0)
= Z z[l]e 7Y (e7)
l=—00
= X (Y (7Y
DTFT , ,
Therefore z[n] * y[n] «——— X (e/)Y (e/?)
(f) The DTFT multiplication property.
DTFT .
Let z[n]y[n] «—— M (e7?)
M@ = Y alnlylnle



1 4 . .
x[n] = %/ X (e/M)ed™ qr

o0

_ 1 [T o .
M) = Z y[n]% X (e/T)edt™ dre=i9n

n=—oo

oo

_ 1" T iTn_—jQn
= %/_ﬂX(e]) Z y[n]e?* el

n=—oo

_ 1/ Ty N —i(Q=T)n
= 5 77TX(eJ ) Z y[n]e™ dr

n—=—oo

Y (ed(@-17)
1

= — [ Xy (@ Dar
2 J_,

1 . .
= %X(em) %Y (e7)

DTFT
Therefore x[n|y[n)

%X(em) * Y (e7%)

(g) The DTFS convolution property.

DTFS; Q,
Let z[n|® y[n] «—— C[k], N = é—:
| No1 Nl '
Cll = + SO allyln — f)eIken
n=0 [=0
N—1 N-1y
— xm _y[n _ l]e—jkﬂo(n—l) e—jkﬁol
=0 n—1=0 N
Y[k]
L Nl
= N z[lle IF 0y k]
1=0
X[k]
= NX[K]Y[X]
DTFS; 2
Therefore z[n]® y[n] ——— NX[k]Y [k]
(h) The FS multiplication property.
FS;w,
Let x(t)y(t) «—— M|[k]
e ;
Mkl = = z(t)y(t)e Ikt dt
T Jo
z(t) = Z X[l]edtwot
l=—00
1T & . :
M[k] = T X[l]e]l“’f'ty(t)eﬂk“"t dt
0

l=—00
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1 - r —Jj(k—Dlw,t
— le_ooXm/o y(t)e I F=Dlwot gy
= i XYk —1]

l=—o0
= XI[k]xY[k]

FS;w,
Therefore z(t)y(t) «——— X[k] x Y[k]

(i) The Parseval relationship for the FS.

1 [T 1 [T > ,
T/ ()2 dt = f/ () S X[Ke It gy
0 0

k=—oc0

-1 i X*[k]i/Tx(t)ejk%tdt

T~ T Jo

X[k]

= > X'[KX[K]

k=—o0
= > XK

k=—o00

3.80. Define a signal that is zero except at integer multiples of the scaling parameter p. That is, let
x.[n] =0, unless n/p is integer

Figure P3.80 (a) illustrates such a signal for p = 3.
(a) Show that the DTFT of z[n] = . [pn] is given by Z(e/%) = X, (e7¥/P).

X, (e2YP) = Z xz[n]e_j%"

let n = pr sum over r.

= Z . [prle T

r=—00

oo

= Z z, [pn]e_jQ"

n=—oo

= Z(Y)

(b) Use the DTFT of the signal w[n] depicted in Fig. P3.80(b) and the scaling property to determine the
DTFT of the signal f[n] depicted in Fig. P3.80 (b).

wn] = (0.9)"u[n] ki W(ed?) = ﬁ
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w[3] n even DTFT ) . 1
= F(ei?) = W(ei??) = —
g { 0, modd (") = W(™) = 59070

(c) Assume z,[n] is periodic with fundamental period N so z[n] = z,[pn| has fundamental period N/p
where N/p is a positive integer. Show that the DTFS of z[n] satisfies Z[k] = pX_,[k].

|z

-1

1 3 o
Zk] = N Zz[n]eﬂknszo
? n=0
2
P
N_q
1 X —3knpQ,
Zk] = pﬁnzz;)xz[pn]e JrmP
let | =pn
1 N-1
_ —7klQ,
2 = py D wsllle”
=0
= pX[K]

3.81. In this problem we show that Gaussian pulses acheive the lower bound in the time-bandwidth
product. Hint: Use the definite integrals in Appendix A.4.
(a) Let x(t) = e_é,X(jw) — ¢%. Find the effective duration, Ty, bandwidth, B,,, and evaluate the
time-bandwidth product.

[ t2e~ dt }%
i 000

[T et dt

o0

TiBy =

+2
(b) Let z(t) = e 2.2. Find the effective duration, T, bandwidth, B,,, and evaluate the time-bandwidth
product. What happens to Ty, By, and TyB,, as a increases?

t FT

f(2) —— aF(jwa)
SO X(jw) = ae WQQGQ
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N

y 22
t“e” o2 dt

3
g @

fe's) _ 12
Jo e e dt

Nl

=
I

_ (@
()Vor
- 2
V2
1
B fjooo w2e—w?a® gy ) 2
v [7 e dw
1
(e
( 12a)\/ 21
_ 1
V2a
1
TdBw = 5
If a increases:
(1) Ty increases
(2) B, decreases
(3) T;B,, stays the same
3.82. Let
o(t) = 1, |[t|<T
0, otherwise

Use the uncertainty principle to bound the effective bandwidth of z(t) * x(t).

oT —|t| |t| < 2T

0 otherwise

z(t) xx(t) = {

2T 2T
/ 22T — [t)?dt = 2/ 4T — AT + ¢ dt
0
¥T5
15
2T 2T
/ (2T — |th)?dt = 2/ 4T? — ATt + % dt
0

= 1_6T3
3

?—2T5 %
- (i)
3T°
2
= /T
5}
V5

V8T
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3.83. Use the uncertainty principle to bound the effective bandwidth of z(t) = e~ 1.

TdB'w

By,

Ty

By,

v

v

[ 12e=21 gt }%
Joo? 7

= e dt

3.84. Show that the time-bandwidth product, TyB,,, of a signal x(t) is invariant to scaling. That is,
use the definitions of Ty and B,, to show that z(t) and z(at) have the same time-bandwidth product.

Ty

7495

{ 2 2 (t)? dt }
T R dt

{ff‘;o t2|x(at)|2dt}%
75 Jz(at)|? dt

1

%ffooou%x(u)\zdu 2
2 7w (w)? du

1

-7y

a

1 Jjw
X (— )

g

1
w?| X (jw)]? dw | ?
| X (jw)|? dw

U
2

& )% WX ()P dw )
= o X ()P do

87 v X (jv)|? dv
{ a7 |X(jv)2dv }
aBy,
TyB.y,

Thus the time-bandwidth product is invariant to scaling.
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3.85. A key property of the complex sinusoids used in the DTFS and FS expansions is orthogonality.
By orthogonality we mean that the inner product of two harmonically related sinuoids is zero. The inner
product is defined as the sum or integral of the product of one signal times the conjugate of the other
over a fundamental period.

(a) Show orthogonality for discrete-time complex sinusoids, that is, prove

N-1
1 o 2m S 2m 1, k=I
- E €JkWn€_]lW" _ ’
N = { 0, k#I

Here we assume that |k — | < N.
Use finite-term geometric series formulas.

N-1 =
1 Z eI k=DFFn 1 Zy_ejzﬂk—w e
NS N e B

k,l are integers, thus e/27(h=0 =1
this implies

N-1
izem—z)%n _ {1 k=1
N & 0 k#I

(b) Show orthongoality for harmonically related continuous-time complex sinusoids, that is, prove

T Jo 0, k#1

Ifk=1
T T
l/ JTFED gy — l/ 1dt
T Jo T Jo
= 1
Itk £ 1
1 (T 1 eI F k=Dt T
_/ GFRD gy~ LeT T
T Jo TjF(k—=1) 0
ej27r(k—l)_1
 2n(k—1)
= 0

(¢c) Show orthogonality of harmonically related sines and cosines, that is, prove

1T 2w . om 1/2, k=1
T/o sm(k?t)sm(l?t)—{ 0 ez

Ifk=1

1T, om I 27
il i nd] - - 1— Dy il
T/o sin“(k Tt) dt T/o ( cos(2k Tt)) dt
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1 . us
= ﬁ |:t — nsm(k‘?t)} .
_ 1
2
Itk #1
l/T Ty im0 dt = 2 [ L eosZtk - 1)) — cos(Zt(k + 1) dt
TOsstmT _TO2COST cos(
1 T . on T . 27 T
= 0
1 /T o o 1/2, k=1
?/0 cos(k?t)cos(l?t) = { 0. k£l
Iftk=1
1T, on 1 T 2
?/0 cos (k?t)dt = f/o 5(1+cos(2k?t))dt
1 T oar "
= ﬁ |:t+ msln(k?t)] .
_ !
2
Itk #£1
l/Tcos(k2—7rt) cos(lQ—Wt) dt = 1/T1 cos(2—7rt(kfl))+cos(2—7rt(k+l)) dt
T Jo T T T, 2 T T
1 o o r
= 0
I 21 . 27
T/o cos(k?t) sm(l?t) =0
Ifk=1
e 2 2 I 2
- 0 Nl A “n - - Z¢in(2k 2=
T/o cos(k Tt) sin(l Tt) dt T/o 5 sin(2k Tt) dt
1 T ar "
= ﬁ |:—m COS(k?t)] .
= 0
Ifk#1
l/T (k:2—7rt) i (l2—7rt)dt = l/T1 i (2—7Tt(l<;—l))+ i (2—7Tt(l<;+l)) dt
TocosTsmT _TOQSmT sin( 7
1 2 T o ’
= o5 {_727%/{ yy coa(?t(k —1)) - b 1) cos(Tt(k: + l))] .
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3.86. The form of the F'S representation presented in this chapter,

o}

x(t) = Z X[k]edkwot
k=—oc0
is termed the exponetial FS. In this problem we explore several alternative, yet equivalent, ways of
expressing the FS representation for real valued periodic signals.
(a) Trigonometric form.

(i) Show that the FS for a real valued signal z(¢) can be written as

x(t) = B[0] + i Blk] cos(kw,t) + A[k] sin(kw,t)

where B[k] and A[k] are real valued coefficients.

z(t) = Z X[k] (cos(kw,t) + j sin(kw,t))
k=—oc0

z(t) = > (X[K] cos(kwot) + X [k]; sin(kw,t))
k=—oc0

x(t) is real, which implies:  X[—k] = X*[k]

cos(—u) = cos(u)
sin(—u) = — sin(u)
Thus
x(t) = X[0] + Z [(X[k] + X*[K]) cos(kwot) + j(X[k] — X*[k]) sin(kwot))]
k=1
x(t) = X[0] + Z [2Re{ X [k]} cos(kw,t) — 2Im{ X [k]} sin(kw,t))]
k=1
compare with
z(t) = B[0] + ) Blk] cos(kw,t) + A[k] sin(kuw,t)
k=1

(ii) Express X[k] in terms of B[k] and A[k].

Bl0] = XI[o0]

Blk] = 2Re{X[k]}

Alk] = —2Im{X[k]}
X[k + X*[k] = BI]
X[k = X*[k] = —jA[K]



X[0] = B[]
Blk] — jA[K]
2

(iii) Use the orthogonality of harmonically related sines and cosines (See Problem 3.85) to show

Bl0] = l/Tac(t)dt

T Jo
o (T
B[k] = T/o x(t) cos kw,tdt
2 T
Alk] = ?/0 x(t) sin kw,tdt
1 /7
B[0] = X[0] = T ), z(t)e I Owet gy
1 (T
2 T :
Blk] = ZRe{ ) x(t)e Ihotdt}
2 [T :
= = z(t)Re{e 7kt dt
T Jo
2 T
= 7 ; x(t) cos(kw,t)dt
2 " :
Alk] = T, z(t)Im{e 7kt dt

2 T
= —/ x(t) sin(kw,t)dt
T Jo

(iv) Show that A[k] = 0 if x(t) is even and B[k] = 0 if x(t) is odd.
If «(t) is even: X[k] = X*[k]
Thus: X[k] is real valued, i.e. Im{X[k]} =0
Therefore,

Al] = —2(0)
Al = 0

If x(t) is odd: X[k] = — X*[k]
Thus: X[k] is imaginary, i.e. Re{X[k]} =0
Therefore,
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(b) Polar form.
(i) Show that the FS for a real valued signal z(¢) can be written as

z(t) = C[0] + i Clk] cos(kwot + 0[k])

k=1

where C[k] is the magnitude (positive) and 6[k] is the phase of the k" harmonic.
Write X[k] in polar form as X [k] = | X[k]|eo 9{X] = C[k]es0(F)

From (a): z(t) = B[0]+ Z Bl[k] cos(kw,t) + A[k] sin(kw,t)
k=1
Let: Blk] = cos(8]k])C[k]
Alk] = —sin(0[k])CIk]
where:
Clk] = +/B?[k]+ A%[K]
since
cos(0[k]) cos(kw,t) — sin(0[k]) sin(kwot) = cos(0[k] + kw,t)
Thus: z(t) = B[0]+ Z Blk]? + A[k]? cos(0[k] + kwot)
k=1
Compare with: z(t) = C[0]+ 3 Clk] cos(kw,t + 0[k])
k=1

(ii) Express C[k] and 0[k] as a function of X[k].

Clk] = /Bk]? + A[k]?
= 2/Re{X[k]}2 + Im{X[k]}2
B Alk]

0lk] = —arctan (%)

= —arctan (

Im{ X[k} )
Re{X[k]}

(iii) Express C[k] and 0[k] as a function of B[k] and A[k] from (a).

Clk] = BE?+ A[R]?

anctan (ot )

3.87. In this problem we derive the frequency response of the continous- and discrete-time LTI systems

>
o
|

described by the state-variable representations.
(a) Define q(jw) as the FT of each element of the state vector in the state-variable representation for a
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system. That is,
Q1(jw)
_ Q2(jw)
q(jw) :
Qn(jw)
FT
where the ith entry in q(jw) is the FT of the ith state variable, ¢;(t) ——— Q;(jw). Take the FT of the
state equation £q(t) = Aq(t) + bz(t) using the differentiation property to express g(jw) as a function
of w, A, b, and X (jw). Next take the FT of the output equation y(¢) = e¢q(t) + Dz(t) and substitute for
q(jw) to show that:

H(jw) = c(jwI—A)"'b+D
d
7)) = Aq(t) +bx(t)
JwQjw) = AQ(jw)+ bX(jw)
Q(w)(jwI—-A) = bX(jw)
Q(w) = (jwI—A)'bX(jw)
y(t) = cq(t) +Dx(t)
Y(jw) = cQ(jw)+DX(jw)
= c(jwI — A)7'bX(jw) + DX (jw)
. Y (jw)
HO9 = %)

= c(jwI-A)'b+D

(b) Use the time shift properties to express the frequency response of a discrete-time LTT system in terms
of the state-variable representation as:

H('®) = o(e®1- A)'b+D
gn+1] = Ag[n]+ nx[n]
J2Q(e?) = AQ(el?) + bX(ei?)

Q) = (/7= A)bX(e?)

y[n] = cq[n]+ Dx[n]
Y(?) = cQ(e?) +DX(e!?)
= (e - A)'bX(el?) + DX (eI?)

H(®) = c(e®A)"'b+D
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3.88. Use the result of Problem 3.87 to determine the frequency response, impulse response, and dif-

ferential equation descriptions for the continuous-time systems described by the following state variable

descriptions.
(a)A:[_OQ _01] b:[g], c:[l 1}, D =[0]
H(jw) = c(jwI—A)"'b+D
2
- Jw+1
h(t) = 2e tult)
_ Y(w)
X(jw)
Y(jw)(jw+1) = 2X(jw)
Su) +ylt) = 20()
(b)A[_lg _24], b[i], c=[0 1], p=[
H(jw) = c(jwI—A)"'b+D
_ 2jw —15
(W) + 3w + 2
_ Y(jw)
X(jw)
Y(jw)((jw)® +3jw+2) = X(jw)(2jw - 5)
%y(t)+3%y(t)+2y(t) = 2%9&(25)—53:@)
. A B
H(jw) = 5550 T T 0
2 = A+B
-5 = A+2B
9T
24 jw 14w
h(t) = (9e™ —Te  u(t)

3.89. Use the result of Problem 3.87 to determine the frequency response, impulse response, and

difference equation descriptions for the discrete-time systems described by the following state variable

descriptions.
-1 1 0
_ 2 _ _ _
(a)A_[ . i]’ b_[l , c_[1 o], D=1
H() = c(e™1—A)"'b+D

@+ D™ - 1)
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1+ Je 7% 4 Zemi20
1+ 1e=i% — le—i20

il = (55 + ) ulal - 780
AL
H(ejﬂ> = ‘))/(Eejg))
Y (&) (1 + ie_jﬂ - %e‘jm) = X(29) (1 + ie_jﬂ + ge_jm)
ol + goln—1) = guln—2] = ofu] + el — 1]+ Lofo 2]
1 3 1
DA=|41 4 |, b= . c=|0 1|, D=
waz|§ A ] w=[i] emlo 1) oom
HY) = c(I-A)"'b+D
el9
= a1
4
e I9
T 1L
B A B
B 1+%e*jﬂ+1—%e*jﬂ
0 = A+B
1= JA+B
HE®) = -3 lle*jﬂ 1o llefjﬂ
Al = [(—3)" + ()" Tuln]
eI
H(ejQ) = A};(((ejﬂg
Y (e79)(1 1e*j29) = X(e9%)e 79
inl — quln =2 = aln 1]

3.90. A continuous-time system is described by the state variable description

Azlol _031’ b:[g], c:[o 1}, D =10]

Transform the state vector associated with this system using the matrix

1 -1
1 1

to find a new state variable description for the system. Show that the frequency response of the original

T =

and transformed systems are equal.

H(jw) = c(jwI—A)"'b+D
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H'(jw) = c(jwI-A)"'b' +D

A" = TAT
—2 1 1
1 -2
b = 'I:‘b
_9 ]
2
¢ = c-T_1
=[5 4]
D =D
= 0
Use these two equations to verify H(jw) = H'(jw).
H(jw) = c(jwI—-A)"'b+D
H'(jw) = c(jwI-A)"'b' +D
_ 2
3+ jw

Solutions to Advanced Problems

3.91. A signal with fundamental period T is said to possess halfwave symmetry if it satisfies 2:(¢) =
—z(t — %) That is, half of one period of the signal is the negative of the other half. Show that the FS
coefficients associated with even harmonics, X[2k], are zero for all signals with halfwave symmetry.

1 (05T ,
X[k = ?/me(t)e_ﬂ“%tdt

1 0.5T _ 0 _

= = / x(t)eﬂk“’“tdt+/ x(t)e IRwotqr
T 1 Jo —0.5T
1 0.5T _ 0 _ _

= = / x(t)eijk%tdt—t—/ —x(1)e IkweT eIk gt
T | Jo —0.5T

0.5T
_ %{/O x(t)e‘jk“’Ot(l—(—l)k)dt}

when k is even( = 0,+2, 4, ...), the integrand is 0

xp = | FUST 2@ etdty k= odd
- 0, k = even

3.92. The FS of piecewise constant signals may be determined using the differentiation and time-shift
properties from the FS of the impulse train as follows. Differentiate the time-domain signal to obtain a
sum of time-shifted impulse trains. Note that differentiation introduces an impulse at each discontinuity
in the time-domain signal. Next use the time-shift property and the FS of the impulse train to find the
FS of the differentiated signal. Finally, use the differentiation property to obtain the F'S coefficient of the
original signal from the differentiated signal.
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Assume z(t) has discontinuities at times Tj, I = 1,2, ..., L, and at these discontiniuities the height differ-

ence is represented by ¢; = lim, ,+ x(t) — lim, ;- x(t), then
l 1

i FS;w, 1
a(t) = Z S(t—pT) ——— Alk]= -
p=—00
FS;w, 1 )
z(t) =alt —Tp) PN X[k] = ?efgkqul
d
y(t) = aw(t)
L
= Z qa(t —Tp)
=1
Whose Fourier Series representation is
L
Y[k] = Z c Alk]eikeoTi
=1

(a) Can this method be used to determine the FS coefficient for & = 07 How can you find it?

X k] is the average value of x(t).

(b) Use this method to find the FS coefficients for the piecewise constant waveforms in Fig. P3.92.

(i)
In one period, %x(t) has a delta function of height 2 at ¢t = —1, and a height of -2 at t = 1. T = 4,

SO Wo = 5.

o0

() = p;oo 20(t +1—pT) — 28(t — 1 — pT)
—ik%(=1) —ik% (1)
Xk = 2e . 2 .
jk2m jk2m
= % Sin(gk)

(i)
In one period, %x(t) has 4 delta functions, one of height —2 at ¢t = —2, another of height of —1 at
t = —1, another of height of 4 at ¢ = 0, and one of height of —1 at t =1. T'=4, so w, = 3.

oo

() = > [=20(t+2—pT) = 6(t+ 1 — pT) +46(t — pT) — 6(t — 1 — pT)]

p=—00
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26— TkE(=2)  g—ikE(-1) 4 e—ikEQ)
Jkar jker | jken jken
1 km

= {2 — kT — cos(?)}

X[k = J% [2— e —cos(EZ)] k#0
-1, k=0

3.93. The method for finding the FS coefficients described in the previous problem may be extended
to signals that are piecewise linear by differentiating twice to obtain a sum of impulse trains and doublet
trains. The time-shift property and FS of the impulse train and doublet train are then used to find the
FS for the twice-differentiated signal and the differentiation property is used to obtain the F'S coefficients
of the original signal from the twice differentiated signal.

(a) Find the FS coefficients for the doublet train

d(t) = i SOt —1T)

l=—00
> FT 1
a(t) = Z 0t —1IT) —— A[k]:T
l=—0o0
d FT
b(t) = Ea(t) ——— Blk] = jkw,Alk]
implies:
f: st —1r) s jhuw
S5t — PR il
[ dt I
Thus:
Jkwo
DIk] =

T
(b) Use this method to find the FS coefficients for the waveforms in Fig. P3.93.
(i)

Since two derivatives were taken to find the impulses, divide by (jkw,)? to find X [k].

%x(t) = > (—20(t—12) +26(t — 1 —12)) L. X[k = m [%e—j’”(l) - %}

l=—o00

1 (1 —(=1)k
X[k = { R [11( D] k#
ii) T =4, w, = Z. Take 2 derivatives to find:
2
d? =
() = >[5t —1T) = 26(t — 1 —1IT) +6(t — 2 — IT)]
l=—0o0
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o0

+ > [5(1>(t F1IT) — 260 — 1 —1T) + 60t —2 - lT)}

l=—o0
FT 1 ) . . 1 . .
t — s X[k = —— Jkwo _ 9p—7kwo —j2kw, T 1~ 9edkwo —j2kw,
z(t) (k] T e e +e ]+ Ghon)?T [ e +e ]
1 . o . . .
Xk — jgk_2 —ji5k —jrk 2 —jisk —]7rk_1
4 T R T g 2T e ]

X[H] {ﬁkﬁk_%jg”ej”’%ﬁ[%j%’“ﬂj”’“—l] k#0

1(1-2%) k=0

T

3.94. The FT relates the electromagnetic field at a distant point to the electric field distribution at
the antenna. This problem derives this result for a one-dimensional antenna with monochromatic (single
frequency) excitation of w,. Let the electric field at a point z within the antenna aperture have amplitude
a(z) and phase ¢(z) so the electric field as a function of z and ¢ is z(z,t) = a(z) cos(wot + ¢(2)). Define
the complex amplitude of the field as w(z) = a(z)e’**) so that

z(z,t) = Re {w(z)e’*"'}

Huygen’s principle states that the electric field at a distant point is the superposition of the effects of each
differential component of the aperture electric field. Suppose the point of interest is at a distance r. It
takes time ¢, = r/c for the differential component between z and z + dz to propagate a distance r where
c is the propagation velocity. Thus the contribution to the field at r from this differential component of
the aperture is given by

y(z,)dz = z(z,t —t,)dz
Re {w(z)e /¥t dze? vt}

Since the wavelength A satisfies A = 27wc/w,, we have w,t, = 27/ and the complex amplitude associated
with this differential volume is w(z)e=727"/*,

(a) Consider a point P at an angle 6 with respect to the axis normal to the aperture and at a distance
R from z = 0 as shown in Fig. P3.94. If R is much greater than the maximum extent of the aperture
along the z-axis, then we may approximate r as r = R + zs where s = sinf. Use this approximation to

determine the contribution of the differential component between z and z + dz to P.

To an approximation

r = R+ zsin(6)
= R+4zs
s = sin(#)
then

Re {w(z)eijZ”T/Adzej%t }
becomes

Re {w(Z)e—j27rR//\e—j27rzs/)\dzejwot}
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(b) Integrate all differential components of the antenna aperture to show that the field at P is given by
Y (s, R) = Re { G(s)e/2m R elwet |

where

G(s) = / w(z)e—jQﬂ'zs/)\dZ

represents the complex amplitude of the field as a function of sinf. Comparison to the definition of the
Fourier Transform indicates that G(s) is the FT of w(z) evaluated at 2ws/A.

Integrating out the differential compenent dz leads to:

Y(S,R) = / Re {w(Z)eijWR/Ae*jQ‘ITZS/)\dZejwot}

— 00

Re{/oo w(z)ejzwzs/Adzej%rT/)\ejwot}

— 00

Re {G(s)e 32 RAcivot}

(¢c) Use the FT relationship developed in (b) to determine the far-field pattern, |G(s)|, for the following
aperture distributions w(z). Assume A = 1 and sketch |G(s)| for —7/2 < 0 < 7/2.

. 1, |2]<5
1) w(z) =
(i) w(z) 0, otherwise

Gl = | wemei:

— 00

5
— / €7J27TZS/)\CZZ

-5
sin(107 %)

S
™

. eIt |zl < 5
i) w(z) =
(i) w(z) { 0, otherwise

|G(s)]

5 3
‘/ ITieT IR dy
-5

sin(57(0.25 — 2%)

A
7(0.25 — 23)

(iii) w(z) = { 1/2+ (1/2) cos(w2/5), |2 <5

0, otherwise
5 5
1 _. )
G(s)| = ’ / ZemImas/ A, 4 / cos(Z2)e92m=3/A g,
_ 1sin(107%) | sin(57(0.2 —2%)  sin(57(0.2 4+ 23%)
2 7% 27(0.2 — 23) 2r(0.2 1 23)
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(iv) w(z) = e=*". Using Fourier Transform tables:

@ (i)

10

@i 1)
(i) IG(s)I

151

(iii) |G(s)]
(V) 1G(s)I

0.5f

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
S S

Figure P3.94. Plot 1 of 1

3.95. Figure P3.95 depicts a system known as a beamformer. The output of the beamformer is the
weighted sum of signal measured at each antenna in the antenna array. We assume the antenna measures
the complex amplitude of propagating plane waves of a single frequency, w and that the antennas are
equally spaced by a distance d along a vertical line. A plane wave p(t) = e/“°! is shown arriving at the
array from direction 6. If the top antenna measures p(t), then the second antenna measures p(t — 7(6))
where 7(0) = (dsin@)/c is the time delay required for the plane wavefront to propagate from the top
to the second antenna. Since the antennas are equally spaced, the k" antenna measures the signal
p(t — k7(0)) and the output of the beamformer is

s = 3 wplt— kr(6)
k=0

N-1
_ ejwot Z wkefjwokr‘r(@)
k=0
N-1
— ejwot Z wke—j(wgkdsine)/c

k=0
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We may interpret this as a complex sinusoidal input from direction € resulting in a complex sinusoidal
output of the same frequency. The beamformer introduces a magnitude and phase change given by the
complex number

N-1
b(0) — Z wkefj(wgkdsine)/c
k=0

The gain of the beamformer, |b(6)]| is termed the beampattern. Note that the gain is a function of the
direction of arrival and thus the beamformer offers the potential for discriminating between signals ar-
riving from different directions. For convenience we shall assume that operating frequency and spacing
are chosen so that wod/c = 7. Assume 6 is in the range —7/2 < 6 < /2.

(a) Compare the expression for the beampattern to the frequency response of a discrete-time system

having only N non-zero impulse response coefficients. That is, assume h[k] =0 for k < 0 and k¥ > N.

N— N—
H(') = hlkle=7**  compared to  b(f) = wye ) (wokdsing)/c
k=0 k=0

—
[u

One can see that this is a 1-1 mapping where Q € (—7, 7) is mapped into M, where 6 € (—7/2,7,2)
For this case 2 is mapped into 7sin(f) with —7 < 7sin(f) < .

(b) Evaluate and plot the beampattern for N = 2 with wp = w; = 0.5 and wy = 0.5, w9 = —0.5.

Beampatterns for part (b)
1-

0.8

0
06
&

g‘_‘OA -

0.2

0 I I I I I I
-2 -15 -1 -0.5 0 0.5 1 15 2

phase(radians)

Figure P3.95. Plot 1 of 3

(c¢) Evaluate and plot the beampattern for N =4 with wy, = 0.25, £k =0,1,2,3.
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Beampattern for part (c)
1 T T

0.8

0.7

0.6

=0.25

0.4r

0.3

0.2

phase(radians)

Figure P3.95. Plot 2 of 3

(d) Compare the beampatterns obtained for N = 8 with
wr=1/8k=0,1,...,7 and w, = 1/8e7*/2 k =0,1,...,7.

Beampatterns for part (d)
1 T T

-2 -15 -1 -0.5 0 0.5 1 15 2

0.8

0.125¢00-5k1
o
(=]
T

1 15 2

phase(radians)

Figure P3.95. Plot 3 of 3

3.96. In Problem 2.97 we determined that the solution to the equations of motion for a vibrating string
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have the form yi(1,t) = ¢r (1) fr(t),0 <1 < a where
fi(t) = ag cos(wgct) + by sin(wget),  ¢r(l) = sin(wyl)

and wg = km/a. Since yi(I,t) is a solution for any ap and by, the most general solution has the form

y(l,t) = Z sin(wil) (ag cos(wnct) + by sin(wpct))
k=1
We may use the initial conditions y(I,0) = () to find the a; and %y(l7 t)|t:O to find the by.
(a) Express the solution for ay, in terms of the FS coefficients of x(I). Hint: consider Eqgs.(3.25) and (3.26)
with [ replacing ¢.
Use the initial condition that:

oo

y(,0) = x(l)zZaksin(%)
k=1

This solution is of the form of the Fourier sine series

By applying the principle of orthogonality:
2 [ l
a = - / x(1) sin(ﬂ) dl
0 a

a

(b) Express the solution for by in terms of the FS coefficients of g(I).
Use the initial condition that:

d e ki
—y(l,t) = Z:§ b — csin(—
dty(,) g(l) k_lkacsm(a)

This solution is of the form of the Fourier sine series
By applying the principle of orthogonality:
2 a

kml
by = — ) sin(—) dl
o= [ st

(¢) Find y(I,t) assuming ¢g(!) = 0 and x(l) is as shown in Fig. P3.96. Then b, =0 for n = 1,2,3,... and

2 [ (% 20 . knl 10 21 kxl
= — 1—sin(——)dl 1(2 — —)sin(——)dl
ay 10 {/0 0 10sm( 10) +/5 0.1( 10)sm( 10)
8(0.1) sin(0.5km)
- m2k2
Thus the complete solution is:
8(0.1) = sin(0.5km) .  knl kmel
y(l,t) = 2 ’; 2 Sln(ﬁ)COS(T)

3.97. In this problem we explore a matrix representation for DTFS. The DTFS expresses the N time

domain values of an N periodic signal z[n| as a function of N frequency domain values, X[k]. Define
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vectors

z[0] X|0]
. z[1] Cx- X.[l]
z[N —1] X[N —1]

(a) Show that the DTFS representation

N-1
x[n] = X[k]eHten pn=0,1,...,N -1
k=0

can be written in matrix vector form as x = VX where V is an N by N matrix. Find the elements of V.

N—-1 4
z[n] = X[k]e?k¥m n=0,1,...,N — 1
k=0
is equivalent to:
z[0] = X[0]e?O%O) 4 4 X[N — 1]/ (N-D2%(0)
z[1] = X[0]e/ %M ¢ 4 X[N - 1]/ VD20
[N -1 = X[0]/O% W=D 4 XN —1]e/V-D2®E-1
can be written as:
z[0] eI (092:(0)  oi(N=1)22(0) X[0]
x[]_] ej(O)QO(l) . ej(Nfl)Qo(l) X[l]
2[N — 1] eI (02,(0)  Li(N=1)2(N-1) X[N —1]
which is: x = VX, Visan Nx/N matrix
The entries pf V are defined as:
v],. = eI (€)Q20(r)
where r(=row) = 0,1,...N -1
where ¢(= column) = 0,1,...N —1

(b) Show that the expression for the DTFS coefficients
| Nl
— —7kQon _
X[k}—ﬁ;r[n]ej ., k=0,1,...,N—1

can be written in matrix vector form as X = Wx where W is an IV by N matrix. Find the elements of W.

N—
Z z[n]e Hn k =0,1,...,N — 1
k=0

—

1

X = ~
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X[N —1]

can be written as:

Xw_u

which is: X
the entries of W are defined as:
[W]nc

where r(= row)

where ¢(= column)

[x[o]e—j(o)ﬂu(o) 4o+ x[N _ 1}6—,7'(N—1)Qo(0)}

2=zl

[x[O]e—j(o)Qo(l) + ot z[N - 1}e—j(N—1)QO(1):|

1 [:C[O]e_j(O)Qo(N—l) + .. 4a[N-— 1]6—3‘(1\/—1)90(1\;_1)}
N

eI | g(N-DF(0)

dOFM)  G(IN=1)5e() z[0]
(1]

L©%0)  gov-ngew-n | LN 1]

Wx, W is an Nz N matrix

L i@.0r)

—€
0,1,...,N—1
0,1,..,N—1

(c) The expression x = VX implies that X = V~!x provided V is a nonsingular matrix. Comparing
this equation to the results of (b) we conclude that W = V=1, Show that this is true by establishing
WYV =1. Hint: Use the definitions of V and W determined in (a) and (b) to obtain an expression for

the element in the [** row and m** column of WV and use the result of Problem 3.85.

N-1

N
k=0

LY X[erat—o =

1
WV],,, = Z%eﬂ’“f” eIk mN,n:O,l,...,N—l
| Nl
= ¥ Z X[k]ejkﬂo(lfm)
k=0
1 l=m
eI N0 (l—m)
% (11 7% (I—m) ) L#m

Since N, = 27, we have:
[WV]l,m

which is an identity matrix, therefore:

\\A%

S =

{
o 17

3.98. We may find the FS coefficients by forming the inner product of the series expansion with the

conjugate of the basis functions. Let

x(t) =

Z X [k]elkweot

k=—o0



Derive the expression for X [k] using the result of Problem 3.85 by multiplying both sides of this equation
by e~7%wot and integrating over one period.

T T [e%s)
/ x(t)e*jkwnt dt = / < Z Xmejlwot> eijkw"t dt
0 0

l=—00

oo T )
= Y X[l]/ e I=kwat gy
0

I=—c0
by the orthogonality of sinusoids (Problem 3.85)
TX[K] 1=k
- { 0 14k
implies
1

T
X[k = ?/0 z(t)e kot gt

3.99. In this problem we find the FS coefficients X[k] by minimizing the mean squared error (MSE)
between the signal z(t) and its FS approximation. Define the J-term FS

J
gr(t) =Y Alkle*!

k=—J
and the J term M SFE as the average squared difference over one period

1 T
MSE, — T/ (t) — 2, (1) dt
0

(a) Substitute the series representation for & ;(¢) and expand the magnitude squared using the identity
la +b|? = (a + b)(a* + b*) to obtain

T J T
MSE; = %/0 |lz(t))?dt — Z A*[K] (%/0 x(t)ejkwotdt> B

k=—J

J T J J T
3> (3 [ woesa) s S5 wuam (3 [ omoomera)

m=—J k=—J

J
B = Y Atkler It
k=—J
Thus:
1 4 2 4 1 T jkwot L 1 T jkwot
- _ * il —Jkwo _ _ * Jkwo
MSE T/o z(@)Pdt— Y A [k](T/O z(t)e dt) - A[k](T/O a*(t)elFeot dt)
k=—J k=—J
J J 1 T
* —jkwot jmw,t
+ > > A [k]A[m](T/O e~ Ikwot gimwol gy
m=—J k=—
(b) Define



and use the orthogonality of e/*“* and e/™“°t (See Problem 3.85) to show that

MSE; =

1 /T
T Jo
Substitute
Alk]
To obtain

MSE;

Now
T
/ efj(kfm)wot dt
0

And thus
J J

>N A*[KAm)s

k=—Jm=—J

Thus

MSE;

J
w(t)Pdt — Y A*[K]X

ZA

k=—J k=—J k=—J

% OTx(t)e_jk“"’tdt
1 r 2 ! * ! *
f/o |z (t))| dtfk;]A (k] X [k] fk;]A[k]X k]
+ A K)Am](= [ e Immwot gp)

k=—Jm=—J T Jo

T k=m

0 k#£m
T i

J
> A*[k]A[K]
k=—J

J

(t)|2dt —

> At

k=—J

(c) Use the technique of completing the square to show that

MSE; = — /

\dth|A

k=—J

Note that

J
- > A RX[K] -

k=—J k=—J

J
> AlRIX (K]

k=—J

Thus we can re-write the result in (b) as:

MSE;

A

(d) Find the value for A[k] that minimizes MSE.

MSEj is minimized when the sum at the middle vanishes, i.e., when A[k] =

J
> XK -

- XJ: Alk]X

k=—J

J

- > IXIKP

k=—J

J
[K]]* = > |X[K]

k=—J

\dt+z | X [K]

k=—J

k) = %IOT

J
K+ Y ARK]P

J

+ Y AR

k=—J

J
P =Y AR

k=—

x(t)e Ikwoldt.

(e) Express the minimum M SFE; as a function of x(t) and X [k]. What happens to M SE; as J increases?
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J
min MSE, — _/ HlEdt— 3 X[

k=—J
As J increases: | X [k]|%is always greater than or equal to zero, so the sum
J
> XK
k=—J
we also have = / (t)[?dt > 0
As J increases: , Z | X [k ]| increases or remains constant and min M SE; decreases.
k=—J

3.100. Generalized Fourier Series. The concept of the Fourier Series may be generalized to sums of
signals other than complex sinusoids. That is, given a signal x(¢) we may approximate z(t) on an interval
[t1, 2] as a weighted sum of N functions ¢g(t), p2(t), ..., dn—1(t)

N-1

2(t) = Y cndi(t)

k=0

We shall assume that these N functions are mutually orthogonal on [t1,t2]. This means that

oo 0 kAL
/ ¢k<t>¢l<t>dt—{ P

The MSFE in using this approximation is

Z kit

MSE = ! /
to — 11

a ow that the 1s minimized by choosing ¢ = + x(t t)dt. Hint: Generalize steps out-
Sh hat the MSFE i inimized by choosi flk :12 or(t)dt. Hi G li
lined in Problem 3.99 (a) - (d) to this problem.

N N-1
—ch¢k(t) = |$(t)\2—x(t)zck¢k ch¢k
k=1 k=0
N-1N-1
+ ChCry D1 (1) 7, (1)
m=0 k=0
Thus:
1 to N-1 1 to
MSE = / t))2dt — (—/ t *tdt)
e A0 Zk [ et
N-1 1 ts —1N—1
Sty [T wnnn) + X X ad (L [ awsna)
k=0 1 m=0 k=0
to
Let Alk] = fi / x(t) ¢y (t)dt and use orthogonality
k Jt;
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MSE

Analogous to Problem 3.99(d), ¢

(b) Show that the MSE is zero if

If this relationship holds for all (t) in a given class of functions, then the basis functions ¢g(t), P2(t), . . .

is said to be “complete” for that class.

min MSFE

min MSFE

ta
JRCCIRE
t1

1 t2
/Iﬂmdt
ta —t1 Jy,

2—751
N-1
fr
— cA
tg—tll;) k Ty —t

1 t2
dt+
w_hll|o

i/trzx(t) L (t)dt

A =7

/2 t)[2dt = ka\cﬂ

ty

0 when:

N-1
> frlexl?
k=0

1 f2 2 fk = 2
z(t)|*dt — ———— Ck
e L0 e 2l

1 to N-1
t)|2dt — 2
e | = X aded

Z:|C|2
Tk
Z'C'f e

7¢N—1(t)

(¢) The Walsh functions are one set of orthogonal functions that are used for signal representation on

[0, 1].

Walsh functions depicted in Fig. P3.100. Sketch the signal and the Walsh function approximation.

2, T<t<$
(i) z(t) = 2 !

0, 0<t<i,

3
Z<t<1

We can see that the orthogonality relation for the Walsh function is as follows:

A<mwwu>

Co

C1

C2

C3

Cq

B 1 k=1
B 0 k#1, s0 fr=1

0.75
2dt = -
o =3
0.75
— [ e
0.5

Determine the ¢, and MSE obtained by approximating the following signals with the first six



s = 2(0)=0

5

) = Z ckdr(t)

k=0

#1) = 5 (Golt) — 6a(t) — 2(6) + (1)

Approximation of x(t) by xhat(t)
25 T T T

x(t)

0.5 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

25

N
T
I

xhat(t)

-
T
I

0.5 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure P3.100. Plot 1 of 2
From the sketch, we can see that x(t) = Z(t), so MSE = 0.
(i) z(t) = sin(27t)

1
o = /sin(?mﬁ)dtzo
0
3 1 2
¢ = / sin(27rt)dtf/ sin(27t)dt = —
1 7r

0 2
! 1
¢2(t) sin(2nt)dt = —
T

Cy =
0
c3 = 0, by inspection.
¢y = 0, by inspection.
1 3 1
8 8 2
c; = 2[/ sin(27rt)dt—/ sin(27rt)dt+/ sin(27t)dt
0 % %

%(1—\/5) ~ —%(0.83)
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Approximation of x(t) by xhat(t)
1 T T T

x(t)

x(t)

-15 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure P3.100. Plot 2 of 2

1
MSE = / Isin(2rt) — 2(0)[2 dt
0

1 2 2 2 3 2
8 2.17 8 3.83 8 1.83
= 2/ sin(27t) — —| + 2/ sin(27t) — —| dt + 2/ sin(2nt) — ——| dt
0 ™ 1 ™ z T
5 0.17[7
+2/ sin(2wt) — —| dt
3 T

8

0.1265

Q

(d) The Legendre polynomials are another set of orthogonal functions on the interval [—1,1]. They are

obtained from the difference equation

o) = Lo ()~ E L oealt)

using the initial functions ¢¢(¢) = 1 and ¢1(¢) = t. Determine the ¢, and M SE obtained by approximat-

ing the following signals with the first six Legendre polynomials.

Po(t) = 1

nit) = ¢

) = Su)-30) =562 -1)

B3(t) = gt%(?ﬁ —1) - ;t = %(5#” — 3t)

6alt) = ;t%(Bt?’ 31— Z%(sﬁ )= %(35154 301 +3)

o5(t) = %t%(35t4 — 30t + 3) — %%(5153 —3t) = %(315#‘3 — 350t> + 75t)
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The orthogonality relation for Legendre polynomials is:

Iy o667 (£)dt = Gu52y
so: fr = QL

+1
2, O<t< i
(i) z(t) = ’
0, -1<t<0,5<t<1

1
1 [2 1
Co 2A ( ) 2
o = §/22tcht:§
1
5 (2, ., 15
= 2 t? —1)dt = ——
7 3
5 = / (5% — 3t)dt = —1.039
2Jo
1
9 21
ch = _/ — (35t — 30> + 3))dt = 0.527
2 J, 4
1
1 [z 1
s = — | ==(315t> — 350t + 75¢t))dt = 1.300
2 Jo 20

k=0
1 1 5
MSE = = 4dt — 2
5 2 l /1 D o1l
= 0.1886
(ii) z(t) = sin(7t)
1 1
o = —/ sin(mt) dt =0
2J
3 1
= 5/ tsin(nt) dt = 0.955
-1
1
5 ) :
cy = 5/ (3t — 1) sin(wt)dt =0
0
7 1
3 = 5/ (5t% — 3t) sin(nt) dt = —1.158
0
9 (t1
o o= 2 / L (35t% — 3062 1 3)) sin(rt) dt = 0
2/, 4
1 [t
5= 5 / 2—0(315t5—350t3+75t))sm(mf) dt = 0.213
0

7



28

z(t) = ckdr(t)

|

*

e

5

1
2
: 2 2
[1 sin(r) P de =Y e
10~

S
n
=
I

k=0

W N

4

3.101. We may derive the FT from the F'S by describing an nonperiodic signal as the limiting form of
a periodic signal whose period, T, approaches infinity. In order to take this approach, we assume that
the F'S of the periodic version of the signal exists, that the nonperiodic signal is zero for |¢| > %, and that
the limit as T" approaches infinity is taken in a symmetric manner. Define the finite duration nonperiodic
signal x(t) as one period of the T periodic signal Z(t)

it), -L<t<Z
l‘(t) = T
0, [t|>35

(a) Graph an example of z(t) and Z(¢) to demonstrate that as T" increases, the periodic replicates of x(t)
in Z(t) are moved farther and farther away from the origin. Eventually, as T approaches infinity, these
replicates are removed to infinity. Thus, we write

z(t) = lim Z(t)

T—o0
Notice how as T' — oo, z(t) — Z(t)
Plot of xhat(t), with T = 15, x(t) = T/3 - t
50
a4l
=3r
s
<
%,
1k
0 Il Il Il
-20 -15 -10 -5 0 5 10 15 20
time
Plot of xhat(t), with T = 30, x(t) = T/3 - t
5¢
a4k
=3r
k5]
<
%,
1k
I I I I I I I )
-40 -30 -20 -10 0 10 20 30 40

time

Figure P3.101. Plot 1 of 1
(b) The FS representation for the periodic signal Z(t) is

Bt)= > X[k]e!
k=—oc0
X[k] = % / T E(t)e Thwolqt



Show that X[k] = £ X (jkw,) where

z

1 .
X[k = f/i;z(t)eﬂk%tdt
-2

Since #(t) = x(t) for — % <t< %

1 % ,
X[k = T/Tx(t)e—ﬂ’“wotdt

1 [ -
= = t)e Fwet dt
T /_OO z(t)e
. _ T
Since z(t) = 0 for |t| > 5
Compare with the equation of the FT, and one can see,

X[ = 5 X(kw)

(c) Substitute this definition for X [k] into the expression for Z(¢) in (b) and show that
1

T o

Z X (jkw,)e?*oty,

k=—o0

()

(t)

> FX(jhuw,)elet
k=—oc0
2
since T = il
Wo

1 < , -
= 5 Z X (jkw,)e?*oty,
k=—o0

(d) Use the limiting expression for z(¢) in (a) and define w &~ kw, to express the limiting form of the sum
in (c) as the integral

x(t) = %/ X (jw)e!*tdw

a(t) = Jim & (t)

1 _
— 3 _ ; Jkwot
= Tlgnoo o k; X (jkwo)e Wo
let w = kw,
asT — o0, w, — 0, k— 00, w—

implies:

z(t) = lim L > X(jw)ew,

wo—0 27
w
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Solutions to Computer Experiments

3.102. Use MATLAB to repeat Example 3.7 for N = 50 and (a) M = 12. (b) M = 5. (¢) M = 20.

A A,MHHH HHHM,A :ﬁo
L’ | ]

00000000000

000000000000000000

................

£ 0.02
©
j=2)
Q
5
= 0 i i
S (A
I
N
@ -0.02

004t+— 4+ 0 4 oIy

-20 -10 0 10 20
n

0.02 1
—_ 0.8
£ 001
ﬂ% 0.6
s o %
Z &
5] 0.4
3
@ -0.01
@ 0.2

-0.02

-20 -10 0 10 20
n

Figure P3.102. Plot 2 of 6
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00000000000

..................................

....................................
-10 0 10 20 -20 -10 0 10 20
n

-20

-10 0 10 20
n

-0.0
-20

Figure P3.102. Plot 4 of 6
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-20 -10 0 10 20
n
0.02
50.01
[=2]
(7]
5
A
[=]
o
Iy
N
-
-0.02
-20 -10 0 10 20
n

Figure P3.102. Plot 6 of 6
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3.103. Use MATLAB’s fft command to repeat Problem 3.48.

0.4
g 0.3
[
x0.2

0.1

10 15

10 15

0.4
g 0.3
3
x0.2

0.1

0
0

2

4 6 8 10

Figure P3.103. Plot 1 of 2

0.25

0.2

0.15

K1

I X4

0.05

o8

0.25¢

0.2

0.15

1% K |

0.05

0
0

N

Figure P3.103. Plot 2 of 2
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=
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3.104. Use MATLAB's ifft command to repeat Problem 3.2.

M, I, "

=
o
o

Ix ]|
(4]
o

<x[n] deg

o
o

10 15

N
o
o
4
=
o
=
o
N
o

8 ®
o 100
% Ak
= = ¢
= = 0or O o o] (o)
- ol |10
—_ x
2 v _100
00 )
0 5 10 15 0 5 10 15
80 ®
150
6 o
= g
E,4 =100
x o
—_— x
2 v 50
0 ) 0 )
0 2 4 6 8 10 0 2 4 6 8 10

Figure P3.104. Plot 1 of 2

150
1.5 [~
= 3
£ =100
x =]
—_ x
0.5 T v 50
0o 0% )
0 2 4 6 0 2 4 6
2 150
1.5 g
= =100
x® 1 o
—_ x
0 0% o)
0 2 4 6 0 2 4 6
1) 1)
8
o 50
—6 g
{= —_—
=4 s
\"2
2 N [o996] N
o olel[lele
0 5 10 0 5 10

Figure P3.104. Plot 2 of 2

3.105. Use MATLAB’s fft command to repeat Example 3.8.

Simply take the fft of the samples of one period of the time waveform and scale by the number of
samples used.
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Time index(n)

Figure P3.105. Plot 1 of 2
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Figure P3.105. Plot 2 of 2

3.106. Use MATLAB to repeat Example 3.14. Evaluate the peak overshoot for J = 29,59, and 99.
The peak overshoot for J = 29 is 0.0891 above 1.
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0.02 b

0.01

B[29]*cos(29*wo.t)
o

-0.01

-0.02 1 1 1 1 1 1 1 I 7

29(1-)0

X
o

Figure P3.106. Plot 1 of 3

The peak overshoot for J = 59 is 0.0894 above 1.

0.01F N

o
o
S
Gl
T
N

B[59]*cos(59*wo.t)
o

-0.005

-0.01 L 1 1 | I I

)

X
o

Figure P3.106. Plot 2 of 3

The peak overshoot for J = 99 is 0.0895 above 1.
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x10°

S =
T T

N

B[99]*cos(99*wo.t)
)

|
EN

|
=

Figure P3.106. Plot 3 of 3

3.107. Let x(t) be the triangular wave depicted in Fig. P3.107.
(a) Find the FS coefficients, X [k].

17 -
X[k] = TA z(t)e 7 TR dt, T =1

From Example 3.39 with T'= 1, x(¢t) = 2y(t + %) -1

% k=0,
Y[k] = 25in2(k—"')
jk27r22 b k # 0
FS;w, k
ot —ty) ——— e IRl X[E]
X[k = 2eF7IY[k] = 6[k]
implies:
-1 k=0
X]i} _ o m 2‘7‘" )
[] { 45}161;;’;2 6J5(k—1)7 k;«éO

(b) Show that the FS representation for x(t) can be expressed in the form

NE

z(t) = Blk] cos(kw,t)

el
Il

0

since x(t) is real and even, X[k] is also real and even with X [k] = X[—k]
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00 —1
o(t) = Y X[k + Y X[k]e?M + X[0]
k=1 k=—o00

= iX[k:]ej“"kt + iX[—k]e_j“"’kt + X|[0]
k=1 k=1
since X[k] = X[—K]

= ) X[k] (/K 4 e7wok) + X[0]
k=1

= Z Blk] cos(kw,t)
k=0
where
B — X[0], k=0,
B 2X[k], k#0

(¢c) Define the J term partial sum approximation to z(t) as

MK

Zs(t) =) B[k]cos(kw,t)

S
I

0

Use MATLAB to evaluate and plot one period of the J term in this sum and #;(¢) for J = 1,3,7, 29,
and 99.

0.4

0.2 q

B[1]*cos(1*wo.t)
o
T
Il

-04  -03  -02  -01 0 0.1 0.2 03 0.4 05
t
-0.2 R
_04 |- -
=
_o6k |
-08f g
1 1 1 1 1 1 1 1 1
-04  -03  -02  -01 0 0.1 0.2 03 0.4 05

Figure P3.107. Plot 1 of 5
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-0.4

-0.2
—0.4+

0%

-0.6
-0.8+

0.2 0.3 0.4 0.5

0.1

-0.3 -0.2 -0.1

-0.4

Figure P3.107. Plot 2 of 5

x107°

0.2 0.3 0.4 0.5

0.1

-0.3 -0.2 -0.1

-0.4

(romy2)s0o4[21a

_0.2+
-0.4r

-061

0

-0.81

0.2 0.3 0.4 0.5

0.1

-0.3 -0.2 -0.1

-0.4

Figure P3.107. Plot 3 of 5
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x 10"

B[29]*cos(29*wo.t)
o

Figure P3.107. Plot 4 of 5

x10~°

B[99]*cos(99*wo.t)
o

Figure P3.107. Plot 5 of 5

3.108. Repeat Problem 3.107 for the impulse train given by

x(t) = Z o0(t—n)

90



5(t)e 92kt gt = 1 for all k

k+#0

0.5

0.2 0.3 0.4

0.1

-0.3 -0.2 -0.1

-0.4

- o —

]
(rom,T)s0o,[Tlg

-2

2k

0.2 0.3 0.4 0.5

0.1

-0.3 -0.2 -0.1

-0.4

Figure P3.108. Plot 1 of 5
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— o —

I
(yom,g)soa.[elg

0.5

0.4

0.3

©
?

-0.4
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Figure P3.108. Plot 2 of 5

B[7]*cos(7*wo.t)
o
T
|

2 I I I I I I I I I
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

a0

Figure P3.108. Plot 3 of 5

B[29]*cos(29*wo.t)
o

Figure P3.108. Plot 4 of 5
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B[99]*cos(99*wo.t)
o

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

xgg(t)

Figure P3.108. Plot 5 of 5

3.109. Use MATLAB to repeat Example 3.15 using the following values for the time constant.

(a) RC = .01s.
(b) RC =0.1s.
(¢) RC =1s.

sk
Y []C] _ RIC SIH( 2 )
j2rk + _Rlc km

<
=
=
=
Il
~
=
99
<.
[\
3
™
~



0.8 h
=06 b
0.4 h
0.2 h

0.3 0.4 0.5

0.8
0.6

y(t)

0.4
0.2

0.3 0.4 0.5

0.6~ i
0.55- 4

y(®)

0.5 3
0.45- 4

Figure P3.109. Plot 1 of 1

3.110. This experiment builds on Problem 3.71.
(a) Graph the magnitude response of the circuit depicted in Fig. P3.71 assuming the voltage across the
inductor is the output. Use logarithmically spaced frequencies from 0.1 rads/S to 1000 rads/S. You
may generate N logarithmically spaced values between 109 and 109? using the MATLAB command
logspace(d1,d2,N).

(wL)

|H (jw)] T+ (WL

(b) Determine and plot the voltage across the inductor if the input is the square wave depicted in Fig.

3.21 with T'=1 and T, = 1/4. Use at least 99 harmonics in a truncated FS expansion for the output.

YK 2i7 sm'(k‘%)
T +32km
99
y(ty = Y Y[k
k=—99

(¢) Graph the magnitude response of the circuit depicted in Fig. P3.71 assuming the voltage across the
resistor is the output. Use logarithmically spaced frequencies from 0.1 rad/s to 1000 rad/s.

1

HGA = TG0z
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(d) Determine and plot the voltage across the resistor if the input is the square wave depicted in Fig.
3.21 with T'=1 and T, = 1/4. Use at least 99 harmonics in a truncated FS expansion for the output.

2jsin(k7%)
kn(1 4 j2knL)

gy = D Yk

k=-—99

Y] =

(a) Magnitude response across the inductor
T T T T

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
w(rad/s)

(b) One period of the output for yL(t) using 200 harmonics
1 T T T T T T T

-1 I I I I I I I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure P3.110. Plot 1 of 2

(c) Magnitude response across the resistor
1 T T T T

0 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
w(rad/s)

(d) One period of the output for yR(t) using 200 harmonics
1 T T T T T T T

0.8 b

Ya(®

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure P3.110. Plot 2 of 2
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3.111. This experiment builds on Problem 3.72.
(a) Graph the magnitude response of the circuit depicted in Fig. P3.71 assuming the voltage across the
inductor is the output. Use 401 logarithmically spaced frequencies from 10° rads/S to 10* rad/S. You
may generate N logarithmically spaced values between 109 and 1092 using the MATLAB command
logspace(d1,d2,N).
(i) Assume L = 10mH.

(a) L = 10mH Magnitude response in dB
0 T T T T

20log10(|H(w)|)
g

-100

-120 b

-140 -

1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
w(rad/s)

-160

Figure P3.111. Plot 1 of 2
(b) Determine and plot the output if the input is the square wave depicted in Fig. 3.21 with T = 271073
and T, = 5 * 1073, Use at least 99 harmonics in a truncated FS expansion for the output.

(i) Assume L = 10mH.

71000 sin(ZE)
Y[k] = , ‘
7(1/C + j1000k + L(;1000k)?)
99
y(t) _ Z Y[k]ejklooot

k=-99

96



(b) L = 10mH, One period of the output for y(t) using 99 harmonics
0.8 T T T T T

0.6 q

0.4 q

0.2 q

y(t)
o
T
Il

Figure P3.111. Plot 2 of 2

3.112. Evaluate the frequency response of the truncated filter in Example 3.46. You may do this in
MATLAB by writing an m-file to evaluate

e]Q § : h —]Qn

for a large number (> 1000) values of Q in the interval —m < Q < 7. Plot the frequency response
magnitude in dB (201og,, | H;(e’)|) for the following values of M.

(a) M =4
(b) M =10
(¢c) M =25
(d) M = 50

Discuss the effect of increasing M on the accuracy with which H;(e’}) approximates H(e’%).
It can be seen that as M increases:

(1) The ripple decreases

(2) The transition rolls off faster

Observe that h[n] = L sin(%) is symmetric, hence:
Ht(GJQ) _ Z 7an + Z e I0n + h[O]
M
= Z ] cos(Qn) + h[0]

This is the same basic form as a Fourier Series approximation using M terms. The approximation is
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more accurate as M increases.
T

[
T
I

Y o8 1
=
T o6l b
[}
£
Qo041 7
Eay
0.2 T
1 1 1 1 1
-3 -2 -1 0 1 2 3
Omega

[N

% 0.8
=
= 0.6
b5
5oa
Eay
0.2
Il Il Il
-1 0 1
Omega

Figure P3.112. Plot 1 of 2

T
1 B
@ 0.8F b
=
Z06f i
[=2)
£
o 04r q
Eay
0.2 7
RN 1 Il Il A
-3 -2 -1 0 1 2 3
Omega
T
1 B
§ 0.8F b
=
Z06f i
(=]
£
o 04r q
Eay
0.2 7
! A 1 1 1 b L
-3 -2 -1 0 1 2 3
Omega

Figure P3.112. Plot 2 of 2

3.113. Use the MATLAB command freqgs or freqz to plot the magnitude response of the following sys-
tems. Determine whether the system has a low-pass, high-pass, or band-pass characteristic.
N 8
(a) H(jw) = Goprigerreors
Low pass filter

3

(b) H(jw) = (jw)3+28‘:g2+2jw+1

High pass filter
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. —iQ g, —i20 | —j3Q
(C) H(BJQ) = 1ide Jﬁig:_;29+e d

Low pass filter

() H(ejﬂ) _ 0.02426(1—e~7?)*
T (1+1.10416e—7940.4019e¢—72%)(14+0.56616€—72+0.7657e —72%?)
High pass filter
(@ (b)
0 0
_20 b
-20
3 g -40f
s - £
g 40 o —60r
e} °
2 2 _gol
= -60 g 80
© [}
= = -100}
-80
-120
~100 -2 0 2 -140 -2 0 2
10 10 10 10 10 10
omega omega
(© (d)
0 0
_50 b
m —90 o
© kel
£ £ -100}
< 8
S -100 S
2 £ -150}
[=) [=2]
[ ©
= -150 = -200¢
-250
-200
- -2 0 2 4 -2 0 2
Omega Omega

Figure P3.113. Plot 1 of 1

3.114. Use MATLAB to verify that the time-bandwidth product for a discrete-time square wave is
approximately independent of the number of nonzero values in each period when duration is defined as
the number of nonzero values in the square wave and bandwidth is defined as the mainlobe width. Define
one period of the square wave as

1, 0<n< M
z[n] =
0, M<n<999

Evaluate the bandwidth by first using fft and abs to obtain the magnitude spectrum and then count the
number of DTFS coefficients in the mainlobe for M = 10, 20, 40, 50, 100, and 200.
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Figure P3.114. Plot 1 of 2

50

500 510 520

530

540

550

40
Q30

ii
=201

T T T T

WTT%

"

100

510 520

530

540

M

22271710 ?Tﬂ

T
(0]

T

ﬁf? o2 71T7¢0

485 490 495

500 505

510

515

520

T T T T

?TT?mTT

|
|

T

TTmT?

490

492 494 496 498

Figure P3.114. Plot 2 of 2
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M B,
10 201
20 101
40 51
50 41
100 21
200 11

3.115. Use the MATLAB function TdBw introduced in Section 3.18 to evaluate and plot the time-
bandwidth product as a function of duration for the following classes of signals:
(a) Rectangular pulse trains. Let the pulse in a single period be of length M and vary M from 51 to 701
in steps of 50.
(b) Raised cosine pulse trains. Let the pulse in a single period be of length M and vary M from 51 to
701 in steps of 50.
(c) Gaussian pulse trains. Let x[n] = e*“"Q, —500 < n < 500 represent the Gaussian pulse in a single
period. Vary the pulse duration by letting a take the following values: 0.00005, 0.0001, 0.0002, 0.0005,
0.001, 0.002, and 0.005.

2000 [
= 1500 bl
o
kel
2
1000 - B
1 1 1 1 1 1
100 200 300 400 500 600 700
Duration M : rectangular pulse
T T
600 - bl
> 500+ B
@0
2 400 R
300 bl
1 1 1 1 1 1
100 200 300 400 500 600 700
Duration M : raised cosine
82 T T T
2
D815 E
i
81 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 4.5
Pulse duration a : Gaussian pulse x107°

Figure P3.115. Plot 1 of 1

3.116. Use MATLAB to evaluate and plot the solution to Problem 3.96 on the interval 0 <1 < 1 at
t=0,1,2,...,20 assuming ¢ = 1. Use at least 99 harmonics in the sum.
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t=0 t=0.25

01 0.1
0.05 0.05
0 0
-0.05 -0.05

01y 02 04 06 08 1 01 02 04 06 08 1

t=0.5 t=0.75

01 0.1
0.05 0.05
0 0
-0.05 -0.05

02 04 06 o8 1 T 02 02 o6 o8 1

Figure P3.116. Plot 1 of 2

t=1.0 t=1.25
0.1 0.1
0.05 0.05
0 0
-0.05 e — -0.05
-01 -0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t=1.5 t=1.75
0.1 0.1
0.05 0.05
0 0
-0.05 -0.05
-0.1 -0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure P3.116. Plot 2 of 2

3.117. The frequency response of either a continuous- or discrete-time system described in state-

variable form (see problem 3.87) may be computed using freqresp. The syntax is h = freqresp(sys,w)
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where sys is the object containing the state-variable description (see section 2.13) and w is the vector
containing the frequencies at which to evaluate the frequency response. freqresp applies in general to
multiple-input, multiple-output systems so the output h is a multidimensional array. For the class of
single-input, single-output systems considered in this text and N frequency points in w,h is a dimension
of 1-by-1-by-N. The command squeeze(h) converts h to an N-dimensional vector that may be displayed
with the plot command. Thus we obtain the frequency response using the commands:

)) h = fregresp(sys,w);

) hmag = abs(squeeze(h));

) plot(w,hmag);

) title('System Magnitude Response');

) xlabel(‘Frequency(rad/s)'); ylabel(’"Magnitude');

Use MATLAB to plot the magnitude and phase response for the systems with state-variable descriptions
given in Problems 3.88 and 3.89.

3.88(a) System Magnitude Response

~ ~— ~— ~—

2 T T T T T
1.5 —
i
°
=
e 1r B
i=
It
=
0.5 B
0 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Frequency (rad/s)
3.88(a) System Phase Response
0 T T T
—05kF i
Q
@
F=
o
1k i
_15 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Frequency (rad/s)

Figure P3.117. Plot 1 of 4
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3.88(b) System Magnitude Response
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3.88(b) System Phase Response
T

0 1 2 3 4 5 6 7

Frequency (rad/s)

Figure P3.117. Plot 2 of 4

3.89(a) System Magnitude Response

foe]
©

10

3 T T T

N
3
T

N
T

[
T

o
w0
T

0 I I I I I

Frequency (rad/s)

3.89(a) System Phase Response

15 T T T

-15 I I I I I
0 1

Frequency (rad/s)

Figure P3.117. Plot 3 of 4
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3.89(b) System Magnitude Response
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© P PN W O
T T T T T T

o
| ©
I
I
w

3.89(b) System Phase Response

Frequency (rad/s)

_4 1
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Figure P3.117.
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Plot 4 of 4

0
Frequency (rad/s)
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Solutions to Additional Problems

4.16. Find the FT representations for the following periodic signals: Sketch the magnitude and phase
spectra.
(a) z(t) = 2 cos(nt) + sin(27t)

, 4 1 . 1 .
(E(t) _ e]Trt 4 e—jﬂ't + 2_'je]?mt _ Z_je—]QTrt
we = lem(m2n)=m
z[l] = =z[-1]=1
1
z[2)] = —z[-2]=—
2j
X(jw) = 2m > X[k]d(w — kw,)
k=—oc0
1
X(jw) = 2[m0(w—m)+ 7w+ m)]+ = [7d(w — 27) — w6 (w + 27)]
J
(a) Magnitude and Phase plot
7 —
ok A A
5k
Y
sl
2 |-
1 |-
L A, % o A AL A L ]
-10 -5 0 5 10 15 20
2
1 |- -
3
X of o o .
<y
[
_1 |- -
_2 | | | | | | |
-8 -6 -4 -2 0 2 4 6 8
w
Figure P4.16. (a) Magnitude and Phase plot
4 _1\k
(b) (t) = g T cos((2k + D)mt)
1 L (—1)F JEk4D)TE | —j(2k+ 1)t
x(t) = 52k+1{e +e



—

_1)k

4

X(jw) = 7y P [6(w — (2k + 1)7) + 6(w + (2k + 1)7)]

k=0

(b) Magnitude and Phase plot

35 T T T
AN AN

0
-30 -20 -10 0 10

arg(X(jw))
= N

I
o1
T

0
-30 -20 -10 0 10

Figure P4.16. (b) Magnitude and Phase plot

(c) x(t) as depicted in Fig. P4.16 (a).

0 otherwise

o) — {1 it <1

e

<

E
I

20 30

2 |t<3
+
0 otherwise

k=—o00

2. [2sin(kZT)
>

4sin(kZ) 27



(c) Magnitude and Phase plot
10

XGu)l

B L S S J

0 5 10 15 20 25

w
o1

N

o ow
T T

! !

arg(X(jw))

=
[N

=
T
1

o
n
T
!

o

Figure P4.16. (¢) Magnitude and Phase plot

(d) «(t) as depicted in Fig. P4.16 (b).

1 [? x
X[k] = 1/ 2te Iz qt

o k=0
2]0:3571‘]{2) ]{1750

X(jow) = 21 > X[k]é(w—gk)



(d) Magnitude and Phase plot

1

0.7
0.6

T

0.5

T

=04r

0.2

S T L O T A Y

arg(X(jo))
=
N
1

Figure P4.16. (d) Magnitude and Phase plot

4.17. Find the DTFT representations for the following periodic signals: Sketch the magnitude and

phase spectra.

(a) x[n] = cos(gn) + sin(Zn)
1 Jgn —Jign B JEN _ o=IEn
z[n] = 5[6 +e ]+2j[e ]
QO = lcm(g, g) = E

X = X5 =

O
XY = on i X[k]6(Q — kQ,)

k=—o0

X(e@®) = rlo@-5)+o@+ )]+ g s -5) - s+ )]



(a) Magnitude and Phase plot
2 T T T

15F

IX(e)]

0.6

0.8

arg(X(e'?

-2
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure P4.17. (a) Magnitude and Phase response

(b) z[n) =1+ 3 cos(Fm)d[n —m]

N=8 Q=7
zn] = 1+ Z cos(—m)d[n — m)]
= 14 cos(=n)
1 > kZn
X[k = 3 xz[nje "1
n=—4
For one period of X[k],k € [—4, 3]
X[-4 = 0
1-270% o
X[-3] = Tejk%
1 2«
X[-2] = geﬂk%
142795 .
X[—l] = +8 Jk4
2
142705 .
X[ = +8 —ik%
1 _p2n
X[2] = geﬂk%

0.6

0.8



X3 = B
3 .
X(e?) = 2r Y X[KS(Q - kQ,)
k=—o00
(1—2709) 3, 1 T, (1+2799) T, 1
= Q+—)+-6Q+ = Q4+ =)+ =6(2Q
{ 0@ )+ (@ o) 0@ 1)+ 2| +
(1+2703) m, 1 7. (1-2709) 3
—OiZsn-Z 0- 2
e - D+ ppa- v s
(b) Magnitude and Phase plot
2 T T T
15} ? -
G:
9 af i
X
05f -
O % | | | | | | | | %
-25 -2 -15 -1 -0.5 0 05 1 15 2 25
1
05t -
&
()
X ofo ) o o o o o
=y
@
_0.57 .
%5 2 15 1 os 0 05 1 15 2 25
Q
Figure P4.17. (b) Magnitude and Phase response
(¢c) x[n] as depicted in Fig. P4.17 (a).
T
N - 8 QO - Z
sin(k3T)
X[k = —F
8sin(gk)
5
X0 = =
o = 2
X% = 2r Y X[KS(Q k)
k=—o00



(c) Magnitude and Phase plot

LY &
3k
G:
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X
lk
LT Tsf L+ Ta1]
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al o 0 o o o 9 o |
251 R
X
S15F ]
©
1F ]
05 ]
(x/ | | | |
0 2 4 8 10 12
Figure P4.17. (¢) Magnitude and Phase response
(d) x[n] as depicted in Fig. P4.17 (b).
2
N=T7 Qo = —
7
1 o o2m 2n
X[k] = = (1—6Jk7 e Jk?)
1 2
= = <1 - 2cos(k7ﬂ))
XY = 2n i X[k]&(Q—kQ—”
k=—o0 7



(d) Magnitude and Phase plot

o
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arg(X(e"?)
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Figure P4.17. (d) Magnitude and Phase response

(e) x[n] as depicted in Fig. P4.17 (c).
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12



(e) Magnitude and Phase plot

5*
AN AN AN AN
4+
=3r
o}
L
X,
1k
1 1 1 1 1 J
0 2 4 6 8 10 12

arg(X(e")
&
(4]
T
67

2 I I I I I
0 2 4 6 8 10 12
Q

Figure P4.17. (e) Magnitude and Phase response

4.18. An LTT system has the impulse response

h(t) = 2 sin(27t)

cos(7mt)

Use the FT to determine the system output for the following inputs, z(t).

sin(27t) FT

Let a(t) = A(jw) = {

7t

1 |w| <27

0 otherwise

h(t) = 2a(t) cos(Trt) ———  H(jw) = A(j(w — 7)) + A(j(w + 7))

(a) z(t) = cos(2nt) + sin(67t)

X(jw) = 2r > X[k|d(w — kw,)
k=—o0
X(jw) = mb(w—2m)+ 0w+ 27) + gms(w —67) — gwd(w +67)
Y(jw) = X(jw)H(jw)
= ;6((4) —6m) — ;6(w + 6m)
y(t) = sin(6m7t)



(b) (t) = 3o m— oo (=1)™6(t —m)

X[ = g—e )= 21— ()}

_ 0 n even
B 1 nodd

X(jw) = 27 Y 6(w—127)

l=—00

Y(jw) = X(w)H(jw)
4
= 2m Y [6(w— 127) + O(w + 12m)]
1=3
y(t) = 2cos(6mt) + 2 cos(8nt)
(c) x(t) as depicted in Fig. P4.18 (a).
T=1 W =21
) > /sin(kT) By
X(jw) = 2r PVA) (1 ek ) 5w — k2n)
J k:Z_OO ( km )
Y(jw) = X(w)H(jw)
— Fm?fiz) (1 — e 93)5(w — 6m) + Smgiz) (1 - &#)5(w + 6m)
- 4Sin;3%)5(w —6m) + 4Sin(3%)5(w + 6m)
y(t) = 4512;3%) cos(67t)
(d) x(t) as depicted in Fig. P4.18 (b).
X[k = 4 / _ 16te k87t gt
% ;S(ﬂ'k‘)
mk
X(jw) = 27 > X[k|§(w — k8)
k=—oc0
Y(jw) = —456(w—8m)+456(w + 8m)
yln] = —% sin(87mn)

(e) x(t) as depicted in Fig. P4.18 (c).

T=1 We = 2T

10



Where
1

b1

2

$1

1
/ eftefijﬂ'tdt
0

1 — e—(1+ijk2m)
14 k27

1—e!

14 jk27

2m i X[k]o(w — k2m)

k=—oc0

X (jw)H (jw)
1—e! 1—e !t 1—e ! 1—et
2 O(w—6 O(w—38 1) 6 1) 8
7T<1—|—j677 (w 7T)+1+j87r (w ﬂ-)+1—j67r (w+ 7T)—|—1_j87T (w+ 7r)>
ej67rt ejSﬂ't e—j67rt e—jSﬂ't

1_ et
(1—e )[1+j67r+1+j87r+1j67r+1j87r]

1 ej67rt ejSﬂ't
201 —e 1) R
(1—e ){e{1+j67r+1+j87r}]

2(1 — e 1) [ry cos(6mt + ¢1) + 1o cos(87t + ¢o)]

14 (6m)2
—tan~!(6)
14 (8m)2
—tan~'(87)

4.19. We may design a dc power supply by cascading a full-wave rectifier and an RC circuit as depicted

in Fig. P4.19. The full wave rectifier output is given by

z(t) = |z(t)]
Let H(jw) = ;8:}’; be the frequency response of the RC circuit as shown by
1
H(jw) = ————
) = SoReT1
Suppose the input is z(t) = cos(1207t).
(a) Find the FT representation for z(t).
=240 T= L
Yo = ST = 120
Z[k] = 120 240 % (ej1207rt + efj1207rt) 67jk240m‘/dt
— 31
_ =1
(1 — 4k2)
o (DF

11



(b) Find the FT representation for y(t).

. _ Y (jw)
HOeY = 760
In the time domain:
z(t) —y(t) = RC%y(t) <F—T> Z(jw) = (1 + jwRC)Y (jw)
. 1
Hiw) = 1y jore
Y (jw) = Z(jw)H (jw)

= (D" 1
. 4k:2_m”(1—4k2) T+ jk2donRC ) 0@ — k240m)

(c) Find the range for the time constant RC such that the first harmonic of the ripple in y(¢) is less than
1% of the average value.

The ripple results from the exponential terms. Let 7 = RC.

Use first harmonic only:

Yijw) ~ %[5(“’) +% (ffjggiog)c 15%;4%?;2)}
9 9 d2407t o—J240t
y) = PJrﬁ[l +j2407rRC+1—j2407ch]
. 2 2 2
[ripple| = 3.3 m < 0.01 (;)
240mTr > 66.659
7 > 0.0884s

4.20. Consider the system depicted in Fig. P4.20 (a). The FT of the input signal is depicted in Fig. 4.20
FT FT
(b). Let z(t) ——— Z(jw) and y(t) ——— Y (jw). Sketch Z(jw) and Y (jw) for the following cases.

(a) w(t) = cos(5rt) and h(t) = “E)

Z(w) = 5 X(jw) W (jw)
W(jw) = 7n(6(w—57)+§(w+57))
Z(w) = 5 (X —5m) + X (o +5m)
) B 1 |w| <6m
i) = { 0 otherwise
) = H(G)Z(jw) = Z(w)
V(jw) = 5-Cljw)*lr (5w~ 5m) + 6w + 5m)]
V(o) = (2~ 5m)+ Z(i(w +5m)

12



[X(j(w—107)) + 2X (jw) + X (j(w + 107))]

| =

Z(jw)

Figure P4.20. (a) Sketch of Z(jw)
Y(jw)
0.5

—+\ 0.25

ﬁ 10T
Figure P4.20. (a) Sketch of Y (jw)

(b) w(t) = cos(bnt) and h(t) = sin(5mt)

7t

Z(w) = 5 IX(jw—5m) + X(j(w +5m)
wo) = {4 BT
CGw) = H(w)Z(w)
Y(jw) = %C’(jw) * [ (0(w — 57) + §(w + 57))]
Y(jw) = 500w 5m)+O(i(w+5m))]
Z(jw)

105

\ \ W

Figure P4.20. (b) Sketch of Z(jw)

13



Y(jw)
0.25

10T

Figure P4.20. (b) Sketch of Y (jw)

(¢) w(t) depicted in Fig. P4.20 (c) and h(t) = sin(2mt) cos(Hmt)

Tt
T=2, w,=m, TO:%

, >~ 2sin(k%)
W(jw) = kzz_:oo - 0(w — km)
Zw) = 5 X(jw)* W(iw)
) = H(jw)Z(w)
7. sin(kZ L sin(kZ
- ZSIHIEi?)X(j(wfm)H 3 #X(j(wflm))
k=3 k=-3
Y(jw) = 3100w 5m)+ 0w+ 5m))]

Figure P4.20. (¢) Sketch of Z(jw)

14



Figure P4.20. (c) Sketch of Y (jw)

4.21. Consider the system depicted in Fig. P4.21. The impulse response h(t) is given by

h(t)

and we have

sin(117t)

7t

o0

x(t) = Z k_12 cos(kbmt)

k=1

10
g(t) = Z cos(k8t)
k=1

Use the FT to determine y(t).

sin(117t)
mt

—

z(t) = Z % cos(kbmt)

0

g(t) =) _ cos(k8t) =
k=1

Xn(jw) = X(jw)H(jw)

m(t) * h(t)
1 |w| <l1lw
H(jw) = { ol < .
0 otherwise
=1
X(jw) =7 75 [6(w = 5km) + 8(w + 5k)]
k=1

T [0(w — 8km) + 6(w + 8k)]

k=1

2
5 % [6(w — 5k) + 6(w + 5kr)]
k=1

15



Gn(jw) = Gw)H(jw)
= 70(w—8m)+ mo(w — 8m)

M) = 5-Xa(w) « Ga(je)
= 5 [Xa(ilw —8m) + Xi(j(w + 87)]
21
= 7'(']; e [(0(w — 87 — Bkm) + 0(w — 87 + B5km)) + (§(w + 87 — 5km) + 6(w + 87 + 5km))]
YV(jw) = M(jw)H(jw)
= 510w +3m) + 8w — 3m)] + < [3(w — 2m) + 3(w + 2m)
y(t) = %COS(:’)T&T) + 1cos(27rt)

4.22. The input to a discrete-time system is given by
3
x[n] = cos(gn) + sin(%n)

Use the DTFT to find the output of the system, y[n], for the following impulse responses h[n], first note
that

s

X(e?) = w[é(Q <

)+&Q+§ﬂ+j

I3
| — |
w

3
w

)

() Al = =2

, <
HE? = L= -
0 7 <19Q| <7, 2 periodic.
Y(e'?) = H()X ()
7r T
= [5(9— D) +o(Q+3)
yln] = cos(n)
8
(b) hln] = (~1)"=2 2
hinl Gim sin(§n)
™
, <=z
H(ejQ) _ 1 ‘Q 7T| — 4 o
0 7 <|Q—m| <, 27 periodic.
YY) = H()X ()

16



T 3 3
= —|6(Q——>)+6(Q+ —
T lo@- 2+ a0 3
yin] = sin(*Tn)
4
(c) hln] = cos(Zn)2En)
hln] = cos(zn) sin(gn)
2 ™
ey = 2 9-5l<3 ; [Q+5l<3
0 Q-3 <m 0 £<|Q+ 35| <m, 27 periodic.
Y(ejQ) = H(eJQ)X((z]Q)
=0
yln] = 0

4.23. Consider the discrete-time system depicted in Fig. P4.23. Assume h[n] = w Use the DTFT
to determine the output, y[n] for the following cases: Also sketch G(e7*?), the DTFT of g[n].

ylnl = (z[njwln])  hln]
= gln]xhin]
sin(Sn) FT oy J 13
hln] = mi H(e )—{0 <0<
H(e’?) is 2 periodic.
(a) aln] = *5, wln] = (~1)"
sin(§n) DTFT oy )1 Q<7
z[n] = P, X(eﬂ)—{o T clol<n
, DTFT .
wn] =™ —— W(e?’) =216(Q — )

, 1 . .
G(e’) = —X(eJQ) * W(e]Q)
2
_ 1 [Q-7[< ]
B 0 T<Q—-n[<m
o) = el
™
Y (/%) = G H (1)
= 0
y[n] = 0

17



Gl )

11

|
T 91T 0

4 4

w

Figure P4.23. (a) The DTFT of g[n]

(b) an] = 8[n] — T2EY - pfn] = (1)

™

2fn] = 6] — sin(fn)  DTFT X(9?) = 0 Q<73
™ 1 <9<
. DTFT o
wln] = ¢’ — W() =2m6(Q — )
G(e’?) = %X(ejg) * W (')
™
_ 0 [Q—m| <3
B 1 TLQ—m<m
ol _ sin(2Tn)
™m
Y (/) = G(eIHYH(e7?)
= H(em)
yln) _ sin(gn)
™m

Figure P4.23. (b) The DTFT of g[n]

(¢) 2] = EY " w[n] = cos(Zn)

18



W) =« {5(9 - g) + (2 + g)] , 27 periodic
G = %X(em) s« W (e
_ [bie-gsg 4 el
0 Z<IQ-3F|<m 0 F<Q+3<
_ 1Sin(%n) j5sn —ji5n
gl = 2 wn (72" e )
= sin(3m) cos(zn)
™m
_ sin(mn)
B 2mn
1
yln] = gln] = h[n]
1
_ sin(mn)
B 2mn

Figure P4.23. (¢) The DTFT of g[n]

(d) z[n] =1+ sin(75n) + 2cos(3fn), w[n] = cos(3Fn)

X (/%)
W (e’

G(ei?)

8

218() + g [[5(9 - 116) L+ 1”—6)] +on [5(9 - %”) L+ ?jf) , 27 periodic.
7 {5(9 - 3%) +6(Q + 3%)] , 27 periodic

%X(em) * W (el

% {X(ea’(ﬂ—%’r)) +X(ej(9+%"))}

iﬂ {2@(9 - 3%) + g (5(9 - %) (0 — i—g)) +or (5(9 - %) L+ 3%))}
+% {%5(9 + %ﬂ) + g (6(9 + i—g) —6(Q+ Z—E)) + 27 (6((2 - %ﬁ) +0(Q+ 9%)

19
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gln] = —cos(gn)—&—%m (:—gn)—%sn(?—gn)—f——cos(%n)
Y(?) = G@?)H()
yln] = %cos(%rn)—&—%sm(i—gn) %m (?—gn)
| L
GE")
12
11
fl11708 |7
SIT 61T 71T 91 A
16 16 16 8
= Gel')
AT
[ 2]
70 5 BT T o
16 16 16 16
2

Figure P4.23. (d) The DTFT of g[n]

4.24. Determine and sketch the FT representation, Xs(jw), for the following discrete-time signals with

the sampling interval Ty as given:

o0

X5(jw) = Z e IwTsm

n—=—oo

= X(ejQ)|Q:wT5

(a) z[n] = sn(in) =2

™

<3
0 219 <

X(e-m) = {

20



X5(jw) = 1 2w <%
o - 0 Z<[2w <

s
0 §F<|w<F

X5(jw) is 7 periodic
(g )

1

ol
.
=

Figure P4.24. (a) FT of X;s(jw)

(b) a[n) = 3G - — 1

™

Q<5
TS <w

S =

1wl <%

0 §§|%w|<w
4

ol <57

0 4 <|w<dr

s(jw) is 87 periodic

81t

Figure P4.24. (b) FT of X;(jw)

21



(c) @[n] = cos(Zn)=nEm),

Ts=2

_[iae-sist [ 4 e+siss
0 7<Q-F|<n 0 F<IQ+5<
_ [ pe-Ess 5olw+3<3
0 Z<2w-%|<m 0 Z<[2w+3]
[ b g<e<E f1 F<w<g
0 otherwise 0 otherwise
Xs(jw) is m periodic

X (Jw)
1 05
|
3T
8 8
Figure P4.24. (c¢) FT of Xs(jw)
(d) x[n] depicted in Fig. P4.17 (a) with Ty = 4.
DTFS: N =8 Q, = %
sin(k5T)
X[k] = B 871— ) ke [7374]
8sin(kg)
. - S _ .
DTFT: X (¢/?) o k;OOX[k]cS(Q k)
) s sin(k3F) T
FT: Xs(w) = ssin(kg)5(4w —kp)
k=—o0
T = sin(k3F) T
T 16 k:z—:oo 8sin(k%)5<w a k1_6)
X5(jw) is 5 periodic

22




(d) Plot of FT representation of Xa(jm)
1 T

-0.8 -0.6 -0.4 -0.2 0 0.2

w
wn

=
3
T

arg(X()

[y
T

0
-0.8 -0.6 -0.4 -0.2

o
o
)

Figure P4.24. (d) FT of X;(jw)

(e) aln] =302 oln—4pl, To=g

DTFS: N =4
X[k =

DTFT: X (/%)

FT: Xs(jw) = = > 5(tw— kT

= A4rx i 0(w — kdr)

0.4 0.6

k=—o0

X5 (jw) is 4w periodic

23
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(e) Plot of FT representation of Xé(ju))

14 T T T
N N N N N

-30 -20 -10 0 10 20 30

0.5 N

arg(X,(io)
o
T
>
>
>
>
>
1

Figure P4.24. (e) FT of Xs(jw)

4.25. Consider sampling the signal z(t) = - sin(2nt).
(a) Sketch the FT of the sampled signal for the following sampling intervals:

(i) T = %

(i) 7, = &
(i) T, =}
)T 3

In part (iv), aliasing occurs. The signals overlap and add, which can be seen in the following figure.

24



Plot of FT of the sampled signal

o 10 T T T
=
i
= 51 E
<l
=)
x 0 | | | | | | |
-80 -60 -40 -20 0 20 40 60 80
™ T T T T T T T
4+ i
1}
-
=2 N
=
0 | | | | | | |
-40 -30 -20 -10 0 10 20 30 40
~ 3 T T T T T T T
=
2 - —
"
=1k E
3
S 0 -
xbo_l | | | | | | |
-20 -15 -10 -5 0 5 10 15 20
T T T T T T T
N 4r *
"
=2 -
<)
=
w - —
x | | | | | | |
-8 -6 -4 -2 0 2 4 6 8
(V)

Figure P4.25. (a) Sketch of Xs(jw)

(b) Let x[n] = x(nTs). Sketch the DTFT of z[n], X(e’®?), for each of the sampling intervals given

in (a).

DTFT
sin(2mnT;) ——

z[n] = z(nTy) =

Ty

X
o A Q<.
X (') = { gs () < Tom 27 periodic

Notice that the difference between the figure in (a) and (b) is that the 'w’ axis has been scaled by the

sampling rate.
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Plot of FT of the sampled signal
10 T T T

S

X(Ee?), T_=1/8

K=J

IN
T
I

X9, T =1/3
N

0 ! ! ! ! !

-15 -10 -5 0 5 10 15
~ 3 T T T T T
=
wo2f N
=k i
x -1 | | | | | | | | |

-10 -8 -6 -4 -2 0 2 4 6 8 10
. T T T T T
Q 4 |
b | L] L] L
7 otk -
&
L or i
X | | | | |

-15 -10 -5 0 5 10 15

Figure P4.25. (b) Sketch of X (e/%)

4.26. The continuous-time signal z(¢) with FT as depicted in Fig. P4.26 is sampled. Identify in each

case if aliasing occurs.

(a) Sketch the FT of the sampled signal for the following sampling intervals:
(i) Ts = ﬁ
No aliasing occurs.

XS(J' w)
14

N s/ | 100 ) 38 -

\ i
-387T v —107r 14+

Figure P4.26. (i) FT of the sampled signal

=

Since Ty > %, aliasing occurs.

26



A [\ a4

24T 107+

Figure P4.26. (ii) FT of the sampled signal

(iii) T, = &
Since Ty > ﬁ, aliasing occurs.

X{(w)

~10rr

Figure P4.26. (iii) F'T of the sampled signal

(b) Let z[n] = x(nT). Sketch the DTFT of x[n], X(e’), for each of the sampling intervals given
in (a).
The DTFT simple scales the 'x’ axis by the sampling rate.

(i) T, = ﬁ .
X
14 NEC T 38t
A 14 /| 1 | 14
| | | | |
a8 100 14 Voo
14 14 14

Figure P4.26. (i) DTFT of x[n]

(i) Ty = 4

27



X )
4 7 107r 2477
JA A A 7
| | | | | |
240 100 4 Voo
4 4? 4
Figure P4.26. (ii) DTFT of z[n]
(i) T, = £
Fﬁ
X(e )
| |
~10rr 10
5 5

Figure P4.26. (iii) DTFT of z[n]

4.27. Consider subsampling the signal z[n] = % so that y[n] = z[gn]. Sketch Y (e7?) for the
following choices of g:

X(ejﬂ) _ 1 |w‘ é %
0 % <|w| <m 27periodic
qgln] = xgn]
1]
Y(ejﬂ) _ = X ej%(ﬂfmZ'n')
qm:(] ( )
(a) g=2
. 1< ,
Y(e?) = §gx(eaa<ﬂ—m2w>)
(b)g=4



Plot of the subsampled signal x[n]
1 T T T

Y9, q=
o o
o = N
T T T

0.4

©03F 4

o
~0.2
[e]

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure P4.27. Sketch of Y (e/%)

4.28. The discrete-time signal z[n] with DTFT depicted in Fig. P4.28 is subsampled to obtain y[n] =
z[gn]. Sketch Y (e7%) for the following choices of ¢:

(a) ¢g=3
(b)g=4
(c)g=38

29



Plot of the subsampled signal x[n]
0.8 T T T

YD), g

Figure P4.28. Sketch of Y (e/%)

4.29. For each of the following signals sampled with sampling interval T, determine the bounds on T
that gaurantee there will be no aliasing.
(a) x(t) = 1 sin 3wt + cos(2mt)

—sin(3nt) «——

FT 1w <3n
0

otherwise
FT
cos(2mt) ——— wo(—2m) 4+ wH(Q + 27)
Wmax = 3m

T < T
wmar
1

T < =
3

(b) x(t) = cos(12mt) i)

2t

X(jw) &= lw—127]<m N £ Jwt12n[ <7
w =
J 0 otherwise 0 otherwise
Wmaz = 137
P —
wma:v

30



o< o
(c) x(t) = e~ Ctu(t) * Sin;‘;w)
X(jo) = —— [ulw+ W) — u(w— W)
Jw = 6+jwuw u(w
Wmax - W
T <« I
wmal‘
s
T _
S W

(d) x(t) = w(t)z(t), where the FTs W (jw) and Z(jw) are depicted in Fig. P4.29.

X(jw)
wmaw

T

T

= W (i) * G(jw)

= 47+ w,
T
<
Wmax
- T
41 4 wg

4.30. Consider the system depicted in Fig. P4.30. Assume |X (jw)| = 0 for |w| > w,. Find the largest

value of T such that z(t) can be reconstructed from y(t).

reconstruction for this maximum value of T'.

For reconstruction, we need to have wg > 2wpqz, or T' <

Wikl =
W(jw) =

After multiplication:
Y(jw) =

To reconstruct:
H,(ju)Y (jw) =
k=0
o1 .
H,(jw)5 X (jw) =

H(jw) =

Determine a system that will perform the

s
Wmaz

A finite duty cycle results in distortion.

sin(%k)e_j%k

km
o Y W[k]é(wfk%r)

k=—o0

00 Sin(%k) Tk 2
Z Te X(j(w k?))

k=—oc0
2
X(jw), |l < wmas, > Winas

X(jw)

2 |w| < Wimaz
don’t care Wy < |w| < 2% — Wmaz

0 lw| > 28 — winge
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4.31. Let | X (jw)| = 0 for |w| > wy,. Form the signal y(t) = x(t)[cos(3nt) + sin(107t)]. Determine the
maximum value of w,, for which z(¢) can be reconstructed from y(t) and specify a system that that will

perform the reconstruction.

Y(jw) = S[X(w=2m)+X((w+27m)) =i X([G(w—107)) + 5 X (j(w + 107))]

N | =

z(t) can be reconstructed from y(t) if there is no overlap amoung the four shifted versions of X (jw), yet
x(t) can still be reconstructed when overlap occurs, provided that there is at least one shifted X (jw) that
is not contaminated.
10m — 4rm
Wmmax = ——— =47

Y (jw)

1

! 3TT-wn 3TT+wW ! 10‘TF W

Figure P4.31. Y (jw)
We require 10m — wy, > 37 + Wiy, thus w, < %” To recover the signal, bandpassfilter with passband
6.57m < w < 13.57 and multiply with 2sin(107t) to retrieve x(t).

4.32. A reconstruction system consists of a zero-order hold followed by a continuous-time anti-imaging
filter with frequency response H.(jw). The original signal z(t) is bandlimited to w,,, that is, X (jw) =0
for |w| > wy, and is sampled with a sampling interval of Ts. Determine the constraints on the magnitude
response of the anti-imaging filter so that the overall magnitude response of this reconstruction system
is between 0.99 and 1.01 in the signal passband and less than 10~% to the images of the signal spectrum
for the following values:

H,Gw)
zero X (t)

L order H (iw) r

hold

x;n] = x(nTS)

Figure P4.32. Reconstruction system.

(1) 0.99 < |H,(jw)||He(jw)| < 1.01, —wp < w < wyy
Thus:

0.99w
) |H.(5 > —
0 1) > o
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1.01w
2sin(wle)

(i1) [He(jw)| <

The passband constraint for each case is:

0.99%s < |Hc(jw)| < 1.0lw

QSin(wT QSin(w%)

The stopband constraint is |H,(jw)||H.(jw)| < 1074, at the worst case w = QT_” — W

104w

H.(jw —_—
[He(e) 2sin(w%)

(a) wy, =107, Tg=0.1

w = 2—7T —w
= 7 m
2T
= 01 10m = 107
104107
QSin(loﬂ(%))

= [5m(107*)| = 0.001571

|Ho(j10m)| <

(b) wy = 107, T, = 0.05

= T jor=30
YT o0 T

307 (10~
H.(730 < |—
[He(530m)| ’%mwﬂw%J

2
= §97£(10*4)

= 0.006664
V2

(¢) wy =107, Ts=0.02

~ T or=90
YT o2 TTT

10~4907
H.(590 < _—
[H (790m)] ’%hﬂ%r(%))‘
B ‘907‘1’(104)

ST )N 0.04
2sin(0.97) 0.04575

(d) wp =27, T, =0.05

21
= _ 1 =
w 0.05 Om = 30w
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) 30m(107%)
H.(330 —
| He(530m)] ‘2sin(307r(0'§5))‘
107430
= |——| = 0.006664
2sin(ym)

4.33. The zero-order hold produces a stairstep approximation to the sampled signal z(¢) from samples
z[n] = z(nTy). A device termed a first-order hold linearly interpolates between the samples z[n] and thus
produces a smoother approximation to x(¢). The output of the first- order hold may be described as

oo

z1(t) = Z x[nlhy (t — nTy)

n=—oo

where hq(t) is the triangular pulse shown in Fig. P4.33 (a). The relationship between z[n] and z1(t) is
depicted in Fig. P4.33 (b).

(a) Identify the distortions introduced by the first-order hold and compare them to those introduced by
the zero-order hold. Hint: hy(t) = ho(t) * ho(t).

bt = 3 sl nTy)
b S alnld(t - nTy)
Thus: C
X1(jw) = Ho(jw)Ho(jw)Xa(jw)
Which implies:
Hi(jo) - e—ij54Sin2(2w%)

w

Distortions:

(1) A linear phase shift corresponding to a time delay of Ty seconds (a unit of sampling time).

(2) sin?(.) term introduces more distortion to the portion of X;(jw), especially the higher frequency part
is severely attenuated compared to the low frequency part which falls within the mainlobe, between —w,,
and w,,,.

(3) Distorted and attenuated versions of X (jw) still remain at the nonzero multiples of wy,, yet it is lower
than the case of the zero order hold.

(b) Consider a reconstruction system consisting of a first-order hold followed by an anti-imaging fil-
ter with frequency response H.(jw). Find H.(jw) so that perfect reconstruction is obtained.

Xa(jw)Hi(jw)He(jw) = X(jw)

e]wTSu}Q

4sin®*(wLy)

where Hypr(jw) is an ideal low pass filter.

H.(jw) TsHrpr(jw)
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eTew? lw| < wm

4sin2(w%) 8

H.(jw) = don’t care  wy < |w| < 3T —wp,
0 |w\ > 31_7; - Wm

Assuming X (jw) = 0 for |w| > wp,

(c) Determine the constraints on |H.(jw)| so that the overall magnitude response of this reconstruc-
tion system is between 0.99 and 1.01 in the signal passband and less than 10~* to the images of the signal
spectrum for the following values. Assume z(t) is bandlimited to 127, that is, X (jw) = 0 for |w| > 127.

Constraints:

(1) In the pass band:

0.99 < |Hy(jw)||Ho(jw)| < 1.01

0.99w2 1.01w?
—_— H.(jw)| < ————
4sin®(wl:) ()] 4sin®(wL)

(2) In the image region: w = 3,—” — W

|Hy (jw)||He(jw)| < 107
10~ 4w?

4sin*(wL:)

[He(jw)| <

(i) T, = .05
_ 2T
w = T, Wm
2T
= — — 127 =28
0.05 T
1074(287)2
H.(j < |—a
| He(jw)] 45in”(287(205))
~ 0.2956
0.99w? 1.01w?
— < |H.(jw -
4sin®(wi:) ()] 4sin*(wL)

2926.01 < |H,(jw)| < 2985.12
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(i) Ty = .02

2

= T 1or=s8
“ 0.02 rTTeom
10-4(887)2
[ He(jw)l 4sin2(887r(0‘2ﬂ))
~ 14.1
0.99w? 1.01w?
—— 7 < |H(w)| < —— 75~
4sin®(wie) 4sin®(wZy)
139580 < |Ho(jw)| < 142409

4.34. Determine the maximum factor ¢ by which z[n] with DTFT X (e’%!) depicted in Fig. P4.34 can
be decimated without aliasing. Sketch the DTFT of the sequence that results when z[n] is decimated by

this amount.

Looking at the following equation:

Q

Y(ejﬂ) =

| =

3
Il

For the bandlimited signal, overlap starts when:

2qW
Thus:

qmaz

After decimation:

Y (e79)

-1
X (ej%(ﬂ—m%r))
0

2
Z X (ej%(Q—mZﬂ'))

m=0

W =

Y(ejﬂ)
1

36



Figure P4.34. Sketch of the DTFT

4.35. A discrete-time system for processing continuous-time signals is shown in Fig. P4.35. Sketch the

magnitude of the frequency response of an equivalent continuous-time system for the following cases:

. 1 o | 2sin(wie) ,
[Hr(jw)| = [Ha(jw)| 7 [H(e™T)] | == | [He(jw)|
a) M\ =2, W.=20r
(a) T
™
Wmaz = min(l()ﬂ', Z(20),207T) =bm

e

51 W

Figure P4.35. (a) Magnitude of the frequency response

(b) @ =3, W, =20r

3
Wmaw = min(107, £(20),20w):107r

o

10m W

Figure P4.35. (b) Magnitude of the frequency response
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(20),27) = 2n

Wmaz = min(10m,

I

e

21T W

Figure P4.35. (c) Magnitude of the frequency response

11

<]

4.36. Let X(e/?) = 2037 and define X[k] = X (e/*%). Find and sketch #[n] where #[n

Sin(%

X|[k] for the following values of €,

X[K] = X (&%)
K] = sin(#5%)  prEsie, 1= N |n|<5
sin(£e) 0 5<|n|<Z, N periodic

X
=)
Il

15 |n| <5
0 5<|n|<7, 15 periodic

i 20 |n| <5
Z[n] = .
0 5<n|<10, 20 periodic

(C)QOZ%aNZG

Overlap occurs

38
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Plots of x [n] for the given values on0

T T T T T T T T T
15F 0] ® © ® 0] -

-25 -20 -15 -10 -5 0 5 10 15 20 25

200 PPOPVOD ‘ o ‘ POOPOOO ]

0 Var¥ oY

L]

-15 -10 -5

L]

o

X [n], Q =13
0
(53] o
L 5 |
a0

Figure P4.36. Sketch of Z[n]

. - FS;w, ~
4.37. Let X (jw) = ™) and define X[k] = X (jkw,). Find and sketch &(t) where #(t) «—— X [k]

for the following values of w,:

z(t) = {% il <2

0 otherwise

- ) sin(2kw,)
Xkl = X(jkw,) =
(k] = X (jkwo) o
Bty = T Y ax(t—ml)
(a) wo:%
= sini%k)
sk
T, = 2
T = 16
2
iy = {8 M= .
0 2<|t| <8, 16 periodic
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- sin(Zk)
X[k = p
ok
T, = 2
T = 8
4 |t <2
#(t) = i .
0 2< |t <4, 8 periodic
(wo = 3
~ i k
KK = s1n7g7r )
ok
— 20[K]
Ft) = 2
Plots of x™(t) for the given values of W,
10 T
©
B
I
3°5f 1
"
O | | | | | | |
-20 -15 -10 -5 0 5 10 15 20
5
< 4 b
B
n 3k i
30
s2r 7
.l i
o | | |
-15 -10 -5 0 5 10 15
3
&
w2 7
30
21t 8
'><
O | | | | |
-15 -10 -5 0 5 10 15

Figure P4.37. Sketch of Z(¢)

4.38. A signal z(t) is sampled at intervals of Ty, = 0.01 s. One hundred samples are collected and a
200-point DTFS is taken in an attempt to approximate X (jw). Assume | X (jw)| =~ 0 for |w| > 1207 rad/s.
Determine the frequency range —w, < w < w, over which the DTFS offers a reasonable approximation to
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X (jw), the effective resolution of this approximation, w,, and the frequency interval between each DTFS

coefficient, Aw.

x(t) Ts =0.01
100 samples M =100

Use N =200 DTFS to approximate X (jw), | X (jw)| = 0, |w| > 1207, w,, = 1207

2
Ts < 7/”
W + Wq
- 2
Wq T Wm
T
Therefore:
we < 80w
2
MT, > =
Wr
Therefore:
wr > 2w
Ws
N >
Aw
w
Aw > =
“ N
2
A p—
© T NI,
Therefore:
Aw > 7

4.39. A signal x(t) is sampled at intervals of Ts = 0.1 s. Assume | X (jw)| = 0 for |w| > 127 rad/s.
Determine the frequency range —w, < w < w, over which the DTFS offers a reasonable approximation
to X (jw), the minimum number of samples required to obtain an effective resolution w, = 0.017 rad/s,
and the length of the DTFS required so the frequency interval between DTF'S coefficients is Aw = 0.0017
rad/s.

2
Ts < 771—
W + We
wm = 127
T, = 0.1
We < 87

The frequency range |w| < 87 provides a reasonable approximation to the FT.

Ws

Wr
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2

Ws = i = 207
wy, = 0.017
M > 2000
M = 2000 samples is sufficient for the given resolution.
ws
N
Aw
Aw = 0.0017
N > 20,000

The required length of the DTFS is N = 20, 000.

4.40. Let x(t) = asin(w,t) be sampled at intervals of Ts = 0.1 s. Assume 100 samples of x(t),
z[n] = z(nTy),n =0,1,...99, are available. We use the DTFS of x[n] to approximate the FT of z(¢) and
wish to determine a from the DTFS coefficient of largest magnitude. The samples z[n] are zero-padded
to length N before taking the DTFS. Determine the minimum value of N for the following values of w,:
Determine which DTFS coefficient has the largest magnitude in each case.

Choose Aw so that w, is an integer multiple of Aw,(w, = pAw), where p is an integer, and set
N = M = 100. Using these two conditions results in the DTFS sampling Ws(j(w — w,)) at the peak of

the mainlobe and at all of the zero crossings. Consequently,

Y[k:]:{ a k=p

0 otherwiseon 0 <k< N -1

(a) w, = 3.2w

Ws
Aw
20mp

Wo
20mp
3.2
= 25

p = 4

Since p and N have to be integers

0 otherwiseon 0 <k <24

Y[k]:{ a k=4
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(b) w, = 3.17

Ws
Aw
207p
Wo
207p
31r
= 200

p = 31

Since p and N have to be integers

k=31
v =4 ¢ Fest
0 otherwise on 0 < k <199

(¢c) wo, =3.157
Ws

Aw
207p

Wo
20mp
3.157m

= 400

p = 63

Since p and N have to be integers

k—
Yk = a 63.
0 otherwise on 0 < k < 399

Solutions to Advanced Problems

4.41. A continuous-time signal lies in the frequency band |w| < 5. This signal is contaminated by
a large sinusoidal signal of frequency 120w. The contaminated signal is sampled at a sampling rate of
ws = 13m.

(a) After sampling, at what frequency does the sinusoidal intefering signal appear?

X (jw) is bandlimited to 57

»
—~

~+
~

x(t) + Asin(1207t)

24
x[n] + Asin( 1?:

»
=
!
kX
3
<
[

n)
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. 6m
= z[n]+ Asin(9(27)n + 1—3n)

. b
= m[n]—l—Asm(l—Sn)
6m

Qsin = —
Sin 13

_ L (Omy /(13
“w & o T\ \) T

The sinusoid appears at w = 37 rads/sec in Ss(jw).

(b) The contaminated signal is passed through an anti-aliasing filter consisting of the RC circuit de-
picted in Fig. P4.41. Find the value of the time constant RC required so that the contaminating sinusoid
is attenuated by a factor of 1000 prior to sampling.

Before the sampling, s(t) is passed through a LPF.

1
JwC
1
R+ joC
1
1+ jwRC
1
14 jwr
1
\% 1+ w27-2 w=1207
1

1000
T = 265s

T(jw) =

T(jw)]

(c) Sketch the magnitude response in dB that the anti-aliasing filter presents to the signal of interest for
the value of RC' identified in (b).

1
1+ jw2.65
1

1+ w?(2.65)2

T (w)l
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P 4.41 Magnitude response of the anti-aliasing filter in dB
o T T T T T T T

_10 - -

T(jw) in dB

_25 | | | | | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5
w, —3dB point at w = + 1/2.65

Figure P4.41. Sketch of the magnitude response

4.42. This problem derives the frequency-domain relationship for subsampling given in Eq.(4.27). Use

Eq. (4.17) to represent z[n] as the impulse-sampled continuous-time signal with sampling interval Ty,

and thus write
oo

vs(t) = > x[nlé(t —nT)

Suppose z[n] are the samples of a continuous-time signal x(t), obtained at integer multiples of Ts. That is,
z[n] = z(nTy). Let x(t) P X (jw). Define the subsampled signal y[n] = z[gn] so that y[n] = z(nqTs)
is also expressed as samples of z(t).

(a) Apply Eq. (4.23) to express X;5(jw) as a function of X (jw). Show that

oo

Yatj) = = 30 X(iw - )

k=—o00

Since y[n] is formed by using every gth sample of x[n], the effective sampling rate is T = ¢T5

© , FT ) 1 & _ ,
ys(t) = x(t) > 6(t—nT) ——— Ys(jw)= T > X(j(w - kw)))
n=-—oo S k=—o00
Substituting 77 = ¢Ts, and W) = % yields:
Ya(jw) LS X(w - K
5 (jw = jlw——w
qTs q "
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(b) The goal is to express Y;(jw) as a function of X;(jw) so that Y (e’*?) can be expressed in terms of
X (e7). To this end, write % in Ys(jw) as the proper fraction
k

m
_:l+_
q q

where [ is the integer portion of % and m is the remainder. Show that we may thus rewrite Y;(jw) as

1< > m
—62{ Z w—lws—zws))}

m=0
Letting k to range from —oo to co corresponds to having [ range from —oo to oo and m from 0 to ¢ — 1,

which permits us to rewrite Y;(jw) as :

Next show that

Recognizing that the term in braces corresponds to Xs(j(w — 7'ws), allows us to rewrite the equation as

the following double sum:

(=

1‘1
Y —mX:: W_Ewé))

(c) Now we convert from the FT representation back to the DTFT in order to express Y (e/*?) as a function

of X (e’*). The sampling interval associated with Y;(jw) is ¢Ts. Using the relationship Q = wqT} in
Y (%) = V(i) g

show that

Substituting w = % yields

. 1 i (2 m
V() = = X (- (— — —271'))
() q ‘N1 \¢ ¢

(d) Lastly, use X (/) = Xg(jT%) to obtain
Y (7)) =

The sampling interval associated with Xs(jw) is Ty, so X (e7?) = Xs(j Tﬂ) Hence we may substitute
X (ej(fzz* K )) for X (j (8 m%’“)) and obtain

q

X(ej L- m%))



4.43. A bandlimited signal z(t) satisfies | X (jw)| = 0 for |w| < wy and |w| > wae. Assume wy > wy — wy.
In this case we can sample x(¢) at a rate less than that indicated by the sampling interval and still perform
perfect reconstruction by using a bandpass reconstruction filter H,(jw). Let z[n] = x(nTs). Determine
the maximum sampling interval T, such that z(¢) can be perfectly reconstructed from z[n]. Sketch the

frequency response of the reconstruction filter required for this case.

We can tolerate aliasing as long as there is no overlap on w; < |w| < wo

We require:

Ws —w2 = —wi
Ws > w2 —uwi
Implies:
2
T, < —F—
Wy — W1

Ty wi < |w| <ws

0  otherwise

Hr(jw) = {

4.44. Suppose a periodic signal z(t) has FS coefficients
R NOLTEY
0, otherwise

The period of this signal is T' = 1.
(a) Determine the minimum sampling interval for this signal that will prevent aliasing.

4
3
X(jw) = QwZ(Z)ké(u}—k‘Zﬂ)
k=—4
Wm = 87
2
% > 2(87)
minT, = 1
8

(b) The constraints of the sampling theorem can be relaxed somewhat in the case of periodic signals if we
allow the reconstructed signal to be a time-scaled version of the original. Suppose we choose a sampling

interval T, = % and use a reconstruction filter

1, |wl<m
0, otherwise

Hr(jw) = {

Show that the reconstructed signal is a time-scaled version of z(¢) and identify the scaling factor.

r - %

19
Xs(w) = 2 So: X (j(w — 11.97))
s\ = 9 J JT

l=—00
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Aliasing produces a “ frequency scaled” replica of X (jw) centered at zero. The scaling is by a factor of

20 from w, = 27 to w), = 0.17. Applying the LPF, |w| < 7 gives x(;—o), and Treconstructed(t) = %x(;—o)

(c) Find the constraints on the sampling interval T, so that use of H,(jw) in (b) results in the re-
construction filter being a time-scaled version of z(¢) and determine the relationship between the scaling

factor and T5.

The choice of T is so that no aliasing occurs.

(1) 2?7: 27
T 1 period of the original signal.
(2) <27T - ;—T) 4 < %;—7:
9
T, < 3 9
1< T, < 3

4.45. In this problem we reconstruct a signal z(¢) from its samples z[n] = 2(nTs) using pulses of width

less than T followed by an anti-imaging filter with frequency response H.(jw). Specifically, we apply

oo

Tp(t) = Z z[n]hy(t — nTy)
to the anti-imaging filter, where h,(t) is a pulse of width T, as depicted in Fig. P4.45 (a). An example of
xp(t) is depicted in Fig. P4.45 (b). Determine the constraints on |H.(jw)| so that the overall magnitude
response of this reconstruction system is between 0.99 and 1.01 in the signal passband and less than
10~* to the images of the signal spectrum for the following values with z(¢) bandlimited to 107, that is,
X (jw) =0 for |w| > 107

Xp(jw) = Hp(jw)Xa(jw)
) 2sin(wL) Ta
Hy(jw) = Taﬁe e

Constraints:

(1) Passband
0.99 < |Hp(jw)||He(jw)] < 1.01, using wiee = 107

0.99T,w . 1.01T,w
OOToe gy < e
2sin(w ) 2sin(w )
(2) In the image location
1074 T,w
H,( < 5
Hy (5)] 2sin(wie)
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where

(a) T, = 0.08, T, =0.04

(1) Passband

1.1533 <

(2) In the image location
w

| H(j157))|

(b) T, = 0.08, T, =0.02

(1) Passband

1.0276 <

(2) In the image location
w

| H(j157))|

(c) Ty = 0.04, T, =0.02

(1) Passband
1.3081 <
(2) In the image location

w

| He(j40)]

(d) T, = 0.04, T, =0.01

(1) Passband
1.0583 <
(2) In the image location

w

|H(j40m)|

|H,(jw)| < 1.1766

|H,(jw)| < 1.0484

|H.(jw)| < 1.3345

|H.(jw)| < 1.0796

4.46. A non-ideal sampling operation obtains x[n] from z(t) as

nTy
x[n] = / x(t)dt
(n—1)Ts

49
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1.165 x 10~*

157

1.038 x 107*

407

1.321 x 107*
407

1.0690 x 10~*



(a) Show that this can be written as ideal sampling of a filtered signal y(t) =

z[n] = y(nTs), and find h(t).

choose h(t)

(b) Express the FT of z[n] in terms of X (jw), H(jw

Y(w) =

FT
y(nl,) ——
FT{afn]} =

(c) Assume that 2(t) is bandlimited to the frequency range |w| < 7%

x(7)dr by inspection

z(T)h(t — 7)dr

(t) * h(t)
1 0<t<T,

0 otherwise

I
8

1 t—-T,<7<T,
0 otherwise
u(t) — u(t —Ts)

I
— —

), and Ts.
X (jw)H (jw)
JR— v k27r
Tsk;oo (J(w— TS))
JR— , 2 2
Tsk;mX(](w_k_é))H(]( —ki))

x(t) = h(t), that is,

. Determine the frequency response

of a discrete-time system that will correct the distortion in z[n] mtroduced by non-ideal sampling.

x(t) is bandlimited to:

3 < 2T
4T, T,
‘We can use:

|w| <

H,(jw)

3
wl < 47,

otherwise

{w

0<t< Ty
0 otherwise

FT 2sin(wis
w
B 2 s1n(w % ) R
= ;sq:;?w%j) |UJ| - ;:’7:@
0 otherwise
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4.47. The system depicted in Fig. P4.47 (a) converts a continuous-time signal z(t) to a discrete-time

: 1, |9 <Z
H(eJQ) _ ’ ‘ | < 4
0, otherwise

signal y[n]. We have

Find the sampling frequency w,; = %—” and the constraints on the anti-aliasing filter frequency response

H,(jw) so that an input signal with FT X (jw) shown in Fig. P4.47 (b) results in the output signal with
DTFT Y (7).

Xalj) = X(jo)Ha(jw)
Xulie) = 23 Xalil ~ ko))
S k S

To discard the high frequency of X (jw), and anticipate %v use:

Ho(jw) = T, |wl <
a\J N 0 otherwise

Given Y (e/?), we can conclude that T, = %, since Y (jw) is

Y (jw)

\
Tr 8
Figure P4.47. Graph of Y (jw)

w

Also, the bandwidth of z(t) should not change, therefore:

ws = 8w

1 <
H,(jw) i lwl=r
0 otherwise

4.48. The discrete-time signal x[n] with DTFT X (/%) shown in Fig. P4.48 (a) is decimated by first
passing x[n] through the filter with frequency response H(e’*?) shown in Fig. P4.48 (b) and then sub-
sampling by the factor ¢g. For the following values of ¢ and W, determine the minimum value of 2, and

maximum value of 25 so that the subsampling operation does not change the shape of the portion of
X (e on |Q < W.

Y(e'?) =

q—1
Z X (ej%(ﬂ—m%r))
m=0

| =

o1



From the following figure, one can see to preserve the shape within || < W, we need:

| X‘(eJ‘fVS)‘
‘ WA gy
R
| 2w
ﬂA o s AP
\ 27\—r Y
2rT—qW

Figure P4.48. Figure showing the necessary constraints to preserve the signal

W
min{}, = qT:
max {2y = 27T_qVV—Q—W—VV
q q
(a)g=2, W=2% _
M
Y(E ')
1
| LE—
| |
Zan) 2t Ot
3
Figure P4.48. (a) Sketch of the DTFT
(b)g=2, W=7 _
M
Yl
1
| CE—
| L |
o 27 Ot
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Figure P4.48. (b) Sketch of the DTFT

(C) q= 33 W = %
In each case sketch the DTFT of the subsampled signal.

Y ™)

S s

Figure P4.48. (c) Sketch of the DTFT

4.49. A signal z[n] is interpolated by the factor ¢ by first inserting ¢ — 1 zeros between each sample
and next passing the zero-stuffed sequence through a filter with frequency response H(e’$!) depicted in
Fig. P4.48 (b). The DTFT of z[n] is depicted in Fig. P4.49. Determine the minimum value of €2, and
maximum value of )5 so that ideal interpolation is obtained for the following cases. In each case sketch

the DTFT of the interpolated signal.

X, (Y = X(799)
For ideal interpolation,
w
min§, = —
g q
maxQy = 27— E
q

Y™

AN WA

| 1T | N
A 27T

Figure P4.49. (a) Sketch of the DTFT of the interpolated signal
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Y ™)

AN\ A

\ \
T

Figure P4.49. (b) Sketch of the DTFT of the interpolated signal

(c)g=3, W=2F

Y ™)

AN\ A

| 1T | N
4 VARE

Figure P4.49. (c¢) Sketch of the DTFT of the interpolated signal

4.50. Consider interpolating a signal z[n] by repeating each value ¢ times as depicted in Fig. P4.50.
That is, we define x,[n] = [floor(%)] where floor(z) is the integer less than or equal to z. Letting . [n]

be derived from x[n] by inserting ¢ — 1 zeros between each value of z[n], that is,

n n ;
2] = xlg], 7 integer
0, otherwise

We may then write x,[n] = x,[n] * ho[n], where h,[n] is:

o] 1, 0<n<qg—-1
ol =
0, otherwise

Note that this is the discrete-time analog of the zero-order hold. The interpolation process is completed

by passing x,[n] through a filter with frequency response H (e’*?).
X, (Y = X(799)

(a) Express X, (/) in terms of X (/) and H,(e?*?). Sketch | X, (/)| if x[n] = sin(%n)

m™n

Xo(e’) = X(9)Hy(e?)

sin(3n)  DTFT X(ejg):{ 1 |Q<3x

o) = 28 L .
7 <19 <7, 27 periodic
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; B iy, [ sn(Q2)
| Xo(e”)] = X (99)) n(2)
i
xge
ﬂ ( i
311 o7t
4q q

Figure P4.50. (a) Sketch of | X, (/)|

(b) Assume X (e’%) is as shown in Fig. P4.49. Specify the constraints on H(e’*?) so that ideal inter-

polation is obtained for the following cases.

For ideal interpolation, discard components other than those centered at multiples of 2w. Also, some

correction is needed to correct for magnitude and phase distortion.

sin(Q2%)

0 % <|Q] < 27 — %, 27 periodic

sin(2) jos w
H(Y) = { E

sin(2)

[ o<k
0 3T <|Q) < 187, 27 periodic

sin(g) 20 3
H(?) = sin(20) € < 15
0 <0 < &BF, 27 periodic

4.51. The system shown in Fig. P4.51 is used to implement a bandpass filter. The discrete-time filter

H(e’%) has frequency response on —m < Q < 7
H(eI?) = {

Find the sampling interval Ty, Q,, Qp, W1, Wa, W3, and Wy, so that the equivalent continuous-time

L, Q<9 <

0, otherwise

frequency response G(jw) satisfies

0.9 < |G(jw)| < 1.1, for 100r < w < 2007
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G(jw) =0 elsewhere

In solving this problem, choose W; and W3 as small as possible and choose T, W5 and Wy as large as

possible.
1 2 3 — 4 5
. t
XM | H {jw) sample H(eln) — order — H.(w) YO
hold

Figure P4.51. Graph of the system

(3) Passband:
100 <w < 2007

Thus
Q, = 1007T,
Q = 20077,
@ G - [2e7)
w
%ﬂs) < 11
2ein(100eT,)
00T, > 0.9
implies:
Ts(1007) < 0.785
max7Ts; = 0.0025
(5) minWs = 2007
maxW, = ;—W — 2007 = 6007
3)Q = O.;57T
Q, = 0.57
(1) and (2)
minW; = 200m
max Wy = %;—t = 400w, No overlap.

4.52. A time-domain interpretation of the interpolation procedure described in Fig. 4.50 (a) is derived

FT ,
in this problem. Let h;[n] «———— H;(e’*}) be an ideal low-pass filter with transition band of zero width.
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That is

H{(ejﬂ) _ q, ‘Q| < %
’ 0, Z<|Q<m

(a) Substitute for h;[n] in the convolution sum

o0

x;[n] = Z x,[k] * hi[n — k]

k=—o00

hainl = qsinEEn)

k=—o0

(b) The zero-insertion procedure implies x,[k] = 0 unless k = gm where m is integer. Rewrite x;[n| using
only the non-zero terms in the sum as a sum over m and substitute z[m| = x,[gm] to obtain the following

expression for ideal discrete-time interpolation:

0 gsin (g(n—qm))
xi|n] = m;m x[m) o pe—
Substituting k = gm yields:
o gsin (%(nfqm))
xin] = m;m x,[gm] P
Now use x,[gm] = x[m].

DTFS; 3
4.53. The continuous-time representation for a periodic discrete-time signal z[n] — X [k] is pe-
riodic and thus has a FS representation. This FS representation is a function of the DTFS coefficients
X|[k], as we show in this problem. The result establishes the relationship between the FS and DTFS

representations. Let z[n] have period N and let z5(t) = > ¢ x[n]o(t — nTs).

n=—oo

z[n] = =z[n+ N]
vs(t) = Y x[n]d(t —nTy)

(a) Show z5(t) is periodic and find the period, T

zs(t+T) = i z[n]o(t + T — nTy)

n=—oo
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Now use x[n] = z[n — N] to rewrite

zs(t+T) = i zn — N6t + T — nTy)
let k=n—-N T
ws(t+T) = > x[klo(t — kT + (T — NT))
k=—o0

It is clear that if T'= NTy, then x5(t + T) = x5(t).
Therefore, x5(t) is periodic with T'= NTj.

(b) Begin with the definition of the F'S coefficients

1T ,
X(;[k] = T/O ng(t)e_]kwotdt.

Substitute for T', w,, and one period of x5(¢) to show

x5(t)e Ikwotdt
7 N—-1 )
Z z[n]d(t — nTy)e I*wotdt

n=

Nl— =

S—

0
N—
Z z[n]d(t — nTy)e I*wotdt

n=0

=

Il
2| -
o3
S—

2

= x[n] / §(t — nTy)e TFwotdt
0

—_

2

e
S
o

2

_ x[n]efjkwonTs

—_

=
-3

3
I

0

N-1

> e
n=0

=
=2l

S-S =
=

4.54. The fast algorithm for evaluating the DTFS (FFT) may be used to develop a computationally
efficient algorithm for determining the output of a discrete-time system with a finite-length impulse
reponse. Instead of directly computing the convolution sum, the DTFS is used to compute the output
by performing multiplication in the frequency domain. This requires that we develop a correspondence
between the periodic convolution implemented by the DTFS and the linear convolution associated with
the system output, the goal of this problem. Let h[n] be an impulse response of length M so that h[n] =0
for n < 0,n > M. The system output y[n] is related to the input via the convolution sum

yln) = 3 hikfzln - K
k=0
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(a) Consider the N-point periodic convolution of h[n] with N consecutive values of the input sequence

z[n] and assume N > M. Let Z[n] and h[n] be N periodic versions of z[n] and h[n], respectively

Zn] = =zn], for0<n<N-1

Zn+mN] = Z[n], forallinteger m, 0<n<N —1
hln] = h[n], for0<n<N-1

hin+mN] = h[n], for all integer m, 0 <n < N —1

The periodic convolution between h[n] and Z[n] is

N—-1

gl = 3 h{klaln - 4

k=0

Use the relationship between h[n], z[n] and h[n], Z[n] to prove that §[n] = y[n], M —1<n < N —1.

That is, the periodic convolution is equal to the linear convolution at L = N — M + 1 values of n.

gln) = hiklE[n — k] (1)

k
Now since Z[n] = z[n], for 0 <n < N — 1, we know that

In—kl=xzn—-k], for0<n—-k<N-1

In (1), the sum over k varies from 0 to M — 1, and so the condition 0 < n—k < N — 1 is always satisfied
provided M —1 <n < N — 1. Substituting x[n — k] =Z[n — k], M —1 <n < N — 1 into (1) yields

gln] = z_:lh[k]x[n—k] M—-1<n<N-1
k=
[n

o

Il
<

(b) Show that we may obtain values of y[n] other than those on the interval M —1 < n < N —1 by
shifting x[n] prior to defining Z[n|. That is, if

Zpn] = zn+pL], 0<n<N-1
Zp[n+mN] = Zp[n], for all integer m, 0 <n <N —1
and
gpln] = hin]® z,[n]
then show

Upln]=y[n+pL], M—-1<n<N-1

This implies that the last L values in one period of g,[n] correspond to y[n| for M —1+pL <n < N—1+pL.
Each time we increment p the N point periodic convolution gives us L new values of the linear convolu-

tion. This result is the basis for the so-called overlap and save method for evaluating a linear convolution
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with the DTFS.

Overlap and Save Method of Implementing Convolution
DTFS; 2w /N
Compute the N DTFS coefficients H[k] : h[n] «—— H][k]

Setp=0and L=N—-M +1

Define Z,[n] =2fn— (M —1)+pL], 0<n<N -1
~ DTFS;2x/N .
Compute the N DTFS coefficients X,[k] : Zp[n] «—— Xp[k]

Compute the product Y,[k] = N H[E]X,[k]

~ DTFS;2n/N .
Compute the time signal gp[n] from the DTFS coefficients, Y, [k] : §p[n] «—— Y, [k].

Save the L output points: y[n +pL] =g[n+ M —1], 0<n<L-1
Set p = p+ 1 and return to step 3.

® NS e W

Solutions to Computer Experiments

4.55. Repeat Example 4.7 using zero-padding and the MATLAB commands fft and fftshift to sample

and plot Y (/%) at 512 points on —7 < Q < 7 for each case.

P4.55
80F T =
o
®
s 60 b
S 401 ]
Q
£
Q20+ |
>
-3 -2 -1 0 1 2 3
Omega
~ 10 ‘
-
L8
=6
g
£ 4
o
T 2
| | |
-1 0 1
Omega
10 T
[e0]
1] ~ —
i 8
T of -
&
£ 4r 7
o
> 2r 7
— | Pt | ]
-3 -2 -1 0 1 2 3
Omega

Figure P4.55. Plot of Y (e/®?)

4.56. The rectangular window is defined as

] 1, 0<n<M
wyn] =
0, otherwise
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We may truncate a signal to the interval 0 < n < M by multiplying the signal with w[n]. In the frequency
domain we convolve the DTFT of the signal with

. [ Q(M+1)
G sin (72 )

W, Iy o=
ST €Y

The effect of this convolution is to smear detail and introduce ripples in the vicinity of discontinuities.
The smearing is proportional to the mainlobe width, while the ripple is proportional to the size of the
sidelobes. A variety of alternative windows are used in practice to reduce sidelobe height in return for
increased main lobe width. In this problem we evaluate the effect windowing time-domain signals on
their DTFT. The role of windowing in filter design is explored in Chapter 8. The Hanning window is
defined as

in] 0.5—0.5cos(2), 0<n<M
wp[n] =
h 0, otherwise

(a) Assume M = 50 and use the MATLAB command fft to evaluate magnitude spectrum of the rectan-

. . . x x
gular window in dB at intervals of £, 175, and 555-

(b) Assume M = 50 and use the MATLAB command fft to evaluate the magnitude spectrum of the

i i i ; T T
Hanning window in dB at intervals of &5, 175, and 555-

(c) Use the results from (a) and (b) to evaluate the mainlobe width and peak sidelobe height in dB for

each window.

T
2007

the figure, or finding the local minima and local nulls in the vicinity of the mainlobe.

Using an interval of the mainlobe width and peak sidelobe for each window can be estimated from

Q:rad (dB)

Mainlobe Sidelobe

width height
Rectangular | 0.25 -13.48
Hanning 0.5 -31.48

Note: sidelobe height is relative to the mainlobe.
The Hanning window has lower sidelobes, but at the cost of a wider mainlobe when compared to the

rectangular window

(d) Let y.[n] = z[n]w.[n] and yu[n] = z[n]wy[n] where x[n] = cos(%n) + cos(237n) and M = 50.
Use the the MATLAB command fft to evaluate |Y;(e/*?)| in dB and |Y},(e/})| in dB at intervals of 575.

Does the window choice affect whether you can identify the presence of two sinusoids? Why?

; : : ; 26 29
Yes, since the two sinusoids are very close to one another in frequency, (ﬁ and 1—075).
Since the Hanning window has a wider mainlobe, its capability to resolve these two sinusoid is inferior
to the rectangular window. Notice from the plot that the existence of two sinusoids are visible for the
rectangular window, but not for the Hanning.
(e) Let y,[n] = x[n]w,[n] and yu[n] = x[n]wp[n] WherQ z[n] = cos(3%5n) + 0.02cos(357n) and M = 50.
Use the the MATLAB command fft to evaluate |Y,.(e’*?)| in dB and |V} (e’*?)| in dB at intervals of 7=

200
Does the window choice affect whether you can identify the presence of two sinusoids? Why?
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Yes, here the two sinusoid frequencies are significantly different from one another. The separation of
7 from each other is significantly larger than the mainlobe width of either window. Hence, resolution is
not a problem for the Hanning window. Since the sidelobe magnitude is greater than 0.02 of the mainlobe
in the rectangular window, the sinusoid at Eing is not distinguishable. In contrast, the sidelobes of the
Hanning window are much lower, which allows the two sinusoids to be resolved.

P4.56 (a)

o

|
N
o

|
ey
o

r

|W (Omega)| dB:pi/50

|
(o))
o

r

|W (Omega)| dB:pi/100

Omega

|W (Omega)| dB:pi/200

=
=
=

Omega

Figure P4.56. Magnitude spectrum of the rectangular window
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P4.56 (d)
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Figure P4.56. (d) Plots of |Y;.(e7)| and |Y},(e%?)|
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Figure P4.56. (e) Plots of |Y,.(e’)| and |V}, (e/%)]



4.57. Let a discrete-time signal z[n] be defined as

(0.1n)2
e~z , |n| <50
xln] =
0, otherwise

Use the MATLAB commands fft and fftshift to numerically evaluate and plot the DTFT of x[n] and the
following subsampled signals at 500 values of €2 on the interval —m < Q < 7:

(a) y[n] = z[2n]
(b) z[n] = z[4n]
P4.57
25 M
20 B
=
<15 T
m
= 10 1
[a}
5 i
| | | | | | |
-3 -2 -1 0 1 2 3
Omega
12F T B
_ 10 B
o
N, 81 T
X
kol ]
o 4r E
2F i
Il Il Il | Il Il Il
-3 -2 -1 0 1 2 3
Omega
6 - T .
=
X4 -
x
—
=
o2r i
0 | | | | |
-3 -2 -1 0 1 2 3
Omega

Figure P4.57. Plot of the DTFT of x[n]

4.58. Repeat Problem 4.57 assuming

(0.1n)2

2[n] :{ cos(gn)e” = , |n| <50

0, otherwise
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P4.58
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Figure P4.58. Plot of the DTFT of x[n]

4.59. A signal x(t) is defined as

3 2
x(t) = cos(gt)e_%

(a) Evaluate the FT X (jw) and show that |X (jw)| ~ 0 for |w| > 37.

X(juw) = w(a<w—3—”>+a<w+3§>>*e¢;

for |w| > 37

. —(w—37)2 —(wt3F)2
I X(jw)| = V2mdle™ = +e 2
-5 (%)
X(jw) < Vordle 2 +e 2
~ 1.2x1074

Which is small enough to be approximated as zero.
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P4.59(a)

X(jw)

-8 -6 -4 -2 0 2 4 6 8
w

Figure P4.59. The Fourier Transform of x(t)

In parts (b)-(d), we compare X (jw) to the FT of the sampled signal, z[n] = x(nT}), for several sam-
FT
pling intervals. Let z[n] «—— X;(jw) be the FT of the sampled version of z(¢). Use MATLAB to

numerically determine X;(jw) by evaluating

25

Xs(jw) = Z x[n]e‘j“Ts

n=-—25

at 500 values of w on the interval —37m < w < 37. In each case, compare X (jw) and Xs(jw) and explain

any differences.

Notice that z[n] is symmetric with respect to n, so

Xs(jw) = x[O]+2Zm[n] cos(wnTs)

25
1+2 Z x[n] cos(wnTs)
n=1

Aside from the magnitude difference of T%, for each T, X (jw) and Xs(jw) are different within [—3m, 37]
only when the sampling period is large ehough to cause noticeable aliasing. It is obvious that the worst
aliasing occurs when T = %

(b) Ty = 3§

(c) Ty =2
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P4.59(b)
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Figure P4.59. Comparison of the FT to the sampled FT

4.60. Use the MATLAB command fft to repeat Example 4.14.
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P4.60
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Figure P4.60. Plot of | X (e’})| and N|X[k]|
4.61. Use the MATLAB command fft to repeat Example 4.15.
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Figure P4.61. DTFT approximation to the FT, graphs of | X (¢/?)| and NT,|Y[k]|

P4.61(c)
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Figure P4.61. DTFT approximation to the FT, graphs of | X (¢/?)| and NT|Y[k]|

4.62. Use the MATLAB command fft to repeat Example 4.16. Also depict the DTFS approximation
and the underlying DTFT for M = 2001 and M=2005.

70



P4.62-1

0 0.5 1 15 2 25 3 35 4 45 5
Frequency(Hz)

2000
o
P
T
!

[Y[K]:M=
o o
N w
T T
1 1

0%
0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
Frequency(Hz)

Figure P4.62. DTFS Approximation
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Figure P4.62. DTFS Approximation
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P4.62-3
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Figure P4.62. DTFS Approximation

4.63. Consider the sum of sinusoids
1
x(t) = cos(27t) + 2 cos(2m(0.8)t) + 3 cos(2m(1.1)t)

Assume the frequency band of interest is —57 < w < 5.
(a) Determine the sampling interval T so that the DTFS approximation to the FT of x(¢) spans the
desired frequency band.

we = Om
2
T, < =0.133
3w,
choose:
T, = 0.1

(b) Determine the minimum number of samples M, so that the DTFS approximation consists of discrete-

valued impulses located at the frequency corresponding to each sinusoid.

For a given M, the frequency interval for sampling the DTFS is 134—7;
]%/f—ikl = 27T,
k
M, = Tl
%kQ = 27(0.8)T,
k
Mo = o.ngs
;4—711@, = 2r(1.1)T,
k
Mo = 1.13%3
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where k1, ko, k3 are integers.

By choosing Ts = 0.1, the minimum M, = 100 with k; = 10, ks =8, k3 = 11.

(c) Use MATLAB to plot - |Y;(jw)| and |Y[k]| for the value of T, chosen in parts (a) and M = M,.
(d) Repeat part (c) using M = M, +5 and M = M, + 8.

P4.63
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Figure P4.63. Plots of (1/M)|Y5(jw)| and |Y[k]| for the appropriate values of T, and M

4.64. We desire to use the DTFS to approximate the FT of a continuous time signal z(¢) on the band
—w, < w < w, with resolution w, and a maximum sampling interval in frequency of Aw. Find the
sampling interval T, number of samples M, and DTFS length N. You may assume that the signal is
effectively bandlimited to a frequency w,, for which | X (jw,)| > 10|X (jw)|, w > wy,. Plot the FT and
the DTFS approximation for each of the following cases using the MATLAB command fft.

We use Ty < —22—: M > 5—i; N > 2= to find the required Ty, M, N for part (a) and (b).

wmtwq’
17 |t‘ <1 3 3
a) z(t) = yWe =G, wr =, and Aw = §
(8) (t) { 0, otherwise 2 4 8
) 2sin(w)
X(jw) =
w
We want :
sin(w 1
#‘ 15—7(_ for |UJ| 2 Wm
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which gives

(c) x(t) = cos(207t) + cos(21mt), w, = 407, w, =

wm = 157
Hence:
T, < 15:713% ~ 0.12
choose T, =0.1
M > 26.67
choose M =28
N > 160
choose N =160
=3, and Aw = ¢
1 o2
X(jw) = me*T
We want :
% < Lt
- 10
which gives
W, = 3.69
Hence:
T, < 0.939
choose T, =0.9
M > 349
choose M=14
N > 55.85
choose N =56
5, and Aw = {5
ws = 2w, =807
X(jw) = 7(6(w—207)+ §(w + 207))
Hence:
T, < 27 —0.0167
Wa
choose T, =0.01
M > 600
choose M =600
choose N =M =600
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(d) Repeat case (c) using w, = 75.
Hint: Be sure to sample the pulses in (a) and (b) symmetrically about ¢ = 0.

choose T, = 0.01

M > 2000
choose M = 2000
choose N = M = 2000

For (c) and (d), one needs to consider X (jw) x Wy(jw), where

wg’s )

Ws(jw) = e deTs(¥5) (Tl(nz(w—wg))
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Figure P4.64. FT and DTFS approximation
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P4.64(c)
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Figure P4.64. FT and DTFS approximation

4.65. The overlap and save method for linear filtering is discussed in Problem 4.54. Write a MATLAB
m-file that implements the overlap and save method using fft to evaluate the convolution y[n] = h[n]*z[n|
on 0 < n < L for the following signals.

(a) h[n] = (u[n] — uln — 5]), z[n] = cos(%n), L = 30

M =5
L = 30
N = 34

(b) hln] = 5 (uln] —u[n = 5]), @[n] = (5)"u[n], L =20

M = 5
L = 20
N = 24
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Figure P4.65. Overlap-and-save method

4.66. Plot the ratio of the number of multiplies in the direct method for computing the DTFS coeffi-
cients to that of the FFT approach when N = 2P for p = 2,3,4,...16.
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Figure P4.66. (a)

4.67. In this experiment we investigate evaluation of the time-bandwidth product with the DTFS. Let
FT
2(t) —— X(jw).

(a) Use the Riemann sum approximation to an integral

b mp
/f(u)duz Z fimAu)Au

m=mg

to show that

. [foot2|a:(t)|2dt] 2

T2 Ja(t) 2t
SM n?x[nn?] :
~ T
[ Yol |z

provided z[n] = z(nTy) represents the samples of x(t) and z(nT;) ~ 0 for |n| > M.

By setting t = nT, dt =~ At =Tk, so

0o M

/ t2]ax(t))dt > (0T |x(nTy) T,

oo n=—M

M
T2 Y wlafn)?
n=—M

Q
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similarly
M

[ lopa = 703 jela?
- n=—M
Therefore
1
Z,J?_Mn%[nml ’
Td ~ Ts i
Yone_ s 2] ?

(b) Use the DTFS approximation to the FT and the Riemann sum approximation to an integral to show
that

1
o WX (jw)Pdw | ®
B, = 3 . 2
Joo [ X (jw)[2dw
M 3
ws Zkz_Mlklle[kHZ]
M
M+ ST X TR
DTFS; 5755
where z[n] «—— X[k], ws = ZT—” is the sampling frequency, and X (jk53757) ~ 0 for |k > M.
Using the (2M + 1)-point DTFS approximation, we have:
wp = ©s
g 2M +1
hence
w
d ~ Aw=—2_
“ YT oM+ 1
1 W
X[k = X(jk u
k] o+ T )
0 w 3 M
2% (5 )2 _ s 2 2
[ eiare = () Y R
k=—M
o0 w M
N2 _ s 2
[ixape = (52) ¥ i
k=—M
therefore
1
" 1
L e[S PR
T ML ST X[

(¢) Use the result from (a) and (b) and Eq. (3.65) to show that the time-bandwidth product computed
using the DTFS approximation satisfies

lz?f_w%[nwr lzﬁimmﬂxwr s

Sont (]2 SN XK = T

Tsws

Note T;B, ~
ote Ld oM + 1

SM n?x[nﬂ [ Mo |k|2|Xv~:121 :
Sonl s lan]f? Sohe s I X[K]2
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we have

. 1 Tsws 2
Since TyBy > 3, and 53595 = 53757

DI o o R sy 1 D 4 o S T
St laln]? Sl XHE )T A

(d) Repeat Computer Experiment 3.115 to demonstrate that the bound in (c) is satisfied and that
Gaussian pulses satisfy the bound with equality.

P4.67(d) : 0 = (2M+1)/(4m)
6000 T T T

4000 bound

Product

2000

Y O QO
0 100 200 300 400 500 600 700 800

M : rectangular pulse
800 T T T

© o 9 o 9 © 9 °

0 100 200 300 400 500 600 700 800
M : raised cosine
150 T

Product

0 | | | | | | |
0 100 200 300 400 500 600 700 800
M : Gaussian pulse

Figure P4.67. Plot of Computer Experiment 3.115
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CHAPTER 5

Additional Problems

5.17 (a) The AM signal is defined by
s(t) = A.(1+k,m(t))cos(w,t)

0 k, O
= A0+ sLcos(w.t)
O 1+t°0

To obtain 50% modulation, we choodg = 1, which results in the modulated
waveform of Fig. 1 fos(t) with A, = 1 volt:

Figure 1

(b) The DSB-SC modulated signal is defined by
s(t) = A.m(t)cos(w,t)
= —cos(t)
1+t

which has the modulated waveform of Fig. 24@r= 1 volt:

Figure 2

Typically, a DSB-SC signal exhibits phase reversals. No such reversals are exhibited in
Fig. 2 because the modulating sigm#) is nonnegative for all time



5.18 The AM signal is defined by
s(t) = A (1+k,m(t))cos(w,t)

where A.cos(w,t) is the carrier ank}, is a constant. We are given, = 21X 10° rad/sec;
that is,f. = 100 kHz.

Aycos( 21T % 103t)

(@) m(1)
Wy = 21X 10° rad/sec
f. =1 kHz
The frequency components f) for positive frequencies are:
fo = 100 kHz

100+ 1= 101 kHz
100- 1= 99 kHz

fo+ 1y
f(:_fO

(b) m(t) = A,cos(2mx 10°t) + A cos(4Tix 10°t)
which consists of two sinusoidal components with frequenfges1 kHz andf; = 2

kHz. Hence, the frequency components(dffor positive frequencies are:
f. = 100 kHz

C

f +f, = 100+ 1= 101 kHz
f,—f, = 100— 1= 99 kHz
f +f, = 100+ 2= 102 kHz
f,—f, = 100- 2= 98 kHz

(c) First, we note that
cos(X)sin(Y) = %sin(Y X))+ %sin(Y— X)
Hence,
m(t) = Ajcos(2mx 1O3t)sin(4n>< 103t)

A A
= ?Osin(an 103t) + Eosin(ZTIX 103t)

which consists of two sinusoidal components with frequenfges3 kHz andf; = 1
kHz. Correspondingly, the frequency componenttffor positive frequencies are:

f, = 100 kHz
f +f, = 100+ 3= 103 kHz
f,—f, = 100- 3= 97 kHz

f +f, = 100+ 1= 101 kHz



f,—f, = 100- 1= 99 kHz

(d) Here we use the formula:
cos0 = %[1 + cos(20)]
Hence,

2
m(t) = Agcos (21 x 103t)

Ao 3
= 7[1+ cos(4mtx 1071)]

which consists of dc component and sinusoidal component of frequgrc® kHz.
The frequency components f) for positive frequencies are therefore:
f. = 100 kHz

100+ 2 = 102 kHz
100- 2= 98 kHz

f.+fy
fc_fo

(e) For this part of the problem, we find use of the formulas:

cos’0 = %[1 + cos(26)]

sin%e = %[1—cos(26)]
Hence,

m(t) = %[1 + cos(4mx 10°%)] + %[1— cos(8mx 10°)]

=1+ %cos(4nx 103t) - %cos(Snx 103t)

which consists of dc component, and two sinusoidal componentsfiywti2 kHz and
f, =4 kHz. Correspondingly, the frequency componenty®ffor positive frequencies
are:

f, = 100 kHz
f + fo = 100+ 2= 102 kHz

f,—f, = 100- 2= 98 kHz
f +f, = 100+ 4 = 104 kHz
f,—f, = 100- 4= 96 kHz

() We first use the formula
cos’® = cosd E%[l + cog(20)]



= %cosﬁ + %cosecos(ze)

_1 irl 1 _
E Zcose+2[2cos(9+29) +3cos(8 29)}

1 3
= 4003(39)+4cose

Hence,

2
m(t) = Aycos (21 x 103t)

= Zcos(6rrx 10°t) + Tcos(ZTrx 10°1)

which consists of two sinusoidal components with frequenigesl kHz andf; = 3
kHz. The frequency componentssit) are therefore:
f. =100 kHz

c

f+f, = 100+ 1= 101 kHz
f,—f, = 100- 1= 99 kHz
f +f, = 100+ 3= 103 kHz
f,—f, = 100- 3= 97 kHz

Note: For negative frequencies, the frequency componerg&)adre the negative of
those for positive frequencies.

5.19 (a) For a square wave with equal mark-to-space ratio and frequgrey500 Hz,
alternating between 0 and 1, has the frequency expansion (see Example 3.13 of the

text):
z jk
m() = 3 m{Ke ™, 0y = 2?”
k=-c0
_ 2sin(kagTy) _2m _2m_ T
wherem[ k] = Two , woTo = T 0, = 775
= 1 kM
= SinEy 0
That is,



5.20

1o 1. ki ket
m(t) = T_TI(_Z RSInD?
= 1+2cosz(oo t) + 30053(00 t) + —cos5(wgt) + ...
2 T 0"/ " 3n 0"/ " Bt 0

With w, = 2nf, = 2nx 500 rad/sec, m(t) consists of a dc component, and

sinusoidal components of frequencies 0.5 kHz, 1.5 kHz, 2.5 kHz (i.e., odd harmonics).
Hence, the following components of the AM sigrsét) for positive frequencies (with
progressively decreasing amplitude) are as follows:

fy = 100 kHz
fo+0.5 = 100.5 kHz
fu—0.5=99.5 kHz
fo+1.5 = 101.5 kHz
fo—1.5 = 98.5 kHz
fo+25 = 1025 kHz
fo—25= 975 kHz

and so on.

(b) When the square modulating wave(t) alternates between -1 and +1, the dc
component is zero. Nevertheless, the frequency components of the AM sihal
remain the same as in part (a); the only difference is in the carrier amplitude.

Note: The frequency components for negative frequencies are the negative of those for
positive frequencies.

(a) For positive frequencies, the spectral content of the AM signal consists of the
following:

Carrier:f. = 100 kHz

Upper sideband, occupying the band from 100.3 to 103.1 kHz
Lower sideband, occupying the band from 99.7 to 96.9 kHz

(b) For positive frequencies, the spectral content of the AM signal consists of the
following:

Carrier:f; = 100 kHz

Upper sideband, occupying the band from 100.05 to 115 kHz
Lower sideband, occupying the band from 99.95 to 85 kHz



Note: For negative frequencies, the spectral contents of the AM s¥ffihale the negative
of those for positive frequencies.

5.21 The percentage modulation is defined by

Amax— Anmin _ 9.75- 0.25

Anaxt Amin 975+ 0.25
9.5 0

= = = I

10 95%

5.22 Building on the solution to Problem 5.17, the frequency components of the DSB-Sc signal
for positive frequencies are as follows:

(@) f.+f, = 101 kHz
f.—fo = 99 kHz

(b) f .+ f, = 101 kHz
f.—f, = 99 kHz
f+f, = 102 kHz
f_—f, = 98 kHz

() f.+f, = 103 kHz
f.—f, = 97 kHz
f+f, = 101 kHz
f_—f, = 99 kHz

(d) f.+f, = 102 kHz
f,—f, = 98 kHz

(e) f + fy = 102 kHz
f.—f, = 98 kHz
f+f, = 104 kHz
f.—f, = 96 kHz

(f) f.+f, = 101 kHz



5.23

5.24

5.25

f.—f, = 99 kHz
f_+f, = 103 kHz
f_—f, = 97 kHz

Note: For negative frequencies, the frequency components of the DSB-SC signal are the
negative of those for positive frequencies.

Building on the solution for Problem 5.19, we find that the DSB-SC signal has the same
frequency content for both forms of the square wave described in parts (a) and (b), as
shown by:

* For positive frequencies, we have the frequency components 100.5, 99.5, 101.5, 98.5,
102.5, 97.5 kHz, and so on, with progressively decreasing amplitude.

For negative frequencies, the frequency components are the negative of those for
positive frequencies.

Note: By definition, the carrier is suppressed from the modulated signal.

(a) For positive frequencies, we have
Upper sideband, extending from 100.3 to 103.1 kHz
Lower sideband, extending from 99.7 to 96.9 kHz

(b) For positive frequencies, we have
Upper sideband, extending from 100.05 to 115 kHz
Lower sideband, extending from 99.95 to 85 kHz
Note: For negative frequencies, the spectral contents of the DSB-SC signal are the
negatives of those for positive frequencies.
Building on the solution to Problem 5.18, we may describe the frequency components of

SSB modulator for positive frequencies as follows:

(i) Upper sideband transmission:

@) f.+fy= 101 kHz
(b) f.+fy = 101 kHz
f.—f, = 102 kHz



(c) f.+f, =103 kHz
f.—f, = 101 kHz

C

(d) f +f, = 102 kHz

(e) f.+fy, =102 kHz
f.—f, = 104 kHz

101 kHz
103 kHz

0 fc+fo
fo+f,

(i) Lower sideband transmission:
(@) f.—"fy =99 kHz

(b) f.—fy = 99 kHz
f_—f, = 98 kHz

(€) fo—f,= 97 kHz
f.—f, = 99 kHz

(d) f.—fy = 98 kHz

(€) f.—fy = 98 kHz
f_—f, = 96 kHz

(f) f.—fy, = 99 kHz
f_—f, = 97 kHz

Note: For both (i) and (ii), the frequency contents of SSB modulated signal for negative
frequencies are the negative of the frequency contents for positive frequencies.

5.26 With the carrier suppressed, the frequency contents of the SSB signal are the same for
both square waves described under (a) and (b), as shown by (for positive frequencies):

() Upper sideband transmission: 100.5, 101.5, 102.5 kHz, and so on.
(i) Lower sideband transmission: 99.5, 98.5, 97.5 kHz, and so on.



Note: For negative frequencies, the frequency components of the SSB signal are the
negative of those for positive frequencies.
5.27 (i) Upper sideband transmission:

(a) Upper sideband, occupying the band from 100.3 to 103.1 kHz
(b) Upper sideband, occupying the band from 100.05 to 115 kHz

(i) Lower sideband transmission:

(a) Lower sideband, occupying the band from 99.7 to 96.9 kHz
(b) Lower sideband, occupying the band from 99.5 to 85 kHz

Note: For negative frequencies, the spectrum contents of the SSB signal are the negative of
those for positive frequencies.

5.28 The spectra of the pertinent signals are as follows:

Magnitude

Carrier T T f = w/(2m), kHz
2 0 2
Magnitude

Modulating T | | T _

signal ~ - 5 5 a f = w/(2m), kHz
Magnitude

Modulating

signal

Lower side frequency

for positive frequencies Lower side frequency for negative frequencies

Upper side frequency Carrier

- . Carrier Upper side frequency for
for negative frequencies \ / positive frequencies
T ! , | T ‘/ f= (w/2m), kHz
-6 -4 -2 0 2 4 6

We clearly see that this spectrum suffers from frequency overlap, with the lower side
frequency for negative frequencies coinciding with the carrier for positive frequencies;
similarly, for negative frequencies. This spectrum is therefore radically different from the
spectrum of a regular AM signal; hence, it is not possible to recover the modulating signal
using an envelope detector.



5.29 (a)

Magnitude

Modulating
signal

Lower side frequency Lower side frequency for negative frequencies
for positive frequencies

Upper side frequency U i
/ f pper side frequency for
for negative fre‘@'ﬁ? T T positive frequencies
! | | L T = (w/2m), kHz
-6 -4 -2 0 2 4 6

The modulated signal therefore consists of two sinusoidal components, one at
frequency 2 kHz and the other at frequency 6 kHz.

(b) A conventional coherent detector consists of a product modulator followed by a low-
pass filter. The product modulator is supplied with a carrier of frequency 2 kHz. The
spectrum of this modulator consists of the following components:

dc component (at zero frequency)
sinusoidal component at 4 kHz
another sinusoidal component at 8 kHz

To extract the sinusoidal modulating signal of 4 kHz, the low-pass filter has a cutoff
frequency slightly in excess of 4 kHz. The resulting output therefore consists of the
desired sinusoidal modulating signal, plus a dc component that is undesired.

To suppress the dc component, we have to modify the coherent detector by passing the
detector output through a capacitor.

5.30 For a message bandwidbh, = 2.5 x 103 rad/s and carrier frequency, = 2mtx 103 rad/s,

the spectra of the message signal and double sideband-suppressed carrier (DSB-SC)
modulated signal may be depicted as follows:

IMGw)]

M(0)

w(10° rad/s)

ISGo)l

/\ /\ w(10® rad/s)

451 -251 -05t 0 0.5t 251 451

10



5.31

The important point to note from the picture depicted here is that there is a clear separation
between the sidebands lying in the negative frequency region and those in the positive
region. Consequently, when the DSB-SC modulated signal is applied to a coherent
detector, the resulting demodulated signal is a replica of the original message signal
except for a scale change.

When, however, the carrier frequency is reducedofo= 1.5r X 10 rad/s, the lower

sideband for negative frequencies overlaps the lower sideband for positive frequencies,
and the situation changes dramatically as depicted below:

IM(w)l

M(0)

T w(10° rad/s)

|/:\"T%\| 00(103 rad/S)

-3.51 -1 X oKX 5 3%
-0.5m 0.5t
[V(w)

= b 10° rad/s
-21 0 m2 o )
The spectrum labeled(jw) refers to the demodulated signal appearing at the output of the
coherent detector. Comparing this spectrum with the original message spétffwnwe
now see that the modulation-demodulation process results in a message distortion.

The conclusions to be drawn from the results presented above are:

1. To avoid message distortion on demodulation due to sideband overlap, we must
choose the carrier frequency in accordance with the condition w,, . The minimum
acceptable value @b, is thereforaw,,

2. Forw, <wy, we have sideband overlap and therefore message distortion.

The two AM modulator outputs are
si(t) = A (1+k,m(t))cos(wt)

11



5.32

S,(t) = A (1-k,m(t))cos(w.t)

Here it is assumed that the two modulators are identical, that is, they have the same

amplitude modulation sensitivitik, and the same carrieh.cos(gt). Subtractings,(t)
from s;(1):

S(t) = sy(t) —s,(t)
= A (1+km(1))cos(w.t) —A.(1-k,m(t))cos(w.t)
= 2k,A.m(t)cos(w,t)

which is the formula for a DSB-SC modulated signal. For this method of generating a

DSB-SC modulated signal to work satisfactorily, the two AM modulators must be
carefully matched.

From Eq. (5. 30) of the text, we have
N jw) = z M(j (@ —kwg))H (jw) 1)
S K=-00
where
—jwTy/2

H(jw) = Tysinc(wTy/(2m))e

We are given

Ty = 10us
_am_
W = 75 = 21 x 10°rad/s

M(jo) = f[é(jw—me)%(jwﬂwm)]
A, = amplitude
W, = 2mx 10°rad/s

21

ST T

S

With w, = 100w,,, it follows that the effect of flat-top sampling is small enough to
approximate Eq. (1) as follows:

[ee]

(o) =5 3 Mli(o-ke))

12



With w, > 2w,,, the side frequencies of the modulated signal are as follows (for positive
frequencies)

k=0: W

k=1: Ws - Wy, Ws + Wy
k=20 2s- 0y, 205+ Wy
k=3 3w~ Wy, 305+ W
and so on.

For negative frequencies, the side frequencies are the negative of those for positive
frequencies.

5.33 (a) The radio frequency (RF) pulse is defined by

0
T T
0 — <t =
s(t) = A.cos(w,t), 5 <t< 5
E 0, otherwise

The modulated signad(t) is obtained by multiplying the carrieA.cos(t) by a

rectangular pulse of unit amplitude and duratibricentered about the origin). The
Fourier transform oA.cos(t) is

AC AC
76(&)— W) + Eé(w + W) -

The Fourier transform of the rectangular pulse is equal to the sinc funtsiooT).
Since multiplication in the time domain is transformed into convolution in the
frequency domain, we may express the Fourier transfostt)afs

S(jw) = A—gr[sinc(T(oo—u)c)) + sinc(T(w+ wy))] (1)

When wT is much greater thant® the overlap between the two sinc functions
sinc(T(w - wy)) and sincl(w + wg)) is correspondingly small. We may then
approximate Eq. (1) as follows:

o AT
E Tsmc(T(w—wC)), w>0
S Jw)=5 0, w=0 2)
OAT .
E Tsmc(T(oo+ w.)), w<O0

(b) Forw.T = 20rt, use of the approximate formula of Eq. (2) is justified. The width of the
main lobe of the sinc function isT = w/5. The width of each sidelobe i5./10. We
may thus plot the magnitude spectrun8@tv) as shown on the next page.

13



5.34

(a) The spectrum of each transmitted radar pulse is closely defined by Eq. (2) given in the
solution to Problem 5.33. The periodic transmission of each such pulse has the
equivalent effect of sampling this spectrum at a rate equal to the pulse repetition
frequency of the radar. Accordingly, we may express the spectrum of the transmitted

radar signa(t) as follows:

0
E Zant')(w—wc—nwo) for w>0
n

N jw) = 0 forw=0

Z a,0(w+ w, +nw,) for w<0
n

I o

where
w, = fundamental frequency

_2n
To
and the coefficierd,, is defined by
_ A T
a, = o7, SmCDTO 0

whereT, is the pulse duration.

(1)

(b) The spectrunyjw) defined in Eq. (1) is discrete in nature, consisting of a set of
impulse functions located at = +(w. + nwy), wheren =0, +1,+2,... The envelope of

the magnitude spectrur§jlw)| is therefore as shown on the next page.

14



T1A
2Ty

The mainlobe of the spectrum has a width of

an = 41X 106 rad/s

T
and the sidelobes have a width afx21 rad/s.

The impulse functions are separated by
Wy = 2m10° rad/s

and the carrier frequenay, = 21t x 0° rad/s. Thus, there are 2000 impulse functions
enveloped by the mainlobe and 1000 impulse functions enveloped by each sidelobe.

5.35 The DSB-SC modulated signal is defined by
s(t) = A.m(t)cos(wt)
Let the local oscillator output in the coherent detector be denoted byodos(Awt),
whereAw is the frequency error. Multiplying(t) by the local carrier yields
$(t) = s(t)cos(w.t + Awt)
A m(t) cos(w,t) cos(w.t + Awt)

A
?Cm( t)[ cos(Awt) + cos(2w,t + Awt)]
Low-pass filterings (t) results in the output

S,(t) = A7Cm( t) cos(Awt)

In words, the effect of frequency errAw in the local oscillator is to produce a new DSB-
SC modulated signal with an effective carrier frequenc@f It is only whenAw = 0 that
the coherent detector works properly.

15



5.36

5.37

5.38

5.39

The mixer produces an output signal of frequency equal to the sum or the difference
between its input signal frequencies. The range of sum- or difference-frequencies is from
100 kHz (representing the difference between input frequencies 1 MHz and 900 kHz) to
9.9 MHz (representing the sum of input frequencies 9 MHz and 900 kHz). The frequency
resolution is 100 kHz.

The basic similarity between full AM and PAM is that in both cases the envelope of the
modulated signal faithfully follows the original message (modulating) signal.

They differ from each other in the following respects:

1. In AM, the carrier is a sinusoidal signal; whereas in PAM, the carrier is a periodic
sequence of rectangular pulses.

2. The spectrum of an AM signal consists of a carrier plus an upper sideband and a lower
sideband. The spectrum of a PAM signal consists of a carrier plus an upper sideband
and a lower sideband, which repeat periodically at a rate equal to the sampling rate.

(@) g(t) = sinc(20Qt)
This sinc pulse corresponds to a bandwidth of 100 Hz. Hence the Nyquist rate is 200
Hz, and the Nyquist interval is (1/200) seconds.

(b) g(t) = sinc(2001)
This signal may be viewed as the product of the sinc signal sinc(200t) with itself. Since
multiplication in the time domain corresponds to convolution in the frequency domain,
we find that the signai(t) has a bandwidth twice that of the sinc pulse sinc{pafat
is, 200 Hz and the Nyquist interval is 1/400 seconds.

() g(t) = sinc(20Q) + sinc’(200t)
The bandwidth ofg(t) is determined by its highest frequency component. With
sinc(20@) having a bandwidth of 100 Hz and s#{20Q) having a bandwidth of 200
Hz, it follows that the bandwidth aj(t) is 200 Hz. Correspondingly, the Nyquist rate
of g(t) is 400 Hz and its Nyquist interval is 1/400 seconds.

(a) With a sampling rate of 8 kHz, the sampling interval is

1
T, = 3
8x 10
= 125us
There are 24 voice channels and 1 synchronizing pulse, so the time allotted to each
channel is
S
Tchannel_ 2_5 = Sus

16



(b) If each voice signal is sampled at the Nyquist rate, the sampling rate would be twice
the highest frequency component 3.4 kHz, that is, 6.8 kHz. The sampling interval is
then

1
T = ———
° 6.8x 10
= 147us

Hence,

T _ 147

channel ~ 'Eg = 6.68us

5.40 (a) The bandwidth required for each single sideband modulated channel is 10 kHz. The
total bandwidth for 12 such channels is 12 x 10 = 120 kHz.

(b) The Nyquist rate for each channel2 x 10 = 20kHz. For 12 TDM signals, the total
data rate is 12 x 20 = 240 kHz.

By using a sinc pulse whose amplitude varies in accordance with the modulating
signal, and with zero crossings at multiples of (1/240)ms, we would need a minimum
bandwidth of 120 kHz.

5.41 (a) The Nyquist rate fas;(t) andsy(t) is 160 Hz. Therefore,&gO must be greater than
2
160 Hz. Hence, the maximum valuePRis 3.

(b) With R= 3, we may use the signal format shown in Fig. 1 to multiplex the sigiéls
and sy(t) into a new signal, and then multiplesg(t), s4(t) and ss(t) markers for
synchronization:

Marker Marker
A A

«— Figure 1

N T T OO O AU T Y T T T N N T A A B Time
SBUNDBU B B B IS B B B EBUS

—>| |<_ (1/7200) s

» zero samples
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Based on this signal format, we may develop the multiplexing system shown in Fig. 2.

2400 Hz 1 1
lock 5200 §
¢ -8 p{ 2400 2400
delay delay
v
Marker Sampler| t Sampler t H
generato P si(0) p S0 Figure 2
» v Ss(t)
U
X
Multiplexed
1 1 signal
7200 7200
delay delay

0

5.42 The Fourier transform provides a tool for displaying the spectral content of a continuous-
time signal. A continuous-wave (CW) modulated sigs(§) involves the multiplication of
a message signal(t) by a sinusoidal carriez(t) = A.cos{t) in one form or another. The
CW modulated signad(t) may be viewed as a mixture signal that involves, in one form or
another, the multiplication ofm(t) by c(t). Multiplication in the time-domain is
transformed into the convolution of two spectra, namely, the Fourier trang¥ifjm) and
the Fourier transforn€(jw). The Fourier transforn@(jw) consists of a pair of impulses at
+w.. Hence, the Fourier transform of the modulated signal, denotef{jby, contains a
componentM(jw - jw.) for positive frequencies. For negative frequencies, we have the

image of this spectrum with respect to the vertical axis. The picture so portrayed teaches
us that the carrier frequeney, must be greater than the highest frequency component of
the message spectruM(jw). Moreover, given that this condition is satisfied, Fourier
analysis teaches us that recovery of the original message sigthdtom the modulated
signal s(t) is indeed a practical reality. For example, we may use a product modulator
consisting of a product modulator followed by a low-pass filter. The product modulator,
supplied by a local carrier of frequency., produces a replica of the original message

signalm(t) plus a new modulated signal with carrier frequenay.2BYy designing the low-

pass filter to have a cutoff frequency slightly higher than the highest frequenaft)of
recovery ofm(t) except for a scaling factor is realized.

Consider next the case of pulse-amplitude modulation (PAM). The simplest form of PAM
consists of multiplying the message sigmat) by a periodic train of uniformly spaced
impulse functions, with adjacent impulses being spatgseconds apart. What we have
just described is the instantaneous form of sampling. Thus, the sampling process
represents another form of a mixture signal. The Fourier transform of the periodic pulse
train just described consists of a new uniformly spaced periodic train of impulses in the
frequency domain, with each pair of impulses spaced apart Dy HErtz. As already

mentioned, multiplication of two time functions is transformed into the convolution of
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their spectra in the frequency domain. Accordingly, Fourier analysis teaches us that there
will be no spectral overlap provided that the sampling frequentyi¢/iot less than twice

the highest frequency component of the original message si(tjaHence, provided that

this condition is satisfied, the recovery of a replicanat) is indeed possible at the
receiver. This recovery may, for example, take the form of a low-pass interpolation filter
with a cutoff frequency just slightly greater than the highest frequency compone(t) of

Advanced Problems

5.43 The nonlinear device is defined by
. 2
ig(t) = ayv;(t) +a,vi(t) (1)

The inputy(t) is given by

vi(t) = A cos(w.t) + A,cos(w,t) (2)
whereA.cos(w.t) is the carrier wave ané,cos(t) is the modulating wave. Substituting
Eq. (2) into (1):

ig(t) = a;(A.coq(w,t) + A cos(wt))

+a,(A.cos(w,t) + Amcos(oomt))2
= a,A.cos(wt) +a A cos(wpt)
+ azAicosz(coCt) +2a,A A, cos(w.t) cos(wpt)

+ azArzncosz(wmt) 3)

Using the trigonometric identity
cos’o = %(cos(ze) +1)
we may rewrite Eq. (3) in the equivalent form (after a rearrangement of terms):
ig(t) = a;Ac(w.t) + 2a,A A cos(wt) cos(wyt)
+a; A co(w,t) + %azAacos(Zwmt)

+ %azAicos(cht) + %azAi + %azArzn (4)

We may now recognize the following components in the ouggit

1. An amplitude modulated component (AM) represented by

2a,A
s(t) = alAC%H a; mcos(wmt)%cos(ooct)

2. A set of undesirable components represented by the remaining components of Eq. (4).
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(a) In amplitude modulation, the carrier frequenoy is typically much larger than the
modulation frequencw,, Hence, the frequency context ft) may be depicted as
follows (showing only the positive frequency components so as to simplify the
presentation):

»
»

0 Wm I(Jom wc'I)m We I)c"'(‘om lc e
(b) From this figure, we see that the desired AM component occupies a frequency band
extending from the lower side-frequenay - wy, to the upper side frequency. + Wy,
To extract this component, we need to pass the output of the nonlinear dgtte,
through a band-pass filter. The frequency specifications of this filter are as follows:

» Passband of a width slightly larger tham,4 centered on the carrier frequenay
» Lower stopband, lying below the lower side-frequeney - wy,, and thereby
suppressing the dc component as well as the frequency compapgstsl 20,

» Upper stopband, lying above the upper side-frequeingy+ wy,, and thereby
suppressing the frequency component.2

5.44 (a) For the special case of an infinite unipolar sequence (binary sequence consisting of a
square wave of equal mark-to-space ratio), we have

m(t) = cos(ooot)+ 2 cos(S(oOt)+ 2 cos(5w0t)+

1,2
2 M
1. 2¢ 1
§+n 2k+1cos((2k+1)oo0t)

wherewy = 2rfp = 21(1/2T) = 1UT,. (See the solution to Problem 5.19). The resulting

00K signal is given by (assuming a sinusoidal carrier of unit amplitude and frequency
()
s(1)

m(t) cos(w,t)

%cos(wct) + ﬁkzo 2k1+1cos((2k+1)w0t)cos(w t) (1)
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Amplitude

S

m(t)

1.0

-5Tp -3 T 0 To B By
Using the formula
cos(A)cos(B) = %[cos(A+ B) + cos{A—B)]
we may rewrite EQ. (1) in the equivalent form
_1
s(t) = écos(ooct) Z 2k+1[cos(((2k+1)m0+w )t + cos((2k+1)wy-w)t)] (2)

The spectrum ad(t) deflned in EQ. (2) is depicted in Fig. 1 (for positive frequencies):

=50, o, =30, 0, -0, o, O, +0, o, +3w, . +50,

Figure 1

(b) For the BPSK signal, the binary sequence is represented in its polar nonreturn-to-zero
sequence with the following waveform:

m(t)
+1

Correspondingly, m(t) has the Fourier series representation:
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Amplitude

4o 1
m(t) = ﬁgl 2k+1cosz((2k+ 1) wgt) 3)

wherewy = /Ty The binary sequence of Eq. (3) differs from that of Eq. (1) in two

respects:

* It has no dc component

» ltis scaled by a factor of 2.

The resulting BPSK signal is defined by (assuming a carrier of unit amplitude and
frequencyw,)

s(t) = m(t)cos(w,t)

a4l 1
== T 1cos((2k+ 1) wyt) cos(w,t)

= 12'[ 2k1+ 1[008(((2k + 1)wy+w)t) + cos(((2k + 1) wy-w)t)] (4)

The spectrum ad(t) defined in Eq. (4) is depicted in Fig. 2:

,,,,,, ] |
=50, o, —30, 0, -0, o, +, o, +30, o, +50,
(c) The energy of the unipolar signal defined in Eq. (2) is given by
1T 2 - 2
Zf Is(ldt = 5 IS(K) (5)
k=-00

The left-hand side of Eqg. (5) yields
_ 1 T 2 _ 1 —T0/2 2 —T0/2 2 _TO 2
E = 2 Is(ol’at = 2T0U—T0 SOty " Is(oldt+ [ Iso) dt}

_ 17T 2
- 2T, —T0/2(1) dt}
1
=5 (6)

The right-hand side of Eq. (5) yields, in light of Eq. (2), the energy
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which checks the result of Eq. (2).

For the polar nonreturn-to-zero signal of Eq. (3), the energy is

E = Tf EOR

_ 1 T2 2

‘szLx'“D'm+I SOt [ Is(of]

= A% e+ (1) de[ (- 1)2dt}
2T0_I—T I I

_ 17T Toy _

T 2T, 2 +T0+7} 1

Application of Parseval’s theorem yields

(4/1) A f |, if , dif
E = (1) +
( ﬁ)[ o tmo oot }

_8g,1,1,.1, 0O
T[Z 9 25 49 O

8 2
=S0r =1
8

T

(d) To raise the energy of the unipolar signal to equal that of the polar nonreturn-to-zero
signal, the amplitude of the former signal has to be increased by the scale/&ctor

(e) Examining the OOK signal of Eq. (2), we see that it contains a carrier component in
addition to side frequencies, hence the similarity to an AM signal. On the other hand,
examining Eq. (4) for the BPSK signal, we see that it lacks a carrier component, hence

the similarity to a DSB-SC signal.
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5.45 The multiplexed signal is
s(t) = A.my(t)cos(w.t) + A.m,(t)sin(w,t)
wherem, (t) andmy(t) are the incoming message signals. Taking the Fourier transform of

s(t):
A
N jw) = f[l\/ll(jw—]wc) +M(jw+ juwy)]

A . . . .
+2—}3[M2(Jw—1wc) +My(jw+ jw)]

where m, (t) ET M, (jw) andmy(t) ET M,(jw) . WithH(jw) denoting the transfer
function of the channel, the Fourier transform of the received signal is
R(jw) = H(jw)$( jw)

A
= ECH(jw)[Ml(jw—jwcﬁMl(jw+jwc)]
A
+ EHO)M,(jo- jo) + My(jo+ j0)]

where r(t) ET R(jw) . To recovemy(t), we multiply the received signal(t) by
cos(ugt) and then pass the resulting output through a low-pass filter with cutoff frequency
equal to the message bandwidth. The result of this processing is a signal with the spectrum

S(0) = S(R(jw~ ) +R(jwo+ je,))
= o (jo- o [ M- 12600 + My

+ I11\/|2(jco—j2wc) —%Mz(jw)]
+ SoH (o j0) [Mij0) + My( o+ 120,)

1 . 1 . .

+TM2(J(0)—TM2(](,0+12Q)C)] (1)
For a real channel, the condition
H(jo + jw) = H' (jw,—jw)
IS equivalent to
H(jw+ jw) = H(jo—jw)
This equivalence follows from the fact that for a channel with real-value impulse response
h(t), we haveH (—jw) = H*(jw) . Hence, substituting this condition into Eq. (1):

A
S(jw) = ECH(J'OO—JOOC)Ml(J'w)

Ac .o . o
+ 2 H(jo-jw)[Ma(jo-j20m)
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. . 1 . .
+M(jo+j2w.) +TM2(J®—1200C)

1 . :
—TMz(joo+ 120)0)}

Passing the signal defined By(jw) through a low-pass filter of cutoff frequency equal to
the message bandwidt,, we get an output whose Fourier transform is equal to

A
SH(jo- @M (j@)  for-wy,s ws w,

Recognizing the band-pass nature lofjw), we immediately see that the output so
obtained is indeed a replica of the original message sigtg!

Similarly, to recovemy(t), we multiplyr(t) by sin(@t) and then pass the resulting signal
through a low-pass filter. In this case, we get an output with a spectrum equal to

Ao
FH (0= joMy(jo)

5.46 The block diagram of the scrambler is as follows:

MmO [ product |10 | High-pass | V2 | Product |Va(®) | | ow-pass [SU)
| modulator filter modulator filter ’
cos(t) cos(ut + wyt) Figure 1

(a) The first product modulator output is
v, (t) = m(t)cos(w,t)
When v4(t) is processed by the high-pass filter, we ggft). The second product
modulator output is
V5(t) = vy(t) cos(w,t + wp,t)
The magnitude spectra af(t), v4(t), vo(t), v5(t) ands(t) are illustrated in Fig. 2. From
this figure, we observe that;(t) is a DSB-SC modulated signaly(t) is a SSB-
modulated signals(t) is a DSB-SC modulated signal whose lowest frequency is zero,

ands(t) is a low-pass signal whose spectrum is uniquely defineu(thy
IM(w)|

-Gy '(*)aowa Wy
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V1Gw)l

W~ Wy '
cx : Wet Wy
| ' x “
0 AN i
c O u{: W W, Figure 2
Va(i)l
: : W
/ T \_wc (“)C’ J o \ +
W Wy~ Wy ct Wy Wet Wy
V3l
w
Wyt Wy 0 wy-w, 20+ 200,
ISGe)l
| o

—pt Wy 0 Gy 0y

To find an expression for the scrambled voice sigitgl we need to invoke the
Hilbert transform. Specifically, the Hilbert transformna(t) is defined by

i(t) = %Jw M) e

-1
The m(t) may be viewed as the convolutionmot) with 1/(1tt). The Fourier transform
of 1/(rt) is equal tojsgnw), where

E 1 for >0
sgn(w) = E 0 forw=0

-1 for w<0
Hence,

M(jw) = —jsgn(@)M(jw)
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Using this relation, it is a straightforward matter to show that the spectrus(t)of
defined previously is the same as that of the following expression:

s(t) = im(t)cos(wbt)+im(t)sin(wbt)

(b) With s(t) as the input to the scrambler, the output of the first product modulator is
v, (t) = s(t)cos(wyt)

- %m( 1) cos(wpt) cos(w t) + %m(t)sin(wbt)cos(wct)
= %m( t)[ cos(w,t + wyt) + cos(w .t —wyt)]

+ %m(t)[ sin(et + wpt) — Sin(e t — wgt)]
The high-pass filter output is therefore
Vy(t) = %m( £) cos((@, + Wy)t) + %fn(t)sin((ooc + wp)t)

Correspondingly, the output of the second product modulator is
V5(t) = vy(t) cos((w, + wy)t)

= %m( t) c:osz((ooC +wy)t) + %r‘n(t)sin((we + wp)t) cos((w, + wy)t)

1
= 1_6m(t)

¥ -1%m( ) cos(2((, + wp)t)) + il—erh(t)sin((ooc + o)t
The scrambler output is therefore
-1

which is a scaled version of the original message signal.
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5.47 Consider a message signait) whose frequency content lies inside the band
w < |0 < w,,,. Assuming that the carrier frequenay, > wy, we may describe the
spectrum of the SSB modulated sigrsét) (with only its upper sideband retained) as

follows:
IM(jw)|

" G X % 0 @ K @ Gn Figure 1
&) - Wy W+ Wy
To demodulates(t), we apply it to the coherent detector of Fig. P5.47. W&t denote the
output of the product modulator in this figure, and\gft) denote the output of the low-
pass filter. We may then describe the corresponding spectr@) a@fndvy(t) in graphical
forms as shown in Fig. 2.

ISGoo)l
‘ | | ’ 0
-0 - W R -0 0 W x W + Wy
-0 - Gy W + 0y
V(o)
‘ | ‘ ’ | ’ » Figure 2
20 -0 X 20 om @ 0w o By, 20+ 6 TN
-20 - W 200 + Wy
From this figure we see that the product modulator outpff consists of two

components:
» A scaled version of the original message sign(&l
* A new SSB modulated signal with carrier frequenay 2
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The latter component is suppressed by the low-pass filter, leaving the original message
signal as the detector output as shown by the spectrum of Fig. 3.

Vo)l

‘ ’ 0 Figure 3

oy o 0w oy
5.48 The multiplexed signal is
4
s(t) = Z [cos(w,t + O 1) + cos(w,t + By ;)] M (1) (1)
k=1

whereag = 3y = 0. The corresponding output of the product modulator in the coherent
detector of the receiver is

vi(t) = s(t)[cos(w,t +a; ;) + cos(wyt + ;)] (2)
wherei = 1,2,3,4. There using Eq. (1) in (2):

4
vi(t) = Z my(t)[ cos(w,t + ay ;) + cos(wyt + By 1)]

k=1

x[cos(w,t +a; ;) + cos(w,t + B;_1)]

Expanding terms:
4

Vi(t) = 3 MO cos(w,t + 0ty ;) CO(w,t + 0ti1)
k=1
+ cog(w,t + 0y ;) cos(wyt + i)

+ COS(O\)bt + Bk-l) COS((A)at + ai-l)
+ coS(Wyt + Byy) coS(wyt + B;1)]

4
- %z my(t)[ cos(0ty; — ;) + COS(By 1 — Bi_y)]
k=1

+ COS(2W,t + O 4 + 0 ;) + COS( 2wyt + By g +Biq)
+ cos((0y + W)t + 0y g + By y)

+ cos((w, —wp)t + oy 4 —Big)

+ cos((w, + wp)t + oy + By ;)

+ cos((w, —wp)t + a3 =By 4)]

The low-pass filter in the coherent detector removes the six high-frequency components of
vj(t), leaving the output
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5.49

5.50

4
Vi) = 53 Ml cos(ay g —a.y) + COS(Byy —By.y)]
k=1

The requirement oo, andp is therefore

0 P =
cos(ay 1 —0j1) + COS(By —Biy) = 02 K
00, izk

where (k) = 1,2,3,4.

Consider an incoming AM signal of bandwidth 10 kHz and carrier frequeptat lies

in the range (0.535 - 1.605) MHz. It is required to frequency translate this modulated
signal to a fixed band centered at 0.455 MHz. The problem is to determine the range of
tuning that must be provided in the local oscillator.

Let woc5 denote the local oscillator frequency, which is required to satisfy the condition

W, — Wiogg = 2% 10° x 0.455 rad/s

or
fe—floca = 0.455 MHz

where botH andfi,., are expressed in MHz. That is,
flocal = fc—0.455

Whenf, = 0.535 MHz fioc4 = 0.535 - 0.455 = 0.08 MHz.
Whenf; = 1.605 MHZz g4 = 1.605 - 0.455 = 1.15 MHz.

Thus the required range of tuning of the local oscillator is 0.08 - 1.15 MHz, independent
of the AM signal’'s bandwidth.

Consider a periodic train of rectangular pulses, each of durB§igkssuming that a pulse
of the train is centered on the origin, we may expand it as a Fourier series:

o]

c(t) = Z fesinc(n f,Ty)e
n=-oo

wheref is the pulse repetition frequency and the amplitude of each rectangular pulse is

1/Ty (i.e., each pulse has unit area). The assumptiorf{figt> 1 means that the impulse

functions in the spectrum of the periodic pulse tra{t) are well separated from each
other.

j2rnfgt

Multiplying a message signg(t) by c(t) yields the PAM signal
s(t) = c(t)g(1)
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[o0]

= Y fesinc(n fTo)g(t)e

n=-oo
Hence the Fourier transform g(t) is given by

o]

S(jw) = Z fssinc(n f To)G(jw— jnwy)

j2mnft

n=-oo
wherewg = 2rfg. Thus the spectrum of a naturally sampled signal consists of frequency-

shifted replicas of the message spectr@fjw), with the nth replica being scaled in
amplitude by the factdisinc(fsTy), which decreases with increasimg

5.51 (a) The spectrum of the carrier

c[n] = coy(Q.n), n==1=2..
is defined by
C(€?) = 218(1Q - Q) + 5(jQ + Q). n =42

whereQ_.>Q_ , withQ_ denoting the highest frequency componentiof inside
the ranged < |Q| < 1t . The spectrum of the modulated signal

s[n] = c[n]m[n],

namely,S(eiQ), is obtained by convolving'i(ejQ) WitM(ejQ)

() n=1:
ECR
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(i) n=2
ISEY)

20, T-Qp, 20T+,

PAVIANR S
| ol

ZQ -Qn 2Q +Q 2Q.+1-Q 2Q.+1+Q

(iv) n=-2

€9

~TE2Q+Qp, 2040,

N S

-TE2Q-Qp -20:-Qp, T2Q,-Qp

and so on fon = +3,...

The transmitter includes a band-pass digital filter designed to pass the spectral
bands centered o). and reject all other bands.

(b) Following the coherent detector described in Section 5.5 for demodulation of a DSB-
SC modulated signal of the continuous-time variety, we may postulate the scheme of
Fig. 1 for demodulation of the discrete-time DSB-SC modulated signal:

gn] Low-pass | m[n]
digital ————»
filter

cosQ,n) Figure 1

Here it is assumed that (1) the local oscillator supplying Qo¥{s synchronous with
the carrier generator used in the transmitter, and (2) the low-pass digital filter is
designed with a cutoff frequency slightly greater tkan
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Computer Experiments

%Problem 5.52

clear

fm = 1e3;

fc = 2e4,

mu = 0.75;

t=1e-6:1e-6:0.1;

y = (L+mu*cos(2*pi*fm*t)).*cos(2*pi*fc*t);

figure(1)

plot(t,y);

xlim([0 0.002])

xlabel('Time (s)’)

ylabel(Amplitude’)

titteCAM Wave: fc = 2e4 Hz, fm = 1e3 Hz, \mu = 0.75’)

L = length(y);

Y = fit(y,L);

Y = fftshift(Y);

Ys = Y.*conj(Y);

f = 1e6/L*(-(L/2):L/2-1);

figure(2)

plot(f,Ys)

xlim([-0.5e5 0.5e5])

xlabel('Frequency (Hz)")

ylabel(’Power’)

title('Spectrum AM Wave: fc = 2e4 Hz, fm = 1e3 Hz, \mu = 0.75’)

AM Wave: fc = 2e4 Hz, fm = 1e3 Hz,u = 0.75
T T T T T

15

05

Amplitude
o

-05H

15 Figure 1: Modulated Signal

-2 Il Il Il Il Il Il Il L L
0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
Time (s)
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a5 x 10° Spectrum AM Wave: fc = 2e4 Hz, fm = 1e3 Hz,u = 0.75
: T T T T

051

. — Figure 2: Spectrum of
Frequency (42 it modulated signal

%Problem 5.53

fo=1,

t = 0:0.0001:5;

m = sawtooth(2*pi*fo*t,0.5);
figure(1)

plot(t,m)

xlabel("Time (s)’)
ylabel(Amplitude’)
title('Triangular Wave 1 Hz’)

mu = 0.8;

y = (1+mu*m).*cos(2*pi*25*t),
figure(2);

plot(t,y);

xlim([0 2])

xlabel('Time (s)’)
ylabel(Amplitude’)
titte(‘Modulated Wave’)

figure(3)

L = length(y);

Y = fit(y.L);

Y = fftshift(Y);

Ys = abs(Y);

f = 1led/L*(-(L/2):L/2-1);
plot(f,Ys)
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xlim([-50 50])

xlabel('Frequency (Hz)")

ylabel(’Magnitude’)

title('Spectrum AM Wave: fc = 25 Hz, fm = 1 Hz, \mu = 0.8’)

Triangular Wave 1 Hz

0.8r-

0.6

0.4

0.2

Amplitude
o

0.2

-04r

-0.6F

-0.8

o
o
2

- ‘ 1 15 2 25 3 35 4 5 5 (a) Figure 1: Waveform of )
e modulating signal

Modulated Wave
T T T

15r

05

Amplitude
o

-05r

~15F

(b) Figure 2: Modulated signal

I I I I I I I I
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

S)
o
N
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Spectrum AM Wave: fc = 25 Hz, fm =1 Hz,u = 0.8
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%Problem 5.55

fo=1;

t = 0:0.0001:5;

m = sawtooth(2*pi*fo*t,0.5);

figure(1)

plot(t,m)

xlabel('Time (s)’)
ylabel(Amplitude’)
title("Triangular Wave 1 Hz)
mu = 0.8;

y = m.*cos(2*pi*25*t);

figure(2);

plot(t,y);

xlim([0 2])

xlabel('Time (s)’)
ylabel(Amplitude’)
titte(DSSC Modulated Wave’)

figure(3)

L = length(y);

Y = ft(y.L);

Y = fftshift(Y);

Ys = abs(Y);

f = 1ed/L*(-(L/2):L/2-1);
plot(f,Ys)

xlim([-50 50])
xlabel('Frequency (Hz)")
ylabel('Magnitude’)
title("'Spectrum of DSSC AM Wave: fc = 25 Hz, fm =1 Hz, \mu = 0.8")
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%Problem 5.56

clear;clc;

wc = 0.5*pi;

res = 0.001,

Fs=1;

sam = floor(1/(Fs*res));

t = 0:res:10-res;

m = sin(wc*t);

f = 1/res * ([0:1/(length(t)-1):1] - 0.5);

T = 0.5; %Pick pulse duration value (0.05, 0.1, 0.2, 0.3, 0.4, 0.5)
durinSam = floor(T/res); %number of samples in pulse
sm = zeros(size(t)); %Reserve vector for output waveform

for i=0:floor(length(t)/sam)-1; %loop over number of samples
sm((i*sam)+1:(i*sam)+durinSam) = m(i*sam+1);
end

y = fftshift(abs(fft(sm)));

figure(1)

subplot(2,1,1)
plot(t,sm);

xlabel('Time (s)’)
ylabel(Amplitude’)
titteC(PAM Wave: T 0=0.5¢))
subplot(2,1,2)

plot(f.y)
xlabel(’Frequency (Hz)")
ylabelAmplitude’)
xlim([-10 10])
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PAM Wave: ‘5 =04s
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%Problem 5.57

clear;clc;

res = le-6;

t = 0:res:0.01-res;
modf=1000;

m = sin(modf*2*pi*t);

%Samples per sampling period

freqT = 1e4;

periodT = 1/freqT;

pulseDur = 1le-5;

samplesPerPulse = floor(pulseDur/res);
samplesPerT = floor(periodT/res);

%Number of complete sampling cycles we can get i on the signal m
num = floor(length(m) / samplesPerT);

r=I;
for i=1:num,

r = [r ones(1,samplesPerPulse) zeros(1,samplesPerT-samplesPerPulse)];
end

figure(1)

subplot(2,1,1)

y=r.*m;

plot(t,y)

title('Naturally Sampled Waveform’)
xlabel('Time (s)’)
ylabel(Amplitude’)

subplot(2,1,2)

plot(t,y)

title('Naturally Sampled Waveform’)
xlabel('Time (s)’)
ylabel(Amplitude’)

set(gca, 'xlim’, [0 0.001])

figure(2)

Fy = fftshift(abs(fft(y)));

f = 1/res * ([0:1/(length(t)-1):1]-0.5);
subplot(2,1,1)

plot(f,Fy)

title("'Spectrum of the Modulated Waveform’)
xlabel('Frequency (Hz)")

ylabel('Magnitude’)
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subplot(2,1,2)

plot(f,Fy)

title('Spectrum of the Modulated Waveform’)
xlabel('"Frequency (Hz)")

ylabel('Magnitude’)

set(gca, 'xlim’, [-1e5 1ebH])
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Solutions to Additional Problems

6.26. A signal z(t) has Laplace transform X (s) as given below. Plot the poles and zeros in the s-plane

and determine the Fourier transform of x(t) without inverting X (s).

2
(2) X(5) = =70

X(S) _ (5+J)(57])
(s+3)(s+2)
zeros at: +5
poles at: -3,-2
_ —w?+1
- —w?45jw+6
Pole-Zero Map
1 T T hd
0.8} 8
0.6 8
0.4 g
0.2 i
.g
o o X X 4
[
E
-0.2f g
-0.41 g
-0.61 g
-0.8f g
-1 | | | | | | A
-35 -3 -25 -2 -15 -1 -05 0
Real Axis
Figure P6.26. (a) Pole-Zero Plot of X (s)
s2—1
(b) X(s) = #5557
1)(s—1
Yo — (s+1)(s— 1)
(5405 jy/3)(s +0.5+5,/3)
zeros at: +1



—1£,5V3

1 t:
poles a 5
X(Jw) = X(S)‘s:jw
_ —w? -1
Wt jw+
Pole-Zero Map
1 T T T
0.8
0.6
0.4}
0.2t
> o
©
E
_0.2 -
-0.4+
-0.6F
-0.8F
_}1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Real Axis
Figure P6.26. (b) Pole-Zero Plot of X (s)
(c) X(s) = 45 + %5
(s — 10
X(s) = —Se-s)
(s—=4)(s—2)
10
zero at: —
3
poles at: 4,2
X(]W) = X(s)‘s:jw
_ 1 2
 jw—4 jw-—2




Pole-Zero Map
1 T T

0.6 b

0.4 E

Imag Axis
o
T
X
o
N

1L ! ! ! ! ! ! !
0 0.5 1 15 2 25 3 3.5 4

Real Axis

Figure P6.26. (b) Pole-Zero Plot of X (s)

6.27. Determine the bilateral Laplace transform and ROC for the following signals:

(a) z(t) = e tu(t + 2)

X(s) = /00 z(t)e s dt

— 00

= / e tu(t +2)e * dt

— 00

= /00 e t+s) gy
—2

62(1+5)

1+s
ROC: Re(s) > -1

(b) x(t) = u(—t + 3)

X(s) = /3 e st dt

s
ROC: Re(s) < 0



>
—
@
N
Il

/ S(t+1)e st dt
68

ROC: all s
(d) x(t) = sin(t)u(t)

eJt _Jt) e~ St dt

/ =9 g _ /mie—tms)dt
0o 2
1/ -1 1

2j <]—8 j+8)

1
1+57)

ROC: Re(s) > 0

6.28. Determine the unilateral Laplace transform of the following signals using the defining equation:

(a) z(t) = u(t — 2)

X(s) = / 2(t)e=" dt

o

= / u(t — 2)e " dt
o

:/ —stdt
2

B 6725

a S

(b) z(t) = u(t +2)

o0
= / e~ st dt
1
s

X(s) = /Oou(t+2)e’3tdt



X(s) = /oo "2t +1)e St dt
-
= /ooe_t(s+2)dt
0-
B 1
S s+2
(d) z(t) = e*u(-t +2)
X(s) = /io eXu(—t +2)e st dt

(e) z(t) = sin(w,t)

X(s) =
(f) z(t) = u(t) — u(t — 2)
) sin(wt), 0<t<1
(g) z(t) = { 0, otherwise
X(s)

e

2
= / et(z_s) dt

62(275) -1

2—s

— emiwet) =5t gy

)
/ —t(]wo-l‘é) dt:|
0~

)

t(]wo—b

jwo—s
Wo

2 2

s+ wg

2
e~ st dt

J

1—e28

1

/ 1

o- 2j

m(l+ e %)
s2 + 2

(ejﬂ"t _ efj'frt) efst dt



6.29. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and
D.2 to determine the unilateral Laplace transform of the following signals:

(a) () = F {te""u(t)}

4t Lu A _ 1
alt) = teult) A =
d Loy s
(0= o) " X6)= 5
(b) z(t) = tu(t) * cos(2mt)u(t)
alt) = tu(t) —s As) = slz
b(t) = cos(2mtul(t) T
2(t) = a(t) ¥ b(t) ——  X(s) = A(s)B(s)
1
X(s) - s2(s2 + 472)
(c) x(t) = t3u(t)
Lo 1
a(t) =tu(t) ——— A(s) = 2
b(t) = —talt) " B(s) = %A(s) _ ;32
2(t) = —th(t) — s X(s) = % (s) = 554
(d) x(t) = u(t — 1) x e 2bu(t — 1)
alt) = u(t) —Z A(s) = %
Loy e’
) =alt—1) " B(s)= "
_9t Loy 1
lt) = e ult) s C(s) = s
Lo e—(s+2)
dit)=e2c(t —1) «——— D(s)= )
2(t) = b(t) # d(t) ——— X(s) = B(s)D(s)
e—2(s+1)
X(s) - s(s+2)



(e) z(t) = fot e =37 cos(27)dT

—t Ly $) = s+1
a(t) = e tcos(t)u(t) «—— A(s) GrETl
_d L, s(s+1)
=G0 — B =" qe g
Lo d
x(t) =th(t) —— X(s)= —EB(S)
—s5% —4s5—2

(s2 4 2s+2)?

6.30. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and

D.2 to determine the time signals corresponding to the following unilateral Laplace transforms:

(a) X(5) = () (%)

1 -1
X(s) = s+ 2 + s+3
z(t) = (e —e ) u(t)
(b) X(s) = ek ()
S i t) = te u(t
(5)7(84-1)2 a()*e u()
d Lu 2 —t

B(s) = ﬂA(s) ——— b(t) = —ta(t) = —t*e "u(t)

Ly

X(s)=e 2B(s) «——— a(t)=b(t —2) = —(t —2)%e Dyt - 2)

(¢) X(s) = mriyrra
B(Z) e ab(at)
o 11)2 — £ %e_t sin(2t)u(t)
x(t) = 36_0'575 sin(t)u(t)



As) = 1+ 5 B a) = S sin(3t)ut)
d Lo, t .
B(s) = £A(s) — b(t) = —ta(t) = —3 sin(3t)u(t)
d La 2
C(s) = EB(S) — c(t) = —tb(t) = 3 sin(3t)u(t)
D(s) = sC(s) L d(t) = %c(t) —c(07) = %sin(i&t)u(t) + t% cos(3t)u(t)
()= 5 el =)
x(t) = e(t) + d(t) = e 3t 4 %sin(?)t) + % cos(3t) | u(t)

Ly
6.31. Given the transform pair cos(2t)u(t) «———— X(s), determine the time signals corresponding to
the following Laplace transforms:
(a) (s +1)X(s)

sX(5)+ X(s) %x(t) + ()
= [—2sin(2t) + cos(2t)] u(t)

(b) X(3s)
s Lo
X(a) ——— az(at)
x(t) = 3 cos(gt)u(t)
(¢) X(s+2)
Ly
X(s+2) —— e ?x(t)
x(t) = e %! cos(2t)ul(t)
(d) s72X(s)



B(s) «—— %sin(?t)

L, ‘1
—-B(s) «—— /isin(ZT)dT
0

L, 1 — cos(2t)

=)

u

A(s) =e 3 X(s) «——— a(t)=2z(t—3) = cos(2(t — 3))u(t — 3)

d Ly
B(s) = —A(s) «——— b(t) = —ta(t) = —tcos(2(t — 3))u(t — 3)

Ly
6.32. Given the transform pair x(t) —— s§j2, where x(t) = 0 for t < 0, determine the Laplace

transform of the following time signals:

(a) z(3t)
Lo, s
x(3t) —— —X(g)
95
o= (%)23+ 2
- 6s
B 52418
(b) z(t —2)
L —2s __ _—2s 2s
x(t—2) ——— e *X(s)=e 219
(c) (t) * gx(t)
d Ly
(t) = Ex(t) ——— B(s) =sX(s)
y(t) = 2(t) 5 b1) ——— Y(s) = B(s)X(s) = s[X(s)]*
2s 2
Y(s) = s <82 n 2)
(d) e"*a(t)
e ta(t) e X(s+1)= (824(_81—)’—21_‘)_2



(e) 2tx(t)

Ly d 452 — 8
2tx(t) — —QEX(S) = 212
(f) fg z(37)dr
/tx(37)d7' e Y(s) = Xi’)(%)
0 s
2
Y= whs

Ly

6.33. Use the s-domain shift property and the transform pair e~%u(t) «— -1

to derive the
s+a

unilateral Laplace transform of z(t) = e~ cos(wyt)u(t).

cu 1
e u(t) ——
s+a
x(t) = e cos(wyt)u(t)

1 ) )
— Ee—at (ejwlt + e—jwlt) u(t)

Using the s-domain shift property:

1 1 1
X(s) - §<(5jw1)+a+(s+jw1)+a)
1 2(s+a)
2(s+a)? +wf
(s+a)
G+ af +

6.34. Prove the following properties of the unilateral Laplace transform:
(a) Linearity

I
—

~
=

ax(t) + by(t)
Z(s) = A (e dt

_ Ammﬂﬂ+@@ﬂf“ﬁ
/0 az(t)e™? dt—l—/ by(t)e™*" dt

0

= a/o z(t)e™® dt—i—b/o y(t)e " dt
aX(s)+bY (s)

(b) Scaling



Z(s) = /()Oow(at)e_Stdt

]. o0 S
= —/ z(T)e a7 dr
aJo

s
= —-X(-)
(c¢) Time shift

x(t—1)
/ x(t —1)e St dt
0

Let m=t—r1
/00 x(m)e™ ") dm,
It —7nu@) =zt —71)u(t —7)

Z(s) = /Ooox(m)e_sme_”dm

N
—
»
N
I

= e "X(s)

(d) s-domain shift

IS
—~
~+
~—

I I

o

[

o~
8
—~
~
~

(e) Convolution
z(t) * y(t)
x(T)y(t — 1) dr; x(t), y(t) causal

/Ooo x(T)y(t —7) d7'> e Stdt

(r)y(m) dT) e~ Me ™ dm

8
8 —~  —
6\8
8

11



(f) Differentiation in the s-domain
z(t) = —tx(t)
2(s) = / ta(t)e dt
0

> d —st
- /O r(1) () dt
= /0 %(m(t)e‘“) dt

o d
Assume: / (.)dt and —(.) are interchangeable.
0

ds
Z(s) = dis ; x(t)e s dt
Z(s) = dilSX(s)

6.35. Determine the initial value x(0") given the following Laplace transforms X (s):

(a) X(s) = m

o _ s _
w0 = i o X )= g5 =0
(b) X(s) = 42
4 T s2 + 2s
2(07) = Jim sX(s) = o3 =
(c) X(s) = =2 Ssrts
) 6 3 2
I

6.36. Determine the final value z(oc0) given the following Laplace transforms X (s):
(a) X(s) = 552

s245s+1
2(o0) = limsX(s) = 322135—2351 _
(b) X(s) = w52
z(o0) = limsX(s)= % _

12



28241 1

(s+2)2 4

liII(l) sX(s)=e

6.37. Use the method of partial fractions to find the time signals corresponding to the following uni-

lateral Laplace transforms:
(a) X(s) = @=ibs

s24+3s5+2
s+3 A B
X = =
(s) s2+3s+2 s+1+s+2
1 = A+B
3 = 2A+B
2 -1
X(s) = ——— 4
() s+1 s+
z(t) = [2e7"—e ] u(t)
(b) X(S) — 2552115035j611
252 +1 11 1
X(s) = 2 Als¥lt o, 1
524+55+6 (s+2)(s+3)
1 _ A B
(s+2)(s+3)  s+2 s+3
0 = A+B
1 = 34A+2B
1 1
X(s) = 2— —— 4+ ——
() s+ 2 + s+ 3
z(t) = 25(t)+ [e® —e ] u(t)
(¢) X(s) = 2o5m
25 —1 A B
X = =
(s) s2+2s4+1 s+1 (s+1)2
2 = A
-1 = A+B
z(t) = [2e7"—3te "] u(?)
(d) X(5) = 555705
5s+4 A B C
X _osrs 2
(5) s3+3s24+2s s S+2+8—|—1

13




0 = A+B+C
5 = 3A+B+2C
4 = 24
2 -3 1
X = —
(s) S * 5+2 + s+1
x(t) = [2 —3e % 4 e_t] u(t)
s2—
(e) X(5) = rmy(errzsrn
-3 A B c
X = =
() (s+2)(s2+2s+1) s+2+5+1+(s+1)2
1 = A+B
0 = 2A+3B+C
-3 = A+2B+2
1 -2
X e
(s) 8+2+(s+1)2
x(t) = [e_% — 2te_t] u(t)
(f) X(s) = =5t
3542 3s+1)—1
X(s) = — SR it
s2+2s+10 (s+1)2+3
1
o(t) = |3e"cos(3t) — e sin(3t) | u(t)
32 S
(8) X(s) = Groysioets)
2 2 1 -2
X(s) = (s+1)
s+2 (s+1)2422  (s+1)2+22
z(t) = [267275 +2etcos(2t) — et sin(2t)] u(t)
52 S
(h) X(s) = w5y oer 10y
352 +10s + 10 A Bs+C
X(S) = 2 = +
(s+2)(s24+6s+10) s+2 s24+6s+10
3 = A+B
10 = 6A+4+2B+C
10 = 104 + 2C
1 2(s+3) 6
X = _
(s) s+2 (543241 (s+3)2+1
z(t) = [6_2t +2e 73 cos(t) — 6e 3¢ sin(t)} u(t)

14



(i) X(s) = 22t 1lst164c2

s24+5s5+6
252+ 11s+ 16 + e 28 s+4 e~ 28

X = =2

(5) s2+554+6 +sQ—i-5s—|—6+52—i—55—i—6
-1 2 1 1

X - 92 _ ,—2s —2s

(S) +5—|—3+s—|—2 € s—|—3+e s+2
z(t) = 25(t)+ [2e7 —eult) + [6_2(t_2) - 6_3(t_2):| u(t —2)

6.38. Determine the forced and natural responses for the LTI systems described by the following dif-

ferential equations with the specified input and initial conditions:
(a) gry(t) +10y(t) = 10z(t), y(07) =1, @(t) = u(?)

X(s) = é
Y(s)(s+10) = 10X(s)+y(07)
_ 10
~ s(s+10)
- 1 -1
T s s+10
y'(t) = [1—e " u)
Yis) = sy (f 12)
yr(t) = e u(t)

(b) #=y(t) +5y(t) + 6y(t) = —da(t) = 352(t), y(07) = —1, £y(t)],_,- =5, =(t) = e "u(t)

Y(s)(s?+55+6) —5+s+5 = (-4-39)73
-1 S
Y(s) = (S+1)(5+2)(s+3)+(5+2)(3+3)
= Y/(s) +Y"(s)
-05 -2 25

Y/ =
() s+1+3+2+s+3
y'(t) = (—0.5e7" —2e72 +2.5e5) u(t)
-2 3
yn =
() s+2 + s+3
yh(t) = (=27 +3e7%)u(t)



4 4 4s
vis) = s—|—1+32—|—1_52—|—1
y/(t) = 4(e" +sin(t) — cos(t)) u(t)
n _ 2
e = e
y*(t) = 2sin(t)u(t)
(d) 42() + 2y(8) + 5y(t) = Fx(®), y(07) =2, Sy(#)],_,- =0, a(t) =
Y(s)(s? +25s+5) = sX(s)+sy(07)+2y(0”
1
i) = e
y'(t) = Ze 'sin(2t)u(t)
R Gl )
i) = Gaored
y"(t) = 2e'cos(t)u(t)

6.39. Use Laplace transform circuit models to determine the current y(¢) in the circuit of Fig. P6.39

assuming normalized values R = 1Q and L = % H for the specified inputs. The current through the

inductor at time t =0~ is 2 A.

(R+ Ls)Y(s)
1 X(s)
Ls+R/L
2X(s)
s+2

ir(07)
s+ R/L
2
s+ 2

(a) z(t) = e tu(t)

2
(s+1)(s+2
2 2
s+1 _5+2+
2
s+1
2eu(t)

2

s+ 2
2

s+ 2

)—|—

(b) x(t) = cos(t)u(t)

2
s+2

2s
F+)+2)

Y(s)

16



$2+1 s+2 s+2

S +2 1 +1
5241 5\s2+1 5\s+2

(4cos(t) + 2sin(t) + e~ ) u(t)

{25+1 2 } 2

2
5
4
5
1
5

6.40. The circuit in Fig. P6.40 represents a system with input «(¢) and output y(t). Determine the

forced response and the natural response of this system under the specified conditions.

Forced Response:

X(s) = RI(S)+Y®(5)+%[(5)
but
Y (s)
Its) = sL
y(f)(s) 1 y(f)(s)
= R S (f) -

X(s) R——=+YP(s)+ o5
s2CLX(s) = sRCY(f)(s) + 52CLY(f)(s) + Y(f)(s)
2

Y(f)(s) _ X(S)S CL

s2CL +sRC +1

0 = RI(s)—i—Y(")(s)—k%Ic(s)
I(s) = In(s) +z¢<2—) _ Y<:>L<s) +z‘L(;J—)
L(s) = I(s) + Cv,(07) = Y(:)L(S) + iL(g_) + Cu(07)

So:
™ (s 4 (™ (g 4
RY ()_;'_RL(O)_FY(TL)(S)_;'_%(Y (s) _|_L(0 —l—CU( )):O
sCRY ™) (s) + sRCLir(07) + s>CLY ™ (s) + Y (") (s) + Li(07) 4+ sLCv.(07) = 0

—L(sRC 4 1)ir(07) — sLCv.(07)

y(®
(5) 1+ sCR+ s2CL

(a) R=3Q,L=1H,C = 31F, z(t) = u(t), current through the inductor at ¢t = 0~ is 2 A, and the

voltage across the capacitor at t =07 is 1 V.

N[

y () - 2>
(5) 352+ 3s+2
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-1 2
= +

s+1  s+2
y D) = (27 —e ") u(?)
ym(s) = —(35+1)2— 35
1+ 3s+ 352
 —(Bs+2)2-s
N s2+3s+2
310
s+l s+2
y M) = (3e™" — 10e™%") u(t)

(b)) R=2Q, L=1H,C = % F, z(t) = u(t), current through the inductor at ¢t = 0~ is 2 A, and the

voltage across the capacitor at t =07 is 1 V.

6)) 55
Y = — 5
(5) £s2 4+ 2s+1
B s+1 n -1 2
o (s+1)2+22 7 2 (s+1)2422
1
y Dy = (e_t cos(2t) — ie_t sin(2t)> u(t)
(2 1)2 -1
(g = “FDIose
o s+1 _ § 2
N (s+1)2422  2(s+1)2422
5
y M) = (—5et cos(2t) — Qe*t sin(2t)> u(t)

6.41. Determine the bilateral Laplace transform and the corresponding ROC for the following signals:
(a) z(t) = eV 2u(t) + e tu(t) + etu(—t)

o0

X(s) = / x(t)e st dt

— 00

o) 00 0
= / e*t/2dt+/ e*tdt—i—/ et dt
0 0 —00

1 n 1 1
s+05 s+1 s-—1
ROC: -0.5 < Re(s) < 1

(b) 2(t) = et cos(2t)u(—t) + e~ tu(t) + et/ ?u(t)

s—1 1 1

- + +
(s=1)244 s+1 s—3

X(s) =

18



(c) x(t) = 3 +6u(t + 3)

ROC: 0.5 < Re(s) < 1

= e 333y (t 4 3)

2 A(s)B(s)

_ S 1
o s24+9\s+1

ROC: -1 < Re(s) < 0

ROC: Re(s) > 1

o= 3
——— B(s) = sA(s)

L X(s)=B(s-1)=_-""
— = — =
S S 8+1

ROC: Re(s) < -1

6.42. Use the tables of transforms and properties to determine the time signals that correspond to the

following bilateral Laplace transforms:
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(a) X(s) = e** 45 with ROC Re(s) < —2

(left-sided)
= — = — —
s e a e “‘u

X(s) = 0 A(s) s w(t) = a(t+5) = —e 20T y(—(¢ + 5))

(b) X(s) = &5 (Si3) with ROC Re(s) > 3

(right-sided)

d2

X(S)Z@

(c) X(s)=s (i S 6;28) with ROC Re(s) < 0

(left-sided)

% (—tu(—t) + tu(—t — 1) + u(—t — 2))
—u(—t) +u(—t —1) = 6(t +2)

8 8
—~
~ ~
—
|-

(d) X(s) =524 (’) with ROC Re(s) > 0

(right-sided)

1 C
A =1 S a(t) = u)
c
B(s) = e %% A(s) «——— b(t) =a(t—3) =u(t—3)
d L

C(s) = EB(S) ——— ¢t) = —tb(t) = —tu(t — 3)

D(s) = % L. d(t) = /_ e(r)dr
c ¢ 5
— d(t):—/3 Tdr = —=(t*—9)
X(s) = %D(s) L aw)= L d()dr
L a= %/3 (2 — 0)dr



6.43. Use the method of partial fractions to determine the time signals corresponding to the following
bilateral Laplace transforms:

(a) X(s) = 555515

-3 2
X(s) = s+1 s+4+2
(i) with ROC Re(s) < —2
(left-sided)
z(t) = (37" —2e%") u(—t)

(ii) with ROC Re(s) > —1

(right-sided)
a(t)

(=3¢~ +2e2") u(t)

(iii) with ROC —2 < Re(s) < —1

(two sided)
z(t) = 3e tu(—t) + 2e 2 u(t)

452485410
(b) X(5) = oyt tast®)

2 2(s+1) -2
X —
(s) s+2  (s+1)2+22  (s+1)2+22

(i) with ROC Re(s) < —2

(left-sided)
a(t)

(ii) with ROC Re(s) > —1

(—2e7%" —2e" cos(2t) + e~ sin(2t)) u(—1)

(right-sided)
z(t) = (27 +2e " cos(2t) — e 'sin(2t)) u(t)
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(iii) with ROC —2 < Re(s) < —1

(two sided)
z(t) = 2 *u(t) 4+ (—2¢ " cos(2t) + e~ " sin(2t)) u(—t)

(c) X(s) = 55y

(i) with ROC Re(s) < —1

(left-sided)
z(t) = (-be " +te ") u(—t)

(ii) with ROC Re(s) > —1

(right-sided)
z(t) = (e ' —te ") u(t)

(@) X(s) = 224252

1
s+1 s—1

X(s) = 2+
(i) with ROC Re(s) < —1
(left-sided)
z(t) = 26(t)— (e " +e")u(t)
(ii) with ROC Re(s) > 1
(right-sided)
z(t) = 26(t)+ (e7"+e€')u(t)
(iii) with ROC —1 < Re(s) < 1
(two sided)
z(t) = 26(t) +e tu(t) — elu(—t)
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6.44. Consider the RC-circuit depicted in Fig. P6.44.
(a) Find the transfer function assuming y;(t) is the output. Plot the poles and zeros and characterize

the system as lowpass, highpass, or bandpass.

1 t
xz(t) = )R+ ol i(r)dr
I i
yi(t) = o i(r)dr
d 1
o) = =it
Doty = Gin
1
sYi(s) = = 51(5)
d d 1
Sx(t) = R=i(t)+ —ilt
Loty = REi)+ Ziw)
1
sX(s) = I(s) (Rs + —)
C
H = = —_—
(s) X(s) RC s+ Rl—C
Low pass filter with a pole at s = —%
RC =1073:
Pole-Zero Map
1 ‘
08} .
06} .
041 y
0.2} 4
< o . ]
[
E
-0.2t g
-0.41 .
_0.6 - -
_0.8 - -
B “1000 Z800 Z600 Za00 200 0
Real Axis
Figure P6.44. (a) Pole-Zero Plot of H(s)
1
H(jw) = 5
Jw + %
H(j0) = 1



The filter is low pass.

(b) Repeat part (a) assuming ys(t) is the system output.

d d 1
“a(t) = R—i(t)+ =it
Salt) = Rei(t) + i)
1
sX(s) = I(s) <8R+ —)
C
s
H(s) =
(s) T L
High pass filter with a zero at s = 0, and a pole at s = —R—lc
RC =1073:
Pole-Zero Map
1 T T T
0.8
0.6
0.4F
0.2

Imag Axis
o
T
X

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100
Real Axis

Figure P6.44. (b) Pole-Zero Plot of H(s)
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jw

H(jw) = ——
jw+ 5o

H(j0) — 0

H(joo) = 1

The filter is high pass.
(c) Find the impulse responses for the systems in parts (a) and (b).

For part (a), h(t) = %e*%tu(t).
For part (b):

1 L 1y
A(s) = p— a(t) = e~ RS u(t)
RC
L d 1 — Ll ¢
H(s) =sA(s) «——— h(t)= Ea(t) = —Ee RSty (t) + 0(¢)

6.45. A system has transfer function H(s) as given below. Determine the impulse response assuming
(i) that the system is causal, and (ii) that the system is stable.
(a) H(s) _ 25°42s-2

s2—1

H(s) = 2+Si1+sil
(i) system is causal
h(t) = 26(t)+ (e7"+e") u(t)
(ii) system is stable
h(t) = 25(t) +e u(t) + —etu(—t)
(b) H(s) = 50y
Hs) — 2 -3

(i) system is causal

25



(ii) system is stable

h(t) = (2e7" —3te™")u(t)
() H(s) = etz
H(s) = s:—ll (s 2—(81)_2 }332 + (s — 1;))2 +32
(i) system is causal
h(t) = (—e "+ 2¢e'cos(3t) + €' sin(3t)) u(t)
(ii) system is stable
h(t) = —etu(t) — (2¢" cos(3t) + €' sin(3t)) u(—t)

(@) H(s) = 7 + 125

s—2
(i) system is causal

(ii) system is stable
h(t) = 6(t—5)—2e*u(—t)

6.46. A stable system has input z(¢) and output y(t) as given below. Use Laplace transforms to de-
termine the transfer function and impulse response of the system.
(8) (t) = e~tu(t), y(t) = e~ cos(t)u(t)

X(s) = s j— 1
HO = X~ T
= 1 (s_+(s2;%2 1 (s +;)12 +1
h(t) = 6(t)— (e " cos(t) + e * sin(t)) u(t)
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Xls) = s j— 2
-2 2
Yis) = s+1 s4+3
_ Y(s) —4(s+2)
He) = x5 670613
2 -2
- os+1 + s+ 3
h(t) = (—2e"—2e"¥)u(t)

6.47. The relationship between the input z(¢) and output y(t) of a causal system is described by the
differential equation given below. Use Laplace transforms to determine the transfer function and impulse
response of the system.

(a) gy(t) +10y(t) = 10x(t)

sY(s)+10Y(s) = 10X(s)
_Y(s) 10
B =55 = 5510
h(t) = 10e™'%u(t)

Y(s)(s2+55+6) = X(s)(1+s)
s+1
Hs) = G396+
1 2
T 512 513
h(t) = (27 —e ) u(t)

Y(s)(s* —s5—2) = X(s)(5s—4)

5s —4
He) = 96+
3 2
os+1 * 5—2
h(t) = (3e™"+2e*) u(t)

6.48. Determine a differential equation description for a system with the following transfer function.

(a) H(s) = sy

27



Ho) =55 = 5613
Y(s)(s*+3s) = X(s)
2
oD 350 = ()
(b) H(S) 32—6255+8
Y(s)(s* —25s+8) = X(s)(6s)
Lot~ 250 8yt = 6t
(©) H(s) = Giycr
Y(s)(s®+5s2 +7s+3) = X(s)(35>+65+3)
a3 d? d d
ﬁy(t) + 5ﬁy(t) + 7Ey(t) +3y(t) = ZEa:(t) — 4z(t)

6.49. (a) Use the time-differentiation property to show that the transfer function of a LTI system is

expressed in terms of the state-variable description as shown by

H(s)=c(sI—A)"'b+D

% (t) = Aq(t)+bx(t)
sQ(s) = AQ(s)+bX(s)
Q(s) = (sI—A)'bX(s)
y(t) = ca(t)+ Dx(t)
Y(s) = ¢cQ(s)+DX(s)
His) = ) oAy b4 D
X(s)

(b) Determine the transfer function, impulse response, and differential equation descriptions for a stable

LTT system represented by the following state variable descriptions:
. -1 1 3
(I)A_[O 2],b_[1],c_[1 2},D_[o]

H(s) = c(sI—A)'b+D
s+3
s2+3s+1
2 -1
s+1+s—|—2
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h(t) = (27" —e ") u(t)
SO F B0 Fy(t) = a(t) + 3a(0)
(ii)A:“ _261 b:l;], c:[O 1], D = [0]
2s —1
H) = 58
. 2(5+25) 6
 (s+2.5)2-14.25
B 2(s + 2.5) —6
 (s4+25)2-14.25  (s+2.5)2—14.25
—2.5t 6 —2.5¢ -
h(t) = |2 %5 cos(tV14.25) — me o gin(tv/14.25) | u(t)
Do) +5y(0) ~8y(t) = 2w (t) (1)

6.50. Determine whether the systems described by the following transfer functions are(i) both stable
and causal, and (ii) whether a stable and causal inverse system exists:

__ (sH1)(st2)
(a) H(s) = Grntrastio)
s+2
H = —
(5) s2+2s+10
zero at: -2
poles at: —1+3j

(i) All poles are in the LHP, and with ROC: Re(s) > -1, the system is both stable and causal.
(ii) All zeros are in the LHP, so a stable and causal inverse system exists.

s242s—3
(b) H(s) = 5212275
s—1
H = 07—
() $2+2s+5
zero at: 1
poles at: —1+2j

(i) All poles are in the LHP, and with ROC: Re(s) > -1, the system is both stable and causal.
(ii) Not all zeros are in the LHP, so no stable and causal inverse system exists.

2_
(c) H(s) = mryiihims

s2—3s+2

H i N
(s) s3 +4s+ 16
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zeros at: 1,2

poles at: -2,1 :l:jﬁ

(i) Not all poles are in the LHP, so the system is not stable and causal.
(ii) No zeros are in the LHP, so no stable and causal inverse system exists.

82 S
(d) H(s) = mrmsirmry

2+ 2s
st 4453 4352 +45—4
zeros at: 0,-2

-3+v1
poles at: ST\/_?, —-0.5 :l:j\/z

H(s) =

(i) Not all poles are in the LHP, so the system is not stable and causal.

(ii) There is a zero at s = 0, so no stable and causal inverse system exists.

6.51. The relationship between the input 2(¢) and output y(¢) of a system is described by the differential

equation
d2 2

Su0) + Sy(0) +5y(t) = Toa(t) — 250(6) + (1)

(a) Does this system have a stable and causal inverse? why?

Y(s)(s*+s+5) = X(s)(s*—25+1)
s—1)?
e = S

Since H(s) has zeros in the RHP, this system does not have a causal and stable inverse.

(b) Find a differential equation description for the inverse system.

. 1
HZ’I’L’U —
824545
22— 2s5+1
Inverse system:
d? d d? d
—y(t) —2—y(t t) = ——ax(t)+ -t t
Ut —22y(O) +y() = st + Zolt) +5a(t)

6.52. A stable, causal system has a rational transfer function H(s). The system satisfies the following
conditions: (i) The impulse response h(t) is real valued; (ii) H(s) has exactly two zeros, one of which

is at s = 1+ j; (iii) The signal j—;h(t) + 3L h(t) + 2h(t) contains an impulse and doublet of unknown
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strengths and a unit amplitude step. Find H(s).

d? d
- - — (1)
e (t) + 3dth(t) + 2h(t) bo'“ () + ad(t) + u(t)
H(s) (s* +3s+2) = bs+a+1
s
bs +a+ 1
Hs) = =215
() s2+3s+2
bs? +as +1

G2+ 1)

One zero is 1 + j and h(t) is real valued, which implies zeros occur in conjugate pairs, so the other zero

is1—3j.

6.53. Sketch the magnitude response for the systems described by the following transfer functions using
the relationship between the pole and zero locations and the jw axis in the s-plane.

(a) H(s) = wrgerior

o "
|H(jw)| = lj(w —10) + 1|5 (w + 10) + 1]
(b) H(s) = 5
L i — )
|H(jw)| = ljw — 1|
(c) H(s) = 371
N e |
|H(jw)| = ljw + 1|
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Magnitude response for 6.53 (a)
0.8 T T T

0.6
0.4
0.2

0 | | | | |

-15 -10 -5 0 5 10
Magnitude response for 6.53 (b)

20 T T T
151

10

0 | | | | |

-15 -10 -5 0 5 10
Magnitude response for 6.53 (c)
2 T T T

05

0 | | | | |

-15 -10 -5 0 5 10

Figure P6.53. Magnitude response for the systems

15

6.54. Sketch the phase response for the systems described by the following transfer functions using the

relationship between the pole and zero locations and the jw axis in the s-plane.

(a) H(s) = 575
/H(jw) = m— arctan(w) — arctan(%)
(b) H(s) = 55
/H(jw) = arctan(w)— arctan(%)
(c) H(s) = wrrirrs
(I e
H(jw) = :

(Jw+1+j4)(jw+1—j4)

/H(jw) = - [arctan(w + 4) + arctan(w — 4)]
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H(jw) = —w’
(H(jw) = =
6.54 () 6.54 (b)
7 0.4
6
5 0.2
g4 3
@ 8 0
< <
a3 o
2 -0.2
1
0 -0.
-20 -10 0 10 20 220 -10 0 10 20
w w
6.54 (c) 6.54 (d)
4 45
4
2
© © 35
@ @
< O <
o o 3
-2
25
-4 2
-20 -10 0 10 20 220 -10 0 10 20
W (V)

Figure P6.54. Phase Plot of H(s)

6.55. Sketch the Bode diagrams for the systems described by the following transfer functions.

a) H(s

(2) H(s) = t5y(s710)
(b) H(s) = ;"(S:J)
(c) H(s) = G2ys
(d) H(s) = %2100
(e) H(s) = srioerion
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Magnitude (dB)

Phase (deg)

Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = Inf, Pm = 78.63 deg (at 4.4561 rad/sec)

20  —— — ——

-135

-180
10

Frequency (rad/sec)

Figure P6.55. (a) Bode Plot of H(s)
Bode Diagram
Gm = Inf, Pm = 52.947 deg (at 2.1553 rad/sec)
50 T T

-100
-120

-150

-180 — e —
10 10 10 10

Frequency (rad/sec)

Figure P6.55. (b) Bode Plot of H(s)
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Magnitude (dB)

Phase (deg)

Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = 4.0836 dB (at 1.7322 rad/sec), Pm = 17.37 deg (at 1.387 rad/sec)

20 T

-180

-270 -1 ‘ ‘ ‘ ‘ ‘ — 0 ‘ 1
10 10 10
Frequency (rad/sec)

Figure P6.55. (c) Bode Plot of H(s)

Bode Diagram
Gm = Inf, Pm = 157.6 deg (at 10.099 rad/sec)
10 T T

|
©o
o

-180
10

10

Frequency (rad/sec)

Figure P6.55. (d) Bode Plot of H(s)
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Bode Diagram
Gm = Inf, Pm = Inf

| | | |
w N N =
o a1 (=} a1

T T T

1 1 1

Magnitude (dB)

|
w
a1

T

1

|
B
o

IN
&

Phase (deg)
o

|
S
a1

_90—1 ‘ ““H‘o ‘ 1 ‘2
10 10 10 10

Frequency (rad/sec)

Figure P6.55. (e) Bode Plot of H(s)

6.56. The output of a multipath system y(¢) may be expressed in terms of the input x(¢) as
y(t) = x(t) + ax(t — Tairy)

where a and Tg; ¢y respectively represent the relative strength and time delay of the second path.
(a) Find the transfer function of the multipath system.

~

—
V2l

K
Il

X(s) + aeTairr X (s)

1+ ae~Tairs

=
—~
»
&z
I

(b) Express the transfer function of the inverse system as an infinite sum using the formula for summing

a geometric series.

1,y 1 _ 1
H (S) - H(S) - 1 +a€—sTdiff
= i (—ae=sTairr)"
n=0

(¢) Determine the impulse response of the inverse system. What condition must be satisfied for the

inverse system to be both stable and causal?
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oo

him’(t) _ Z (7a)n 5(t — aniff)

n=0

la| < 1 for the system to be both stable and causal.
(d) Find a stable inverse system assuming the condition determined in part (c) is violated.

The following system is stable, but not causal.

1

mnuv .
H (8) - 1+a6_STdiff

Use long division in the positive powers of 7447 i.e., divide 1 by ae™*7¢#s 4 1. This yields:

H™(s) = ‘Z(‘a) o Taiss

R () = Z(é)n‘s(””ﬂ”’“)

n=1

6.57. In Section 2.12 we derived block-diagram descriptions for systems described by linear constant-
coefficient differential equations by rewriting the differential equation as an integral equation. Consider

the second-order system with the integral equation description
y(t) = —ary™ (1) — agy P (t) + box(t) + bz (t) + box™ (t)

Recall that v(™ (t) is the n-fold integral of v(t) with respect to time. Use the integration property to take
the Laplace transform of the integral equation and derive the direct form I and IT block diagrams for the
transfer function of this system.

Y(s) Y(s) X(s)

X
Y(S) = —aq — ap 2 =+ bQX(S) + b1 — 4 bo (8)
S S S

52

o

X(t)
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Figure P6.57. Direct Form I

By the properties of linear systems, Hj(s) can be interchanged with Hs(s), which leads to direct form II

after combining the integrators.

X Y
L H,(s) H(s) —;S)
X Y
L H(s) H,(s) 4>(S)

Figure P6.57. Properties of Linear Systems

X(t) @ YQ

2
f b
-a 1
a <1 >/Z)
S
i, Do

Figure P6.57. Direct Form II

Solutions to Advanced Problems

6.58. Prove the initial value theorem by assuming z(t) = 0 for ¢ < 0 and taking theLaplace transform
of the Taylor series expansion of z(t) about ¢t = 0%.
Assume that there exists function f(¢) such that z(¢) = f(¢)u(t). The Taylor series expansion of f(t) is

() (g
i) = S LW g
n=0 :

n
f(0%)
1!

(t—0")+ w(ﬁ —0M)? + ...

= JO07)+ o

Assuming the expansion of ¢ is around a = 07. The Laplace transform for z(¢) is thus:

z(t) = f(O0M)u(t) + f’(10!+) (t —0M)u(t) + fﬂg!ﬁ) (t —07)2u(t) + ...
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FO07) SO0 2700

s 52 s3
10+ 100+
sX(s) = f(0")+ / (g ) _ 2f8(20 ) + ...
Thus:
lim sX(s) = f(0%)

6.59. The system with impulse response h(t) is causal and stable and has a rational transfer function.
Identify the conditions on the transfer function so that the system with impulse response g(t) is stable
and causal, where

(a) g(t) = Gh(t)

All poles of H(s) are in the left half plane, so no conditions are needed.

(b) g(t) = [* ., h(r)dr

sy = [ nmar —— G =1 [ arar+ 280

—o0 —c0 S S

H(s) must have at least one zero at s = 0 for the transfer function to be stable.

6.60. Use the continuous-time representation x5(t) for the discrete-time signal z[n] introduced in Sec-

tion 4.4 to determine the Laplace transforms of the following discrete-time signals.

oo oo

xs(t) = Z x[n]d(t — nTs) £ Xs(s) = Z x[n)e” "7

n—=—oo n=—oo

—2<n<2

0, otherwise

X(;(s) = 62STS + esTs +14 e*STs + e*ZSTS

(b) xln] = (1/2)"u[n]

o0

Xs(s) = Z z[n]e "7

n=-—oo

oo 1 n Cen
- 26

n=0
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B 00 1 or, n
- 26
=0

n
1
_ 1,—sT,
1 5€

o0

X(;(S) _ Z 672nTS efsnTS

n=0
oo

_ Z (e—m(2+s)> "

n=0
1

1 —_ 67715 (2+S)

6.61. The autocorrelation function for a signal x(¢) is defined as

r(t) = /00 x(r)x(t + 7)dr

(a) Write r(t) = x(t) = h(t). Express h(t) in terms of x(¢). The system with impulse response h(t) is
called a matched filter for z(t).

let:
h(t) = z(-t)
ht) s 2(t) = [_hﬁﬂ@—TMT

= [mx@¢naf7mf

let v = —1

= [ elete+m

oo

= [ st n

— 00

(b) Use the result from part (a) to find the Laplace transform of r(¢).

(c) If z(t) is real and X (s) has two poles, one of which is located at s = o, + jw,, determine the location
of all the poles of R(s).

Since x(t) is real, then the poles of X (s) are conjugate symmetric, thus s = o, £ jw,. Therefore the poles
of X(—s) are s = —op £ jwp, which implies that the poles of R(s) are at s = o) £ jwp, — 0p £ jwp.
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6.62. Suppose a system has M poles at dp = ay + jFBr and M zeros at ¢y = —ay, + jB;. That is, the
pole and zero locations are symmetric about the jw-axis.

(a) Show that the magnitude response of any system that satisfies this condition is unity. Such a system

is termed an all-pass system since it passes all frequencies with unit gain.

HQ/[:I(S —cx)

HIIC\le(S —dy)

[Tass ljw — ax — 54|
TTiL, liw + o — Bkl
[T, 1w — Bi) — ol
T, li(w = Be) + aul
HQ/I:1 V(w—Bk)? — O‘%
It V@ = B)? +of
1

S—«

(b) Evaluate the phase response of a single real pole-zero pair, that is, sketch the phase response of % T

where o > 0.

For a = 1, then H(ja) = 7, and H(—ja)

s—a
s+«
Jw —«
jw 4+«

w w
m — arctan — — arctan —
e’ o

w
T — 2arctan —
«
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Plot of O H(jw)
7 T

2 4 6 8 10

gor

Figure P6.62. Phase Plot of H(jw)

6.63. Consider the nonminimum phase system described by the transfer function

2)(s—1
Hy) — (842
(s+4)(s+3)(s+5)
(a) Does this system have a stable and causal inverse system?
The zeros of H(s) : s = —2,1. Since one of the zeros is in the right half plane, the inverse system can

not be stable and causal.
(b) Express H(s) as the product of a minimum phase system, Hy,,(s), and an all-pass system, Hyp(s)
containing a single pole and zero. (See Problem 6.62 for the definition of an all-pass system.)

(s+2)(s—1)
Huin(®) = G DG +3)+95)
o) =
H(S) = Hmin(S)Hap(S)

(c) Let HI™ (s) be the inverse system for H,;,(s). Find H™Y (s). Can it be both stable and causal?

(s+4)(s+3)(s+5)
(s+2)(s—1)

Hinv (S)

min

The poles of H!™? (s) are: s = —1,—2. All are in the left half plane, so hi™¥ (¢) can be both causal and

min
stable.
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(d) Sketch the magnitude response and phase response of the system H(s)H"? (s).

min

inuv s—1
= Hep(s)
. jw—1
H, _
p(jw) Jot 1
[Hap(jw)] = 1
LHy,(jw) = = — arctan(w) — arctan(w)

= m —2arctan(w)

Magnitude and phase plot of Hap(w)
2 T T

Magnitude
-

0
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure P6.63. Magnitude and Phase Plot of Hg,(jw)
(e) Generalize your results from parts (b) and (c) to an arbitrary nonminimum phase system H(s) and

determine the magnitude response of the system H(s)H? (s).

Generalization for H(s) = H'(s)(s — ¢) where H'(s) is the minimum phase part, assume Re(c) > 0

Hmin(s) = H'(s)(s+c)
Hop(s) = ste

H™ (5) = 1

i H/(s)(s + )
H(s)H}j5,(s) = Hap(s)
. _ Jjw—c
Haplj) = £

(Hap(jw)| = 1



LHy(jw) = w—arctan(g)
c

6.64. An N-th order lowpass Butterworth filter has squared magnitude response

1

|H (jw)|* = T4 Go/jw)2N

The Butterworth filter is said to be maximally flat because the first 2V derivatives of |H (jw)|? are zero
at w = 0. The cutoff frequency, defined as the value for which |H (jw)|? = 1/2, is w = w,. Assuming the
impulse response is real, then the conjugate symmetry property of the Fourier transform may be used
to write |H (jw)|? = H(jw)H*(jw) = H(jw)H(—jw). Noting that H(s)]

the Laplace transform of the Butterworth filter is characterized by the equation

s=jw = H(jw), we conclude that
1

O = T e

(a) Find the poles and zeros of H(s)H(—s) and sketch them in the s-plane.

The roots of the denominator polynomial are located at the following points in the s-plane:

s = .jwc(_]-)ﬁ
. (2k+N-1)

= wed" 28 fork=0,1,...,2N -1

Assuming N = 3 and w, = 1:
Pole-Zero Map
1 \

0.8 B

0.6 B

041 b

0.2 b

Imag Axis
o
T
X
X
1

-0.8 B

-1 I I I I I
-1.5 -1 -0.5 0 0.5 1 1.5

Real Axis

Figure P6.64. (a) Pole-Zero Plot of H(s)H (—s)

(b) Choose the poles and zeros of H(s) so that the impulse response is both stable and causal. Note that
if s, is a pole or zero of H(s), then —s,, is a pole or zero of H(—s).
From the graph in part (a), picking the poles in the left half plane makes the impulse response stable
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and causal. This implies selecting the poles for £k =0,1,..., N — 1.
(c) Note that H(s)H(—s)|,_, = 1. Find H(s) for N =1 and N = 2.
For N =1, the poles are at:

So — We
S1 = —We

which implies:

1
H(s) =
S+ we
For N = 2, the poles are at:

_ VEE:
Sog = weel™1
i3
$51 = wel™1
ind
Sy = w.elT2
i
s3 = w.el™1

which implies:
1

(5 — weed™)(s — weed ™)

H(s) =

(d) Find the third-order differential equation that describes a Butterworth filter with cutoff frequency
we = 1. For N = 3, the 2N = 6 poles of H(s)H(—s) are located on a circle of unit radius with angular
spacing of 60 degrees. Hence the left half plane poles of H(s) are:

2 2
S9 = -1
P S
37 T35
The transfer function is therefore:
1
H(s) =
(s+D(s+3+5%) (s — 5 —i%)
_ 1
T 834282492541
Which implies
43 d? d
—y(t 2—y(t 2—uy(t t) = t
Su(0)+ 25y + 22y () = a0

45



6.65. It is often convenient to change the cutoff frequency of a filter, or change a lowpass filter to a
highpass filter. Consider a system described by the transfer function

1
(s+1)(s2+s+1)

H(s) =

(a) Find the poles and zeros and sketch the magnitude response of this system. Determine whether this
system is lowpass or highpass, and find the cutoff frequency (the value of w for which |H (jw)| =1/ \/(2)

~1++3

1 ts: = -1
poles at s 5

This system is lowpass with cutoff frequency at w. = 1.

(a) Magnitude response of H(jw)
0 T T T

[H(w)] (dB)

=70
-10 -8 -6 -4 -2 0 2 4 6 8 10

w rads/sec

Figure P6.65. (a) Magnitude response of H(s), 20log,o|H (jw)]|.

(b) Perform the transformation of variables in which s is replaced by s/10 in H(s). Repeat part (a)

for the transformed system.

1
H(s) = — e
(E+1)(1—0+E+1)
poles at s: = —10,-5++5

This system is lowpass with cutoff frequency at w. = 10.
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(b) Magnitude response of H(jw)
0 T T T

[H(o)| (dB)

—40 ! ! ! ! ! ! !
-40 -30 -20 -10 0 10 20 30 40

w rads/sec

Figure P6.65. (b) Magnitude response of H(s), 20logyq|H (jw)|.

(¢) Perform the transformation of variables in which s is replaced by 1/s in H(s). Repeat part (a)

for the transformed system.

1
H(s) =
E+1)(E+1+1)
—-14++3
polesat s: = —1,T\/_
Three zeros at s: = 0

This system is a high pass filter with cutoff frequecy w. = 1.
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(c) Magnitude response of H(jw)
0 T T

_50 - .

[H(w)] (dB)

-60 |- -

_70 - .

_80 - .

~-100 I I I I I
-3 -2 -1 0 1 2 3

w rads/sec

Figure P6.65. (c) Magnitude response of H(s), 20log,|H (jw)|-

(d) Find the transformation that converts H(s) to a highpass system with cutoff frequency w = 100.
Replace s by 22:

1
L+ )R+ 1%+

S

H(s)
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(d) Magnitude response of H(jw)
0 T T T T T

_50 - -

[H(o)| (dB)

-60 |- .

_70 - -

_80 - -

_90 - -

-100 | | | | | | |
-200 -150 -100 -50 0 50 100 150 200

w rads/sec

Figure P6.65. (d) Magnitude response of H(s), 20log;,|H (jw)|-

Solutions to Computer Experiments

6.66. Use the MATLAB command roots to determine the poles and zeros of the following systems:

(a) H(s) = wpsZ
(b) H(s) = wristh

(c) H(s) = gt istlo
P6.66

======= Part (a)

ans —

0+ 1.4142i

0-1.41421

ans =

-2.5468

0.2734 + 0.5638i
0.2734 - 0.5638i

Part (b) :
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ans =
-1.0000

0.5000 + 0.8660i
0.5000 - 0.8660i
ans =

0.0000 + 1.0000i
0.0000 - 1.00001
-0.0000 + 1.00001
-0.0000 - 1.0000i

Part (c) :

ans =
-1.0000 + 1.2247i
-1.0000 - 1.2247i
ans =

-1.0000 + 2.0000i
-1.0000 - 2.0000i
-2.0000

6.67. Use the MATLAB command pzmap to plot the poles and zeros for the following systems:

€3
(a) H(s) = @iz

(b) :“ _26] b:l;], c:[o 1}, D =1[0]
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P6.67(a)

0.5F

Imag Axis
1=
T

-0.5f

-15

« double
pole

« double
pole

-1

-0.5 0
Real Axis

Figure P6.67. (a) Pole-Zero Plot of H(s)

P6.67(b)

0.5

0.8

0.6

0.4

0.2

Imag Axis
o
T

-0.4t

-06

-0.8

-6 -5 -4 -3 -
Real Axis

Figure P6.67. (b) Pole-Zero Plot

6.68. Use the MATLAB command freqresp evaluate and plot

51

the magnitude and phaseresponses for



Examples 6.23 and 6.24.

P6.68 : Ex 6.23

0
w:rad/s
P6.68 : Ex 6.24
3 T T
2

arg(H(w)):rad

w:rad/s

Figure P6.68. Magnitude and phase plot for Ex 6.23 & 6.24

6.69. Use the MATLAB command freqresp evaluate and plot the magnitude and phase responses for
Problem 6.53.
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[HWw)|

< (H(w)):rad

< (H(w)):rad
o

P6.69(a)

w:rad/s

Figure P6.69. Magnitude and phase plot for Prob 6.53 (a)

50

w:rad/s

P6.69(b)

-10 0 10
w:rad/s

20

30

40

50

15

0.5

-0.5

-1

-1.5

-50

Figure P6.69. Magnitude and phase plot for Prob 6.53 (b)

-10 0 10
w:rad/s
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P6.69(c)

15

[HW)|

05 | | | | | | | | |
-50 -40 -30 -20 -10 0 10 20 30 40 50
w:rad/s

< (H(w)):rad
o

-50 -40 -30 -20 -10 0 10 20 30 40 50
w:rad/s

Figure P6.69. Magnitude and phase plot for Prob 6.53 (¢)

6.70. Use your knowledge of the effect of poles and zeros on the magnitude response to design systems
having the specified magnitude response.Place poles and zeros in the s-plane, and evaluate the corre-
sponding magnitude response using the MATLAB command freqresp. Repeat this process until you find
pole and zero locations that satisfy the specifications.

(a) Design a high-pass filter with two poles and two zeros that satisfies |[H(j0)| =0, 0.8 < |H(jw)| < 1.2
for |w| > 1007, and has real valued coefficients.

Two conjugate poles are needed around the transition, which implies one possible solution is :

s2

H =
() (s + 25+ j10m)(s + 25 — j107)

(b) Design a low-pass filter with real valued coefficients that satisfies 0.8 < |H(jw)| < 1.2 for |w| < m,
and |H(jw)| < 0.1 for |w| > 107.

One possible solution is:

(s — j50)(s + j50)

H) = raiimerz_in
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P6.70(a) : HPF

T T T T

100 150 200 250 300 350 400 450 500
w:rad/s

P6.70(b) : LPF

5 10 15 20 25 30 35 40 45 50
w:rad/s

Figure P6.70. Magnitude response

6.71. Use the MATLAB command bode to find the bode diagrams for the systems in Problem 6.55.

Magnitude (dB)

Phase (deg)

20

|
[{e}
o

-135

-180

Bode Diagram
Gm = Inf, Pm = 78.63 deg (at 4.4561 rad/sec)

Frequency (rad/sec)
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Magnitude (dB)

Phase (deg)

Magnitude (dB)

Phase (deg)

Figure P6.71. (a) Bode Plot of H(s)

Bode Diagram
Gm = Inf, Pm =52.947 deg (at 2.1553 rad/sec)

50

-100
-120

-150

-180 e

Frequency (rad/sec)

Figure P6.71. (b) Bode Plot of H(s)

Bode Diagram
Gm = 4.0836 dB (at 1.7322 rad/sec), Pm = 17.37 deg (at 1.387 rad/sec)
20 T

-270 : e :
10 10 10

Frequency (rad/sec)

Figure P6.71. (c) Bode Plot of H(s)
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Bode Diagram

Gm = Inf, Pm = 157.6 deg (at 10.099 rad/sec)

10 T T
of i
)
< -1or .
e}
2
S -20F g
©
=
_30 - -

Phase (deg)

-180 R
10 10

Frequency (rad/sec)

Figure P6.71. (d) Bode Plot of H(s)

Bode Diagram
Gm = Inf, Pm = Inf

10" 10

-15

| | |
w S) N
o a1 o
T T T

Magnitude (dB)

|
w
a1
T

|
iy
o

IS
(5

o

Phase (deg)

|
iy
a1

-90

107 10°

Frequency (rad/sec)

Figure P6.71. (e) Bode Plot of H(s)

6.72. Use the MATLAB command ss to find state-variable descriptions for the systems in Problem 6.48.

10 10
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x11
x2 0

CcC =
x1 x2
yl101

d =
ul

yl10

Continuous-time model.

x1 2
x2 0

Cc =

x1 x2
y130

o8



ul
yl0

Continuous-time model.

x1 x2 x3
x1 -5 -0.875 -0.09375
x2800
x3040

b =
ul

x1 0.5
x2 0
x3 0

Cc =
x1 x2 x3
y1 0 0.5 -0.25

d:
ul

yl0

Continuous-time model.

6.73. Use the MATLAB command tf to find transfer function descriptions for the systems in Prob-
lem 6.49.

Transfer function:

s+3
s2+4+3s+2

Transfer function:

2s5—1
s24+55—8
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Solutions to Additional Problems

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and
zeros in the z-plane.

(a) z[n] =0[n—k], k>0

X(z) = Z z[n]z™"

n=—oo

27k 240

- - Phd - -
. - . . .
- - P - -
s e | s < -
- - - e - -
- P P . - -
// - - . // .
- - i i - -
- - - g . -
. - - kfmultlpfe -
- - i - -
- / .
- - Phd - L .
. . P
B P

- . | B .

i // - -

- _ - -
. . .
. - p
. P
. p

Figure P7.17. (a) ROC

(b) z[n] =dn+ k], k>0

7 7| kmultiple -
o s 7 7 Re

Figure P7.17. (b) ROC
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- - Pid -
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. - . -
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. . . P P
. - - P .
- - - - -
- Phe Pid - - .
- P P - - /
- - 7 P -7 -
- - PES RN . - Phd
P 7 7 N - - -
- - L N - Phd -
e Pid P /\ v - -
- X - -
- e \ N N P P
’ i ; 1 . i Re
- s /e - e
- -~ - -
- PN ~ P .
- - ~ ) - -
- - sd - - P
- - P - .
- / P - .
-7 - e e -
// i // // i
- s e -
- / . -
- Phd -7 -
- - -
- - .
. - -
- -
- -

Figure P7.17. (c) ROC

(d) @n] = (3)" (uln] — uln - 5])

4 polesat z=0,1poleat z=0
5 zeros at z = iejk%" k=0,1,2,3,4
1

Note zero for k = 0 cancels pole at z = 3

2



Figure P7.17. (d) ROC

(e) an] = (3)" ul-n]

= ) (42"
n=0
B 1
o 1—42
Im
-.0.25
Re
Figure P7.17. (e) ROC
(f) z[n] = 3"u[-—n — 1]
—1
X(z) = Z (3Z—1)n



_ 57

B 1—%2

= 1__432_1 2] < 3
Pole at z =3

Zero at z =0

Figure P7.17. (f) ROC

(g) afn] = (2)™

Re

—1 3 n o)

_ 9 1 2
- > (57) 2 (3
n=—oo n=0

1 1
1 3271 1—2271
5
~52
= , =<zl <
-9G-2) 3

Re



X(z) = i(éz1>n+ i Gzl)n

n=0 n—=—oo
- 1—%2—1+1—§Z—1’ ‘Z|>§and|z|<1

No region of convergence exists.

7.18. Given the following z-transforms, determine whether the DTF'T of the corresponding time signals
exists without determining the time signal, and identify the DTFT in those cases where it exists:
(a) X(z) = 1-&-%%’ 2| > &

ROC includes |z| = 1, DTFT exists.

; 5)
X = ‘
(e ) 1 + %67]9
0) X(2) = s, |2l < &
ROC does not include, |z| = 1, DTFT does not exist.
—1
(c) X(2) = W7 2| < %
ROC does not include, |z| = 1, DTFT does not exist.
(d) X(Z)Zwma 3 <lzl<3
ROC includes |z| = 1, DTFT exists.
e I9

XY =

(1—1e772)(14 3e799)
7.19. The pole and zero locations of X (z) are depicted in the z-plane on the following figures. In each
case, identify all valid ROCs for X (z) and specify the characteristics of the time signal corresponding to

each ROC.
(a) Fig. P7.19 (a)

(= + )z —3)

There are 4 possible ROCs

(1) Iz > §
z[n] is right-sided.



(2) 3<lel <%
z[n] is two-sided.

(3) Izl < 3
x[n] is left-sided.

(b) Fig. P7.19 (b)

C(z*-1)
X = = =
(=) 2(2 =235 (2 — /2e 77 )
There are 2 possible ROCs
(1) [2] > v2
x[n] is right-sided.
(2) Izl < V2
x[n] is two-sided.
(c) Fig. P7.19 (c)
9 9
X(z) = (-2)E+D(*+ E)C’, |z| < o0

z[n] is stable and left-sided.

7.20. Use the tables of z-transforms and z-transform properties given in Appendix E to determine the
z-transforms of the following signals:
(a) z[n] = (%)nu[n] * 2" u[—n — 1]

il = (5) Wl —— A= 1>
bn] = 2"u[—n — 1] — B(z) = T ;Z_l, |z < 2
x[n] = a[n] * b[n] — X(z) = A(2)B(z)




b[n]z(i)nu[n] —— B()=- =t |z|>i
)=t -2 —— C()=- Z;_l
z[n] = nla[n] * b[n]] —— X(z):fz%A(z)B(z)
X - e sl

1
Ty
1—7 |Z| <1
(d) z[n] = nsin(Fn)u[—n]
z[n] = —nsin(—gn)u[—n]
d 27t
X&) = =g <1+2_2)L—5

- [Tl

z 223

14 22 * (14 22)2

1
=z

() z[n] = 3" 2u[n] * cos(En + m/3)u[n]

1
2 £

aln] = §3"u[n] — Az) = 1_—32_3
b[n] = cos(zn + z)u[n] = cos(zn) cos(m3) — sin(in) sin(73)| u[n]
6 3 6 6
2 cos(Z)(1+ 27 cos(%)) sin(Z)(z 1 sin(Z))
bl ——— Bz) = 1-— gz—l cos(g) + zG—Q 11— 2z3—1 cos(g) fz—Q
1
9

X(:) = AQB() = (

) cos(5)(1+ 27" cos(%)) —sin(%) sin(%)z~!

1—-3273 1—2z71cos(g) + 272

7.21. Given the z-transform pair z[n] — % with ROC |z| < 4, use the z-transform properties
to determine the z-transform of the following signals:

(a) yn] = afn — 2]



yln] = ln —2] Y(2) =2 X () = o

(b) y[n] = (1/2)"x[n]
uln] = (%)%[n] —— Y(2)=X(22) = Zzz_ 4
(¢) y[n] = x[—n] * z[n]
z 22
il = alonl v aln] " V()= X(DX() = gy
(d) y[n] = nz[n]
y[n] = na[n] PN Y(z) = —ZEX(Z) _ (2233721&2

(e) yln] = z[n + 1] + z[n — 1]

z J: S
yln) =2ln+ 1 +efn—1] ——— Y(2) = (' +27)X(2) = 5
() yln] = w[n] « z[n - 3]
ool = i +in =8 V() = X()XC) = g

7.22. Given the z-transform pair n23"u[n] — X (z), use the z-transform properties to determine

the time-domain signals corresponding to the following z transforms:
(a) Y(z) = X(22)

Y(2) = X(25) —— yln] = (3)"aln] = ()"0 uln]

(b) Y(2) = X(271)



Y(z) = Lx(z) = —o (—ziX(z)) e Y= —(n - Dafn—1] = —(n— 1)*3" ufn — 1]

Jal
N
<

In] = 5 (aln+2]  aln — 2]

% [(n+2)°3™ 2uln + 2] — (n — 2)23" 2uln — 2]

Y(2) = X(2)X(z) «——— yln] =z[n] * z[n]
y[n] = uln] Y " k3% (n — k)*3" "
k=0

= 3"u[n] [k2n2 —2nk3 + k4]
k=0

7.23. Prove the following z-transform properties:
(a) Time reversal

ol —— X()

v = afn)

Y (2) = Z z[—nlz™"
let ] =—n )

(b) Time shift

zn —mn,] ——— z7"X(2)

yln] = zln—n,
Y(2) = Z zn —nelz "

n—=—oo

letl=n—n,



l=—o00
= ( Z x[l]z‘l> z7 M
l=—00
= 27" X (z)
(¢) Multiplication by exponential sequence
atzln] —s X(é)
yln] = a"z[n]
Y(2) = Z a™zn]z™"
=Y )
= X()
(d) Convolution
Let c[n] = x[n] x y[n]
zln] *yln] ——— X(2)Y(2)
Clz) = > (@] xyln) "
= > ( > w[p]y[n—p]> Z"
= > =il ( > y[n—p]z‘("‘p)> Z7P
Y (z)
= ( > ﬂf[P]Zp> Y(2)
X(z)
= X(2)Y(2)
(e) Differentiation in the z-domain.
na(n] — —Z%X(Z)
X(2) = Z z[n]z™"



Differentiate with respect to z and multiply by —z.

o0

d : .
_ZEX(z) nzz_oonx[n]z
Therefore
na(n] — —Z%X(Z)

7.24. Use the method of partial fractions to obtain the time-domain signals corresponding to the fol-

lowing z-transforms:

14+Zz71
(2) X(2) = ==y 1> 3
x[n] is right-sided
A B
X(z) = T
(2) 1— %z*l 14 171
1 = A+B
1 1
T o il
6 3 2
2 -1
X =
(2) 1— %z_l 1+ %z—l

- 142271 1
(b) X(2) = ij’ 2] < 3

same as (a), but z[n] is left-sided

1 n n
ol = |20 + (3" uln - 1]
(€) X(2) = ——p 82 Loy < !
¢ )= =L hHa+i. 3 SI1FlS 3
same as (a), but z[n] is two-sided
n 1 n
o] = ~2(3)"ul=n 1]~ (~3)"uln]
2_ g,
@ X(2) = Eg, bl <2
x[n] is two-sided
1-3271
X —
(2) 1+ %z_l —z72
A B

1- 3271 M

11



1 = A+B
1
-3 = 2A--B
3 2
-1 2
X pr—
(2) 1+%z*1 + 1—2z-1
1 n n
eln] = —(=3)"uln] - 2(2)"u[-n —1]
322-1,
(e) X(z) = 716 |z| > 4
x[n] is right-sided
A B
X —
(2) 1+4z-1 + 1—4z-1
3 = A+B
*% — —4A+4B
49 a7
X — 32 32
(2) 1T+4z-1 71451
49 47
o = |y + oo
23+z2 %z %
(f) X(z) = W;Jr;’ 2| < 3
z[n] is left-sided
2 -1
X = 27!
(2) z +1+Z*1+1+%271
1
zn] = dn—-1]+ (—5)” =2(=1D)"| u[-n —1]
() X(2) = 232722 |2 >1
x[n] is right-sided
1 -1
X = (2 2
O = (4=t
zln] = 20n—+2]+[(-1)" —1]uln+ 2]

7.25. Determine the time-domain signals corresponding to the following z-transforms:

(a) X(2) =1+42276 44278,

|z| >0

12



z[n] = d[n]+25[n — 6]+ 4d[n — 8§

o] = Z%(S[n—kz]
k=5
(c) X(2) = (142712 [2/>0
X(2) = (3]n] +0[n —1]) = (5n] + 8[n — 1]) * (3] + o[n — 1])

d[n] + 3d[n — 1] + 3d[n — 2] + 0[n — 3]

=
=
[

(d) X(2) =25 +22+3+2:3+27% |2/ >0

z[n] = 0[n+6]+dn+2]+3dn]+26n— 3]+ d6[n—4

7.26. Use the following clues to determine the signal z[n] and rational z-transform X (z).
(a) X(2) has poles at z = 1/2 and z = —1, z[1] = 1,2[—1] = 1, and the ROC includes the point z = 3/4.

Since the ROC includes the point z = 3/4, the ROC is 1 < |2 < 1.

A B
X() = 1-— %z_l + 1+ 271
zn] = A <%) u[n] — B(—1)"u[-n — 1]
z[l]=1 = A (%)
A = 2
z[-1]=1 = -1B(-1)

B =1

zn] = 2 (%) uln] — (=1)"u[-n — 1]

(b) x[n] is right-sided, X (z) has a single pole, and z[0] = 2, 2[2] = 1/2.

z[n] = e¢(p)"uln] where ¢ and p are unknown constants.

2] =2 = ¢(p)

13



il
=,
Il

[N}
7N
N | =
N————
£
=

(c) z[n] is two-sided, X (z) has one pole at z = 1/4, z[-1] = 1,2[-3] = 1/4, and X (1) = 11/3.

X)) = 1 filz*l + 1 ffz*l
o] = A G) uln] — B(e)"u[-n — 1]
z[-1]=1 = —Bc!
z[-3] = i = —Bc¢?
c = 2
B = -2
11 A -2
=5 = o1t
4 = 2
4
xz[n] = g <i) u[n] +2(2)"u[—n — 1]

7.27. Determine the impulse response corresponding to the following transfer functions if (i) the system
is stable, or (ii) the system is causal:

23,71
(2) H() = Tmna

1 1

H =
(2) T—21 1411

(i) h[n] is stable, ROC 1 < |z| < 2, ROC includes |z| = 1.

Ml = (@) uln— 1] + () uln]
(ii) h[n] is causal, ROC |z| > 2
il = |2+ - ub



3 + 2
1—-32z71 142271

H(z) =

(1) h[n] is stable, ROC |z| < 2, ROC includes |z| = 1.

hin] = [=(3)" = (=2)"u[-n —1]
(ii) h[n] is causal, ROC |z| > 3
hln] = [3" + (=2)"] uln]
(©) H() = misr
4271
B (=

(i) h[n] is stable, ROC |z] > §, ROC includes |z| = 1.
1
hin] = 16n(1)"u[n]
(ii) h[n] is causal, ROC |z| > 1

hin] = 16n(i)"u[n]

7.28. Use a power series expansion to determine the time-domain signal corresponding to the following
z-transforms:

() X(2) = {2l >}



)e8[n — 2K]

)

e e

S
=

I
M8

(

0

(
0

w3

n even and n >0
n odd

N

I
—1

(b) X(2) = =13==, |2l <3

Iz

_ 7422 2(22)2k
k=0

(oo}
_ Z 92(k+1) ,2(k+1)
k=0

z[n] = —in(kH)é[n—i—Q(k—&—l)]
k=0

(c) X(2) =cos(z73), |z|>0

Note:

(d) X(2)=In(1+2z71), |2/>0
Note:

In(l1+a) = Z(_lk (a)®

el
= ()i

xz[n] = Z ’ 5[n — k|
k=1



7.29. A causal system has input z[n] and output y[n]. Use the transfer function to determine the
impulse response of this system.

() z[n] = d[n] + 16[n — 1] — gd[n — 2], y[n] = d[n] — Fé[n — 1]

X(z) = 1+ izfl —-=z1
Y() = 1- 2271
_2 5
— 3 3
11— 1271 1411
1 1., 1.
Ml = g [s(-3) — 2] ub

1
X() = 143271
3
Yi) = (1—2:-1)(1— 170
10 7
T 1—221 * 1—%2—1
hn] = [10(2)” - 7(—)n] uln]

7.30. A system has impulse response h[n] = (%)n u[n]. Determine the input to the system if the output
is given by

1) =
(a) yln] = 25[n — 4]
Y(z) = 2z7°
-
= 2;74_;7°
z[n] = 26[n—4]—3dn—>5]

17



1 2
_ 3 3
Yi) = 1—1 " 143271
Y(z
- 1
_ 1 § 5
o _§+1fz*1+1+%z*1
1 1 4, 1.,
z[n] = —55[“] + gu[n] + g(—§) u[n]

7.31. Determine (i) transfer function and (ii) impulse response representations for the systems de-
scribed by the following difference equations:
(a) yln] - 3y[n — 1] = 2z[n — 1]

2271
nnl = 23" ufn— 1
(b) y[n] = z[n] — xz[n — 2] + z[n — 4] — x[n — 6]
V() = (1-2242*-2%X(2)
_ Y
HE = %0
= 1—z24,74_,76
hin] = d[n] —d[n—2]+d[n—4] —d[n — 6]
(¢) yln] — 5yln — 1] = Fyln — 2] = 2z[n] + z[n — 1]
Y(2) (1 - %z_l - %z_z) = (2+27HX(2)
2 %z‘l
- 1_ 11 + (1—4,-1)2
il = |20+ 2y ub

18



7.32. Determine (i) transfer function and (ii) difference-equation representations for the systems with
the following impulse responses:
(a) hln] =3 (%)n u[n — 1]

3,-1
H = 4
(2) 1—1z71
Y(z)
- X(2)
Taking the inverse z-transform yields:
1 3
yinl ~ yln =1 = Safn—1]

H =
(2) 1— %z_l + %z_2
_ Y
- X(2)
Taking the inverse z-transform yields:
2
yinl ~ 2yl — 1]+ gyl —2) = alnl+ Saln 1]~ 2aln 2]
(c) h[n] =2 (%)n uln — 1] + (i)n [cos(Gn) — 2sin(gn)]u[n]
2271 1— 3z cos(§) — 32 tsin()
H(z) = 2__1 1 i 1.2
— 2z 1 — 2715 cos(§) + 152

Taking the z-transform yields:
yln] = (3 +1V3) yln — 1] + (55 + §V3) yln — 2] — 55y[n — 3]
= z[n| + (1—52—% 3)z[n — 1]+ (%—%ﬁ)x[n—ﬂ—k%x[n—fﬂ

19



Taking the z-transform yields:

7.33. (a) Take the z-transform of the state-update equation Eq. (2.62) using the time-shift property
Eq. (7.13) to obtain
a(z) = (<1 - A)"'bX(2)
where
Q1(z)
Q2(z)

Qn(z)
is the z-transform of q[n]. Use this result to show that the transfer function of a LTI system is expressed

in terms of the state-variable description as

H(z)=c(zI-A)"'b+D

qn+1] = Aq[n]+ bz[n]

a(z) = Aq(z)+bX(z)
a(z)(:1-A) = bX(2)

i(=) = (s1-A)'bX(2)
y[n] = cqln]+ Dzn]
Y(z) = ca(z)+ DX(z)
Y(2) = c(zI—-A)"'bX(2)+ DX(z)
H(z) = c(zI—A)"'b+D

(b) Determine transfer function and difference-equation representations for the systems described by the
following state-variable descriptions. Plot the pole and zero locations in the z-plane.

(i)A_[_O% ?] b_lg], c:[1 —1}, D=

2

H(z) c(zI-A)"'b+D

20



Imaginary Part

Imaginary Part

15F

0.5

15t 1 I I I I I I I

-1 -0.5 0 0.5 1 15 2 2.5
Real Part

Figure P7.33. (b)-(i) Pole-Zero Plot

(ii)A—[% ],b—lé]7c—[2 1},1):[0]

_1
2

L Ll

0.8+

0.4

1 1 1 1 1

-1 -0.5 0 0.5 1
Real Part

Figure P7.33. (b)-(ii) Pole-Zero Plot
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1 1 2
i) A=| 5 5| b=|_| c:{O 1}, D =[0]
2 4
2, — 13
H(z) = 2 1 : 1
15F B
Al ,
05+ « B
g
g o o
2
E
-0.5F x B
_l— -
-15- B
2 05 o os 1 15 2 25 3

Real Part

Figure P7.33. (b)-(iii) Pole-Zero Plot

7.34. Determine whether each of the systems described below are (i) causal and stable and (ii) mini-
mum phase.
(a) H(Z) _ 2243

2 _ 5
z°+z—1§

zero at: Zz=—

poles at: z=—

= ot w
W~ =

(i) Not all poles are inside |z| = 1, the system is not causal and stable.

(ii) Not all poles and zeros are inside |z| = 1, the system is not minimum phase.

(b) yln] = yln — 1] = Jy[n — 2] = 3z[n] — 2z[n — 1]

2

t: =0, -

ZEeros a z 3
1+2

poles at: z= 2

22



(1) Not all poles are inside |z| = 1, the system is not causal and stable.

(ii) Not all poles and zeros are inside |z| = 1, the system is not minimum phase.

() yln] = 2y[n — 2] = x[n] — 3x[n — 1]

2(z — %)
H(z) = 2
. B 1
zeros at: z =0, B
poles at: z=+V2

(i) Not all poles are inside |z| = 1, the system is not causal and stable.

(ii) Not all poles and zeros are inside |z| = 1, the system is not minimum phase.

7.35. For each system described below, identify the transfer function of the inverse system, and deter-

mine whether it can be both causal and stable.
(a) H(Z) _ 1-8z7'+416272

_I1,-1,1,-2
1 327 1+32

T

& = ooy

Hinv (Z) _ ((z : i))g
poles at: z = 4 (double)

22— 8L
(b) H(z) =
; 22 -1
HZTL’U(Z) —
22 — %
les at: — 2 (double)
poles at: z = 10 oubple

For the inverse system, all poles are inside |z| = 1, so the system can be causal and stable.

(c) h[n) =10 (F)" uln] — 9 (F)" u[n]

R z(z—2)
H(z) (z+3)(z+ 1)
Him}(z) — (Z+§)(Z+Z)



poles at: z=0, 2

For the inverse system, not all poles are inside |z| = 1, so the system cannot be both causal and stable.

N = 2(24—%)
HE = one-D
inv o (2_1)(Z_l)
S TP
pole at: z=—=

For the inverse system, all poles are inside |z| = 1, so the system can be both causal and stable.

(e) y[n] — Lyln — 2] = 6z[n] — Tx[n — 1] + 3z[n — 2]

; X(z)
H’LTL’U
(2= 3)(=z+3)
622+ 72+3
74+ V23
poles at: 7= —""

12

For the inverse system, all poles are inside |z| = 1, so the system can be both causal and stable.

(f) yln] = 5yln — 1] = 2[n]

N|=

Hinv (Z) —

N

pole at: z=0

For the inverse system, all poles are inside |z| = 1, so the system can be both causal and stable.

7.36. A system described by a rational transfer function H(z) has the following properties: 1) the
system is causal; 2) h[n] is real; 3) H(z) has a pole at z = j/2 and exactly one zero; 4) the inverse system
has two zeros; 5) >.°7  h[n]27" = 0; 6) h[0] = 1.

n=0

By 2) and 3)

24



poles at z= i§
By 4)
; 1
Hv,m; — i
H
1 .=
H has two poles. z = ieiﬂf
Al - Czt
HE) = AL-027)
—z7tcos(§) + 32
A -Czh)
B 144272
By 5)
Zh[n]Q‘” = Zh[n}z‘" = H(z)
n=0 n=0 z=2
(-1
Since H(z) = M,
1+ ZZ_Q
H(z) = 0 implies
c = 2
nl = |A(2 ncos(—n) 242 nsin(—n) uln]
B 2 2 2
hl]=1 = A
1—2271
H =
© = {Tre

(a) Is this system stable?
The poles are inside |z| = 1, so the system is stable.
(b) Is the inverse system both stable and causal?

No, the inverse system has a pole at z = 2, which is not inside |z| = 1.

(c) Find h[n].

hn] = {(%)ncos(gn)—2<%>nsin(%n)} uln]

(d) Find the transfer function of the inverse system.

1+ iz‘z
1—2271

25



7.37. Use the graphical method to sketch the magnitude response of the systems having the following
transfer functions:
2
(a) H(z) =

_z -
4 —
1453272

Re

Figure P7.37. (a) Graphical method.

P7.37 (a) Magnitude Response
T

4.5

35F ,

15F b

05 I I I I I I I
-4 -3 -2 -1 0 1 2 3 4
Q

Figure P7.37. (a) Magnitude Response
(b) H(z) = %

26



2242141

H =
(Z) 322
. J282 VAU |
joy € + el +
H(e ) - 36529
poles at: z =0, (double)
zeros at: z = eij%’r

Im

oo‘j

A
/ Re

Figure P7.37. (b) Graphical method.
P7.37 (b) Magnitude Response

1 T T T

0.9

0.8

Figure P7.37. (b) Magnitude Response

_ 14271
(c) H(z) = 1+(18/10) cos(Z )z~ 14(81/100)z 2

27



14271

H(Z) = -3 -3
(1-— %631”2*1)(1 — 19—0@—32772*1)
20 iQ
H(?) = — T el
eIt 4 (18/10) cos(§ )e’t + (81/100)
ZEros: z=-1
poles: z= Eeij%e]’r
Im

Re

Figure P7.37. (c¢) Graphical method.
P7.37 (c) Magnitude Response

6

[HE)
w

Figure P7.37. (¢) Magnitude Response

7.38. Draw block-diagram implementations of the following systems as a cascade of second-order sec-

28



tions with real-valued coefficients:

1—1iF 51 1—lefj%zfl)(l—l—lej%zfl)(l—l—lefjgz’l)
(a) H(Z): (7143'% 1 )(7;477'% -1 ,;J%r -1 73 ’]%r -1
(I-5e’3271)(1—3e z71)(1-ge z=1)(1-ge z—1)

H(z) = Hi(z)Hs(z)

Y(2)

X(2)

A
y

()

M)

z ! 7zt
-1 1 -9 1
4 16 16 16
< = < =

Figure P7.38. (a) Block diagram.
. (142:"1)2(1—Lef T2 (1-Le 7527 0)
() HEZ) = i Fnamgofanard

H(z) = Hi(2)H2(z)
14+4z71 44272
Hl(z) - 1+ 3,-1_ 9 -2
3 32
141272
Hy(z) = 4
2(2) 1—3cos(%)z + 22

X(2)

@ =/ =/ @
A 71 iy A 771 A
-3 3 cos( )
=06 -
Sl ;1
9 -9 1
Z 2 ! =

Figure P7.38. (b) Block diagram.
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7.39. Draw block diagram implementations of the following systems as a parallel combination of second-
order sections with real-valued coefficients:
(a) hln) =2 (3)" uln] + (3)" uln] + ()" uln) + (31)" uln]

2 1 1 1
H(z) = 1—%2*1+1—%z—1+1+%z—1+1+%z*1
3452t 2
B e N P
H(z) = Hi(2)+ Hal2)

Y
&)
Y

)

o
ol

v

Y

0.25
2
=) -
=/
Z—l
Z—l
-0.25

Figure P7.39. (a) Block diagram.

2 1 1 2
H(z) 1-Lleddz-1 1 leisy1 * 1—2e95271  1—Le i1
= 4 — \/5271 2 - %Z_l
1- %z—l +3272 1—iz14 22
H(:) = Hi(s)+ H(2)

30



X(2)

> =) ()
1 [,
o /2 -/2
& > Y(2)
~0.25 ‘ @
2
=) —(>)
Z—l
0.25 -0.25
Z\ = -
S
~1/16

Figure P7.39. (b) Block diagram.

7.40. Determine the transfer function of the system depicted in Fig. P7.40.

X(2) Y(2)
= H(2 H,(2) >

Hy(2)

Figure P7.40. System diagram

1—2z71
H =
1(2) [
-2
z
H =
2(Z> 1+ %Z_l — %2_2
1
H =
S(Z) 1+ %Z_l

31



7.41. Let x[n] = u[n + 4].

(a) Determine the unilateral z-transform of z[n].

z[n] = uln + 4] — X(z) = Z x[n]z™"
n=0
X(z) = Z z7"
_ B 1
B 1—271

(b) Use the unilateral z-transform time-shift property and the result of (a) to determine the unilateral

z-transform of w[n| = z[n — 2].

wln] = afn — 2] ——— W(z) = a[-2 +a[-1]z"" + 22X (2)
272

1—2z-1

W(z) = 1+27t+

7.42. Use the unilateral z-transform to determine the forced response, the natural response, and the
complete response of the systems described by the following difference equations with the given inputs

and initial conditions.
(a) y[n] — fyln — 1] = 2z[n], y[-1] =1, z[n] = (FH)"u[n]

1
X(z) = 14+ 11
2
1
Y(z) - 3 (z7'Y(2)+1) = 2X(z)
Y(z)[1- 1z_1 ! +2X(z)
3 -3
1 1 1
Y = Z 2 X
(2) 31— %2*1 + 1-— %2*1 ()
y(n)(2) Y () (2)
Natural Response
1 1
Y(")(z) = = T
31— §Z71
1/1\"
Ol = 5 (3) o
Forced Response
6 4
y () — 5 5
(2) 1+ %z*l 1- %z*l
: 6 1\N" 4 /1\"
() N e Bl
e = [5(-3) +5(5) ]



Complete Response

2
X)) = 1—2z71
Y(E) - g (Y ()4 = X
Y(z)|1- 1z_2 = 1z_l + 271X (2)
9 9
I 271X (2)
Y@ = 91— L1z-2 * 1— 1,2
9 9
Y () (2) Y () (z)
Natural Response

" 1 2!

v = 91— L1z-2
9
11 11
B 61—1z71 61+ 4z71
vy = 6 Kg) - <—§> ]u[n]
Forced Response

(*) i i :

Y _ 4 _ 4 _ 2
(2) 1—2z1 144z71 1-3271

y(f) [n]

110D 36

Complete Response

y[n]

Il
| — |
| ©

|
e~ w
/l—\
Wl =
~_
3

|
N W
7N
W
"
3
£
=)

+
[
| — ]
/N
Wl =
~_
3

|
/?
W
N~
3§
£
=

1
X@) = g
1
Y(2) =~ (Zily(z) + 1) 3 (Zi?Y(Z) + 271 = 1) = X(z)+ zilX(z)
1 1 1 1
Y (2) (1 -z t-—2 2) = 3 + gz’*l + (1 +27"HX(2)
1 1 -1 1 —1 X
() = p—er oy (0 JXE)
8(1—42"H(1+ 4271 (1—3z2H(1+ 31271
Y (") (z) Y (5 (2)
Natural Response
1 1 1 1
vy - = _ -
=) 41-3271 81+ 3271
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vy =

Forced Response

(€D) & -3 ~13
y _ 65 5 13
(2) 1—3z1 + 1-— %z*l 1+ iz*l
96 2 /1\" 1 \"
(f) — A MU (e _ (=
Wl = [Eer-3(3) -5 (1) |

Complete Response

il = |-

Solutions to Advanced Problems

7.43. Use the z-transform of u[n] and the differentiation in the z-domain property to derive the formula

for evaluating the sum
(oo}
Z n%a™
n=0

assuming |a| < 1.

X = ]

let "

" = "
% () = nzoo—mc[n]z_(”_l)
j—;X(z) =S (- a2

d? 1 B
dz?2 \1—az"1 -

Evaluate at z =1

d? 1 s >
dz? (1 azl) — B ;nzan —T;)na”
N
EXG)_,
S
s dz2 \1—az"1
2a a
T (-aP T (1-ap

z=1



3a — a?

(1—-a)?

7.44. A continuous-time signal y(t) satisfies the first-order differential equation

Sy(t) +2y(0) = ()

Use the approximation %y(t) ~ [y(nTs) —y((n — 1)Ts)] /Ts to show that the sampled signal y[n] =
y(nTs) satisfies the first-order difference equation

y[n] + ay[n — 1] = vln]

Express o and v[n] in terms of Ty and z[n] = z(nTy).

y[n] —yln —1]

T, +2y[n] = z[n]
il (3 +2) - oo =11 = el
) = gl =1 = sl
“ = _1+12Ts

7.45. The autocorrelation signal for a real-valued causal signal x[n] is defined as

re[n] = Zx[l]x[n +1]

=0

Assume the z-transform of r;[n] converges for some values of z.

Find z[n] if
1
Ro(z) = (1—az71)(1—az)
where |a| < 1.
rg[n] = z[n]*z[—n]

Let y[n] = z[—n)

roln] = > ylklaln — k]
= > z[-klz[n -k

let p=—k

35



oo

re[n] = Z z[plzn + p]
= Z zlz[n +1]
l=—0o0
= Y alljzln+1]
1=0
since z[l] =0, forl <0
Re(s) = X(DX(2)
1 1
- (1—az>1—az—1
Implies
XG) = g
z[n] = a"uln]

7.46. The cross-correlation of two real-valued signals x[n] and y[n] is expressed as

o0

ray(n) = Y alllyln+1]

l=—00

(a) Express r4y[n] as a convolution of two sequences.
rzyln] = x[n]*y[—n], see previous problem

(b) Find the z-transform of r,,[n] as a function of the z-transforms of z[n] and y[n].

7.47. A signal with rational z-transform has even symmetry, that is, z[n] = z[—n].

(a) What constraints must the poles of such a signal satisfy?

olon] T X()
Implies
X() = X()
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This means if there is a pole at z,, there must also be a pole at zi Hence poles occur in reciprocal pairs.

oo

(b) Show that the z-transform corresponds to a stable system if and only if |Y"0" __ x[n]| < cc.
The reciprocal poles are (zo, ZL) assume they take the following form:

Zo = roet%

Lo L e,

2o To
If z, is inside |z| = 1, its z-transform is right-sided and stable. For the pole at zl, its corresponding
z-transform is either right-sided unstable, or left-sided stable. For convergence, the ROC must include the
unit circle, |z| = 1, which means the z-transforms are exponentially decaying as they approach co, — oo
respectively.

(¢) Suppose
2 — (17/4)271

X&) = T -4

Determine the ROC and find z[n].
For the system to be stable, the pole at z = i must be right-sided, and the pole at z = 4 must be
left sided so their z-transforms are exponentially decaying as they approach co, — oo respectively. This

implies the ROC is } < |z| < 4

7.48. Consider a LTT system with transfer function

1_ *
Hiz)=—22 Ja <1

Z—a

Here the pole and zero are a conjugate reciprocal pair.

(a) Sketch a pole-zero plot for this system in the z-plane.
Im Leta=|dd %

then L —ie”é

B a |d
\\\ ¢

j]‘?\’ll % Re

Figure P7.48. (a) Pole-Zero plot.
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(b) Use the graphical method to show that the magnitude response of this system is unity for all fre-
quency. A system with this characteristic is termed an all-pass system.

Q 1 —a*el®
HED] = ey
= ’1 —a CJQ’ m
As shown below, |H(e/?)| =1 for all Q.
Im HEM)

Figure P7.48. (b) Magnitude Response.
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HE M HED)

|
T N

Figure P7.48. (b) Magnitude Response.

(c) Use the graphical method to sketch the phase response of this system for a = %

1- %em
i _

. 1 . . 1
arg{H(e]Q)} = arg{1—§em}—arg{em—§}

= 7r+arg{ej9—2}—arg{ejﬂ—%}

H (')

[N

Re

Figure P7.48. (c) Pole/Zero graphical method.
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Figure P7.48. (c) Zero phase response.

pole
T 4
l T TN
,T 4
Figure P7.48. (c¢) Pole phase response.
{HE™)
—‘T €
= A
,T 4

Figure P7.48. (c) Phase response.

(d) Use the result from (b) to prove that any system with a transfer function of the form

P
1—ajz
H(z):H :k lag] <1

z —
k=1
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corresponds to a stable and causal all-pass system.

Since |ag| < 1, if the system is causal, then the system is stable.

P

- 1 —atel?
HE = ] Gater
paiet el — ay,
I 1—ate’®1—ase’® 1 —a;eJQ
|H(e )| = Q Q Y Te)
et —a1 el —aq el —ay
P .
. 1—atel?
H(e?) = H iQ ‘
bl el — ay,
Q 1—ated? |1 — aze’® 1—(1;'263Q
[H(e™)| = i 1) i
el —aq el — ao el — ay
=1

The system is all-pass.
(e) Can a stable and causal all-pass system also be minimum phase? Explain.

For a stable and causal all-pass system, |ag| < 1 for all k. Using P=1:

1—ajz
H(z) = —2
(2) a
. 1
The zero is z, = —
ap
Which implies
1
|ZZ| = T > 1
|aj

This system cannot also be minimum phase.

7.49. Let
H(z) = F(2)(z —a) and G(2) = F(z)(1 — az)

where 0 < a < 1 is real.
(a) Show that |G(e??)| = |H (7).

1—az

G(z) = H(z)

z—a
all-pass term

1—az

G| = [H()

Z—a

= [H(E)

41




. 1—az
Since

= 1, see prob 7.48
z—a

(b) Show that g[n] = h[n] * v[n] where
zl—a
Ve =T

V(z) is thus the transfer function of an all-pass system (see Problem P7.48).

1—az
VvV =
(2) P
. z7l—q
h 1—az"1

G(z) = H(2)V(2) «—— g[n] = h[n] xv[n]

(c¢) One definition of the average delay introduced by a causal system is the normalized first moment

g Zizokv?lH

a Pl
Calculate the average delay introduced by the all-pass system V(z).

—1

z a
Vis) = l—az! 1—az!
vlk] = a" tulk — 1] — aa®ulk]
for k =
v[0] = -—a
v?0] = a®
for k>1
v[k] = a1 — !
VR = a2 g @2 g DH (kD)
= a%((f2 +a%-2)
Z kv’lk] = (a %4a®—-2) Z k(a?)*
k=0 k=0
1+ a* — 2a?
N (1 —a2)?
Sk = a®+(a+a’-2)) (a*)
k=0 k=1
1+ a* —2a?
_ 2
= ot 1—a?
1= a®
 1-a?
= 1, which also follows from Parseval’s Theorem.
d _ Z.Z.;O kv2[k]
oo
2= V2 (K]
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1+ a*— 242
(1—a?)

7.50. The transfer function of a LTI system is expressed as

_ oIl (1 - ez
ITi (1= dz!)
where |dy| < 1,k=1,2,....N, || < 1,k=1,2,....,.M — 1, and |eps] > 1.
(a) Show that H(z) can be factored in the form H(z) = Hin(2)Hap(z) where Hppin(2) is minimum
phase and H,,(z) is all-pass (see Problem P7.48).

bo Hﬁ:l(l —cpzt)

H(z) = (1-—cpyz!
) ( Y ) Hg:l(l —dgz1t)
I e e e N I e
Hllcvzl(l - dkz_l) 1- c;[*z_l
Homin (2) Hap(z)
= Hmin(Z)Hap(Z)

(b) Find a minimum phase equalizer with transfer function He,(z) chosen so that |H (e/})H,,(e7?)| =1
and determine the transfer function of the cascade H(2)Hq(%).

Heq(z) = Hmjn(z)
s0 H(2)Hey(z) = Hgp(2)
[H(2)Heq(2)] = [Hap(2)| =1
Hyl) = 19

7.51. A very useful structure for implementing nonrecursive systems is the so-called lattice stucture.
The lattice is constructed as a cascade of two input, two output sections of the form depicted in Fig. P7.51
(a). An M order lattice structure is depicted in Fig. P7.51 (b).

(a) Find the transfer function of a second-order (M = 2) lattice having ¢; = 1 and ¢; = —

A(2)

1
I-

&)

X(2) 05

~
=

0.5

™

B(2)

Figure P7.51. (a) Lattice Diagram.
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Y(z) = —iA(z)z_l + B(2)

AR = X(E)E )

B(z) = X(z)(%z_l+1)

Y(z) = <—4z 7 gz_l - 1) X(2)
R

(b) We may determine the relationship between the transfer function and lattice structure by examining
the effect of adding a section on the transfer function, as depicted in Fig. P7.51(c).

Here we have defined H;(z) as the transfer function between the input and the output of the lower
branch in the i*" section and Fll(z) as the transfer function between the input and the output of the
upper branch in the i*" section. Write the relationship between the transfer functions to the (i —1)* and

h stages as

=T(2)

H; 1 (2) ]
Hi_1(2§)

where T(z) is a two-by-two matrix. Express T(z) in terms of ¢; and z~*

fIz(z) = ﬁl 1(2) +Cz i— (Z)
Hi(z) = Hi_1(2)z cz+Hz 1(2)
lﬁi(ﬂ _ 1<z>]

£
.

i=1 Hi 1(2)=H; 1(z2)=1
Hi(z)=2"14¢
Hi(z)=z"te1 4+ 1
Hi(z7")=1+4zc1

Hi(2) = 27 Hy(z7Y)
i=k assume Hy(z) = 2z FHp(z71)
i=k+1 Hk+1(z) :zflﬁk(z)+ck+1Hk(z)
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Hyi1(2) = 27 e Hio(2) + Hi(2)

substitute Hy(z) = 2 FHy,(271)

Hip1(2) = 2=V H (270 + oy Hi(2)
Hip1(2) = 2= 5 e Hyy (271 + Hi(2)

Hiy1 (271 = 20 e  He(2) + Hi(271)
Hpy1(z) = 2z~ (D) (z(k+1)ck+1Hk(z) + Hk(z_l))
Hypr(2) = 2 * TV H (271

Therefore

Hi(z) = 2 "H;(z71)
(d) Show that the coefficient of z=% in H;(z) is given by c¢;.
f{' 271 C; ]:Ii—l
H; Zﬁlci 1 H;, 4
H;

= z7l'eHio+ Hi
Hi_1(z) = 270 YD4 4e

N

=

The highest order of (271) in H;(2) is (i), and the coefficients of 2% is (¢;), since H;_1(z) does not
contribute to z7%, therefore the coefficient of 2=% is H;(z) is given by (c¢;).

(e) By combining the results of (b) - (d) we may derive an algorithm for finding the ¢; required by
the lattice structure to implement an arbitrary order M nonrecursive transfer function H(z). Start with
i = M so that Hy(z) = H(z). The result of (d) implies that cys is the coefficient of 2= in H(z).
By decreasing ¢, continue this algorithm to find the remaining ¢;. Hint: Use the result of (b) to find a
two-by-two matrix A(z) such that

i—1(% ~1'71 z
[ Hi,1 z ] Hi,l(z) ‘| ( )
where A = T~!
1 1 —C;
A = ———
271 —=¢f) | =271 ]
let

M
H(z) = Z bz =k
k=0
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Where H(z) is given. From this we have ¢y = bas. The following is an algorithm to obtain all ¢;’s.

(1) Cyn = bM
(2) for i = M to 2, descending
compute H;_;(z) and H;_,(z) from (1)
get ¢;—1 from H,;_1(2)
end

Thus we will have ¢, ca,...cpp.

7.52. Causal filters always have a nonzero phase response. One technique for attaining zero phase re-
sponse from a causal filter involves filtering the signal twice, once in the forward direction and the second
time in the reverse direction. We may describe this operation in terms of the input z[n] and filter impulse
response h[n] as follows. Let y1[n] = x[n] * h[n] represent filtering the signal in the forward direction.
Now filter y;[n] backwards to obtain ys[n] = y1[—n] * h[n]. The output is then given by reversing ys[n]
to obtain y[n] = ya[—n].

(a) Show that this set of operations is equivalently represented by a filter with impulse response h,[n] as
y[n] = x[n] * hy[n] and express h,[n] in terms of h[n].

yln] = wi[n] *hn]
= (@[n] * h[n]) * h[—n]
= x[n] x (h[n] x h[-n])

= z[n] * hy[n)

ho[n] = h[n|* h[—n]

(b) Show that h,[n] is an even signal and that the phase response of any system with an even impulse
response is zero.

ho[—n] = h[—n]* h[n]
= h[n] x h[—n]
ho[—n] = he[n]

Which shows that h,[n] is an even signal. Since h,[n] is even, the phase response can be found from the
following:

Ho(e'?) = ) ho[n]e 7"
Hi () = ) holn]e’™n
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Z ho[—n]e i

= Z ho[n)e=Im
Hy(e'?) = Ho(e')
arg {Ho(ejQ)} = 0

(c) For every pole or zero at z = (3 in h[n], show that h,[n] has a pair of poles or zeros at z = 8 and z = %

ho[n] = h[n]* h[—n]
Ho(z) = H(z)H(=™")
let
H(z) = P
ni - it
(z—0c)(1 —¢2)

RO

let
_ z=p
Hz) = ——)
_ z=pBz -
Holz) = z—pzt—p

Therefore, H,(z) has a pair of zeros at z = 3, %

7.53. The present value of a loan with interest compounded monthly may be described in terms of the
first-order difference equation
y[n] = pyln — 1] — z[n]

where p = (1 + T1/0102), r is the annual interest rate expressed as a percent, z[n] is the payment credited

at the end of the n!* month, and y[n] is the loan balance at the beginning of the n + 1°* month. The
beginning loan balance is the initial condition y[—1]. If uniform payments of $¢ are made for L consecutive

months, then x[n] = c{un] — uln — L]}.
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(a) Use the unilateral z-transform to show that

1—pz~!
Hint: Use long division to show that
1— b =
1—z1 Z ‘
n=0
—1lp—X
v = dl=XG)
1—pz—
1—2F
S

= c(1+z_1+z_2+...+z_L+1)

L—1
= c Z 2"
n=0
which implies

yl—lp—eyapz "
Y(z) = n
(2) 1—pzt

(b) Show that z = p must be a zero of Y (z) if the loan is to have zero balance after L payments.

L-1__q
y[~1p+eX iy 2

Y(z) = [ oo

The pole at z = p results in an infinite length y[n] in general. If the loan reaches zero after the L!"
payment, we have:

yln] =0, n>L—1

L—2
So, Y(z2) = ynlz™"
n=0
Thus we must have:
L—1 L—2
yl=llp—cd 2" = (1=pzH)D yln)z"
n=0 n=0

to cancel the pole at z =p

From polynomial theory, the first term is zero if f(z = p) =0, or p = 1 4 {5 is a zero of Y (2)

(c) Find the monthly payment $c as a function of the intitial loan value y[—1] and the interest rate

r assuming the loan has zero balance after L payments.
L-1
y~llp—c> p" = 0
n=0
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1—p L
Cl——p—l = y[-1p
p—1
c = y[il]l—p_L

Solutions to Computer Experiments

7.54. Use the MATLAB command zplane to obtain a pole-zero plot for the following systems:
(8) H(z) = =125

- —-1_1,-2,1,-3
24z 327 %+t52

P7.54(a)
T

1 @) B

0.8F =

0.6 =

0.4 B

X

0.2 -
IS
o
2

g o X Q n
=)
£

= -0.2f B

X

-0.4 B

-0.6 =

-0.81 =

_l | . O - -

1 1 1 1 1
-1 -0.5 0 0.5 1
Real Part

Figure P7.54. (a)Pole-Zero plot of H(z)

14z 148,241 ,-3
(b) H(z) = L
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P7.54(b)

Imaginary Part
o I o
o N £ (2]
T T T T
X
X
O
X
I | | |

|
o
N
T
1

-04f g

-0.8- . B

| 1 1 1 1 1 l

Real Part

Figure P7.54. (b) Pole-Zero plot of H(z)

7.55. Use the MATLAB command residuez to obtain the partial fraction expansions required to solve
Problem 7.24 (d) - (g).

P7.55
Part (@)
r =
2
1
p=
-2.0000
0.5000
k —
0
Part (e) :
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7.56. Use the MATLAB command tf2ss to find state-variable descriptions for the systems in
Problem 7.27.
P7.56 :

1.5000  1.0000

1.0000 0
B =

1

0
C =

1.5000  2.0000
D=

2
Part (b)
A =

1 6

1 0
B =

1

0

52



0.2500 -0.0625
1.0000 0

B =

7.57. Use the MATLAB command ss2tf to find the transfer functions in Problem 7.33.
P7.57 :

Num =

1.0000 -2.0000 -1.2500

Den =

1.0000 0 -0.2500
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Den =

1.0000 -0.2500 -0.3750

0 2.0000 -6.5000

Den =

1.0000 -0.5000 0.2500

7.58. Use the MATLAB command zplane to solve Problem 7.35 (a) and (b).
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Imaginary Part

Imaginary Part

P7.58(a) Poles-Zeros of the inverse system

15F

_1.5 L

-1 -0.5 0 0.5 1 15 2 25
Real Part

Figure P7.58. (a) Pole-Zero plots of the inverse system.

P7.58(b) Poles-Zeros of the inverse system

3.5

0.8

0.4+

-1 -0.5 0 0.5
Real Part

Figure P7.58. (b) Pole-Zero plots of the inverse system.
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7.59. Use the MATLAB command freqz to evaluate and plot the magnitude and phase response of the

system given in Example 7.21.
P7.59

Magnitude

3
2 -
1 -
=)
g
g 0 1
1]
=
o
_1 -
-2 -
1 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figure P7.59. Magnitude Response for Example 7.21

7.60. Use the MATLAB command freqz to evaluate and plot the magnitude and phase response of the
systems given in Problem 7.37.
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Magnitude
' NS w
[ ol N ol w [62] B

=

Phase(rad)
o

Figure P7.60. (a) Magnitude and phase response

Magnitude

Phase(rad)
o

Figure P7.60. (b) Magnitude and phase response

P7.60(a)

0
Omega

P7.60(b)

Omega

0
Omega




P7.60(c)

Magnitude

Phase(rad)
o
T

-1.5, ! ! ! ! I 13

Omega

Figure P7.60. (¢) Magnitude and phase response

7.61. Use the MATLAB commands filter and filtic to plot the loan balance at the start of each month
n =0,1,... L+ 1 for Problem 7.53. Assume that y[—1] = $10,000, L = 60, » = 0.1 and the monthly
payment is chosen to bring the loan balance to zero after 60 payments.

From Problem 7.53:

p—1
c = y[-1] ="
y[-1] = 10,000
L = 60
r
= 14+ —=1.
P + D 00833
c = 0.02125
b = [y[-1]p—¢c, —c(ones(1,59))]

IS]
Il

(L, pl

o8



P7.61
1000 (0) T T T T T T

9000 o B
8000 |- o 8
7000 | o} R
6000 |- Po g

5000 Po .

Balance

4000 o ]
3000} o .
2000 E

1000

: WTT%

0 10 20 30 40 50 60
Month

Figure P7.61. Monthly loan balance.

7.62. Use the MATLAB command zp2sos to determine a cascade connection of second-order sections

for implementing the systems in Problem 7.38.

SOS =

1.0000 -0.3536 0.0625 1.0000 -0.5000 0.2500
1.0000 0.4619 0.0625 1.0000 1.3858 0.5625

SOS =

1.0000 4.0000 4.0000 1.0000 0.3750 -0.2813
1.0000 -0.0000 0.2500 1.0000 -0.3750 0.1406



7.63. A causal discrete-time LTI system has the transfer function

0.0976(2 — 1)%(2 +1)2

H(z) =
() (z — 0.3575 — j0.5889)(z — 0.3575 + 50.5889)(z — 0.7686 — j0.3338)(z — 0.7686 + ;j0.3338)

(a) Use the pole and zero locations to sketch the magnitude response.

_, 0.3338
I m / a.l: tan 122
0.7686
-1 0.5889
a=tan  ————
2 0.3575

double

» Re

Figure P7.63. (a) Pole Zero plot

Ssymmetric

Figure P7.63. (a) Sketch of the Magnitude Response.
(b) Use the MATLAB commands zp2tf and freqz to evaluate and plot the magnitude and phase response.
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P7.63(b)

[H(Omega)|
o o o
» o ©
T T T
1

o
N
T

1

o

< H(Omega) : rad

Figure P7.63. (b) Plot of the Magnitude Response.

(¢) Use the MATLAB command zp2sos to obtain a representation for this filter as a cascade of two
second-order sections with real-valued coefficients.

H(z) = 0.1413(1 + 2271 + 272) 0.6907(1 — 2271 + 272)
— \1-0.71527 1+ 0474622 ) \ 1 — 1.5372z~1 + 0.702222

(d) Use the MATLAB command freqz to evaluate and plot the magnitude response of each section in (c).

61



P7.63(d)

IH, (Omega)]
© o o o o
N w B (3] [}
T T T T T
1 1 1 1 1

©

i
T
!

o

Omega

=

(53]
T
I

,(Omega)|

IH
I
(53]

T

!

ol ! ! ! ! !
-3 -2 -1 0 1 2 3

Omega
Figure P7.63. (d) Plot of the Magnitude Response for each section.
(e) Use the MATLAB command filter to determine the impulse response of this system by obtaining the
output for an input z[n] = d[n].

P7.63(€)

0.15f 4

0.1¢r 7

0.05} T -
of TT?O foreicielelelolofeYoYoYoYolololeYee Yo oleYeloYcYo eYolo):
J) 6&3566

-0.05 ,

Impulse Resp

0 5 10 15 20 25 30 35 40 45

Figure P7.63. (e) Plot of the Impulse Response.
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CHAPTER 8

Additional Problems

8.16

8.17

Provided that the channel bandwidth is not smaller than the reciprocal of the transmitted
pulse duratior, the received pulse is recognizable at the channel output. TAthus, a

small enough value for the channel bandwidth i$)#/1 Hz = 1 MHz.

For a low-pass filter of the Butterworth type, the squared magnitude response is defined by
.2 1

H(jw)* = ———— (1)

1+ (w/ w,)

At the edge of the passbanal= wy, we have (by definition)
|H(joop)| =1-0

We may therefore write

1-0) = 1 2
L0 = @

Define
2 2
O, =1-(1-0) = 20-0
Then solving Eq. (2) fowy:
O
- g-o
Wp = h-o, %”C

Next, by definition, at the edge of the stopband; w,, we have
|H(joos)| =90

Hence
62 _ 1

) 1+ (ms/wc)2N

3)

Define
5 = &

Hence, solving Eq. (3) fang:

_ =%
W = (] 50 %"’c




8.18 We start with the relation
(2
|H(J(*))|Jm:s = H(S)H(_S)
For a Butterworth low-pass filter of order 5, the 10 polesH§§)H(-s) are uniformly
distributed around the unit circle in teglane as shown in Fig. 1.

jw

splane

Figure 1

Let D(s)D(-s) denote the denominator polynomialls)H(-s). Hence
D(s)D(-s) = (s+1)(s+ cosl44 + jsinl44°)(s+ cosld4® — jsinl44°)
x (s+ c0sl08 + jsin108°)(s+ cos108° — jsin108°)
x (s—1)(s—cos36° + jsin36°)(s— cos36° — | sin36°)
X (s—c0s72° + jsin72°)(s— cos72° — jsin72°)

Identifying the zeros oD(s)D(-s) in the left-half plane withD(s) and those in the right-
half plane withD(-s), we may express D(s) as

D(s) = (s+1)(s+ cosl44’ + jsinl44°)(s+ coslad’® — jsinlad°)
X (s+ c0sl08° + jsin108°)(s+ cosl08° — jsin108°)

= & +3.2361" +5.2361° +5.2361° +3.23615 + 1

Hence,
H (S) = i
D(s)
1

s° +3.2361" +5.2361° +5.2361° +3.23615 + 1

8.19 (a) For filter ordeN that is odd, the transfer functidd(s) of the filter must have a real
pole in the left-half plane. Let this pole be -a wherea > 0. We may then write

_ 1
1) = srap



whereD'(s) is the remainder of the denominator polynomial. For a Butterworth low-
pass filter of cutoff frequenoy, all the poles oH(s) lie on a circle of radiuso. in the
left-half plane. Hence, we must hawve .

(b) For a Butterworth low-pass filter of even ordérall the poles of the transfer function
H(s) are complex. They all lie on a circle of radiug in the left-half plane. Les = -a -

jb, with a> 0 andb > 0, denote a complex pole bi(s). All the coefficients oH(s) are
real. This condition can only be satisfied if we have a complex conjugate pete-at
+ jb. We may then express the contribution of this pair of poles as

1 _ 1
(s+a+ jb)(s+a-jb) (g1 g2+ p?
whose coefficients are all real. We therefore conclude that for even filter Nydslr
the poles oH(s) occur in complex-conjugate pairs.

8.20 The transfer function of a Butterworth low-pass filter of order 5 is

1
H(s) = S : (1)
(s+1)(s"+0.618+1)(s" +1.61&+1)
The low-pass to high-pass transformation is defined by

S > =
S

where it is assumed that the cutoff frequency of the high-pass filter is unity. Hence
replacingswith 1/sin Eq. (1), we find that the transfer function of a Butterworth high-pass

filter of order 5 is

H(s) = L

L, .ol , 0618, .yl | 0.618, .0
D5+1EDSZ+ S +1[DSZ+ . +15

5
_ S

(s+1)(°+0.61& + 1)(s° + 1.618& + 1)
The magnitude response of this high-pass filter is plotted in Fig. 1.

/ | Figure 1
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8.21

8.22

We are given the transfer function

H(s) = 1 (1)

(s+1)(s°+0.618&+ 1)(s+ 1.618& + 1)

To modify this low-pass filter so as to assume a cutoff frequemgy we use the
transformation

S —

W

Hence, replacing with s/w. in Eq. (1), we obtain:

H(s) = 1

2 T2 O
Os . 1%%2 +0.618> + 1535—2 +1.618> + 10
QJL)c W, PR 0, O

c c

5

W

(s+ (oc)(s2 +0.6180.s+ wi)(s2 +1.6180.5+ ooi)

We are given the transfer function

H(s) = L (1)
(s+1)(s +s+1)

To transform this low-pass filter into a band-pass filter with bandwiitentered oy,
we use the following transformation:
2, 2
S + Wy
Bs

S —

With wy = 1 andB = 0.1, the transformation takes the value

2
sT+1
0.1s (2)

—

Substituting Eqg. (2) into (1):
1
H(s) = 5 5

2 2
Uo.1s  "tiloasU  Uo.asU O

_ 0.001s°
(s°+0.1s+ 1)(s" + 25° + 1+ 0.1 + 0.1 + 0.01s%)




_ 0.001s°
(s +0.1s+ 1)(s" +0.18% + 2.01s” + 0.1s + 1)

3)

The magnitude response of this band-pass filter of the Butterworth type, obtained by
puttings=jwin EQ. 3, is plotted in Fig. 1.

Bandpass Response
1.4 T T

1.2 -

0.6 -

Squared Magnitude Response

0.4 1

Figure 1

0

I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
Normalized Frequency w/wc

8.23 For the counterpart to the low-pass filter of order one in Fig. 8.14(a), we have
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For the counterpart to the low-pass filter of order three in Fig. 8.14(b), we have

T

— 00— N\N\N __|_r)_m\_()_l_0
| |
|

: o+

vi(t) +_> SRR A v

| IF|
| |
| |

0O D D | O

Input [ ! Output
Filter

Note that in both of these figures, th@ Tesistance may be used to account for the source
resistance. Note also that the load resistance is infinitely large.

8.24 (a) For Fig. 8.14(a), the capacitor has the value
C = 2 1 =F
(107)(2mtx 10Y)
10° -
21
159 pF

(b) For Fig. 8.14(a), the two capacitors are 159 PF each. The inductor has the value
(10%)
(211x 10°)
100
21
15.9 mH

L = H

mH

8.25 Let the transfer function of the FIR filter be defined by
H(2) = (1-Z)A(2) (1)

whereA(z) is an arbitrary polynomial irrl. The H(2) of Eq. (1) has a zero &= 1 as
prescribed. Let the sequeref@] denote the inversetransform ofA(z). Expanding Eq.

(1):
H(2) = A(Q-Z ‘A2 2)



8.26

which may be represented by the block diagram:

—» A@

—» H@—>» =

71

From Eg. (2) we readily find that the impulse response of the filter must satisfy the

condition
h[n] = a[n] —a[n—-1]

wherea[n] is the inverse-transform of an arbitrary polynomia(z).

Let the transfer function of the filter be defined by

M/2

] JQ — 'jn

H'(e'™) = Z hy[nle
n=-M/2

Q

Replacingnh with n - M/2 so as to make the filter causal, we may thus write

N2

n=0

M

_ _iMQ/2 _ M7 _-ina

=e zohd[n Z}e
n=

We are given that

M M
h[n] = hy[n] for—Esns—Z—
This condition is equivalent to
hd[n—%} = h[n] fo0<n< M

Hence, we may rewrite Eq. (1) in the form

N
eJM Q/2 Z h[ n] e—an
n=0
H(e'?)

H'(e'?) =

_ iMQr2
=e
Equivalently we have

H(ejQ) _ e—jMQ/ZH,(ejQ)
which is the desired result.

(1)



8.27 According to Egs. (8.64) and (8.65), the magnituddzl and phase = arg{z} are defined

by
2 2d./2
(= g1+0)2+mZD (1)
H1-0)"+w™0
-1 -1
0 =tan L0 tgn L0 (2)

(1 + ol [ — ol

These two relations are based on the transformation
zzreje:lLS, S=0+jw
l-s
For the more general case of a sampling raftgftf which we have
_ 1zl
T. z+1

s
or

TS
l—'TZ—S

T T
—w ando with =

we may rewrite Eqgs. (1) and (2) by replaciugyith 5 5

/2
1 voff o]

r > 0
B il
%%—ogﬂuzﬂ
0

S

3.8 400
8 = tan =2 [—tan =2p]
02 4 g0 02 _ 40
or,"°0 or, 0

S

0, obtaining

8.28 (a) From Section 1.10, we recall the input-output relation
y[n] = x[n] +py[n—1]

Takingz-transforms:
Y(D = X(D+pZY(D

The transfer function of the filter is therefore



Y(2 _ 1

O = 33 = T (1)

Forp =1, we have

H@Z) = —2— (2)
1-z

Forz =jQ, the frequency response of the filter is defined by

iy _ 1
H(e™) = oo
with
| 1
HE = ——
1-¢79
_ 1
1/2
[(1—cosQ)? + sin“Q]
_ 1
(2—2cosQ)?

which is plotted in Fig. 1 foO< Q < 1t . From this figure we see that the filter defined
in Eg. (2) does not deviate from the ideal integrator by more than 1% for
0<Q<0.49.

25F

Percent error occurs at w = 0.49

Magnitude
=
o1 N
T

-
T

Filtered

— N
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Il Il Il Il Il
0.5 1 15 2 25 3
Normalized Frequency

I
2]

Figure 1
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(b) Forp =0.99, the use of Eqg. (1) yields
1
H(z) = ——— (3)
1-0.9%

for which the frequency response is defined by

i 1
HE?) = ———
1-0.9%7¢
That is,
HE)| = ——1—31—9'
|1-0.9%79
_ 1
1/2
[(1—0.99c0sQ)? + (0.995inQ)?]
1
1/2

(1.98— 1.980sQ)

which is plotted in Fig. 2. From this second figure we see that the usable range of the filter
of Eq. (3) as an integrator is reduced to 0.35.

p=0.99
T

\ 1 Percent error occurs at w = 0.36

Magnitude
N

Figure 2

Filtered

— N\

Ideal /
I I I I I

0 0.5 1 15 2 25 3

Normalized Frequency

8.29 The transfer function of the digital IIR filter is
0.018%z+ 1)*
(z—0.50953(2* - 1.250% + 0.39812

H(2) =

Expanding the numerator and denominator polynomiat§#fin ascending powers of

10



1 we may write

0.018Y 1+ T - +37°+7°)
1-1.7564 * + 1.030& >—0.2014 >

7

H(z) =

Hence, the filter may be implemented in direct form Il using the following configuration:
0.0205

Output

Input
yln]

x[n]

0.2014

8.30 (a) The received signal, ignoring channel noise, is given by
y(t) = x(t) + 0.1x(t—10) + 0.2x(t—15)
wherex(t) is the transmitted signal, and tinhés measured in microseconds. Suppose
y(t) is sampled uniformly with a sampling period gii§ yielding
y[n] = x[n] +0.1x[n—-2] +0.2x[ n—3] (2)

(b) Taking thez-transforms of Eq. (1):

Y(2) = X(2) +0.12 2X(2) + 0.22 X (2)
which, in turn, yields the transfer function for the channel:
- YD 101240073
H(2) X(2) 1+0.1z"+0.2z
The corresponding equalizer is defined by the transfer function
1 1
H.(2) = =
* H@)  1+0172+027°
which is realized by the IIR filter:

» Equalizer

yln]
output

11



For Heq(z) to be stable, all of its three poles or, equivalently, all three roots of the
cubic equation

1+0.12%+0.22° = 0, or equivalently,

22+0.1z+0.2= 0

must lie inside the unit circle in theeplane. Using MATLAB, we find the roots are
z= 0.2640 40.5560

z= 0.2640 §0.5560

z=-0.5280

which confirm stability of the IIR equalizer.

[Note: The stability ofH.,(zZ) may also be explored uysing an indirect approach,
namely, the Routh-Hurwitz criterion which avoids having to compute the roots. First,
we use the bilinear transformation

_1l+s

T 1-s

and then construct the Routh array as described in Section 9.12. The stability of
Heq(z) is confirmed by examining the coefficients of the first column of the Routh

array. The fact that all these coefficients are found to be positive assures the stability of
He(@) ]

V4

Realizing the equalizer by means of an FIR structure, we have
Heo(?) = (1+0.222+0.227%)

_ _ _ 3.2 _ 3.3
1-(0.122+0.22°) +(0.12°+0.223) = (0.12 2 +0.22°) " + ...
1-(0.122+0.223) + (0.012* + 0.042° + 0.042 %)

—(0.001z° +0.0067 " +0.0122 % +0.00& %) + ...

Ignoring coefficients smaller than 1% as specified, we have the approximate result:
Heg(2)=1-0.12 7~ 0.22°+0.01Z * +0.04z ° +0.04z °~0.0122"°
which is realized using the following FIR structure:

Equalizer
output

12



Advanced Problems

8.31 The integrator output is
t
y(t) = [ x(D)dr (1)

FT
Let x(1) o X(jw).We may therefore reformulate the expressioy@ras

[l 0
t O gl . jot . ] O
y(t) = . 0 EE{]’_()()X(Joo)e de ot
°E|:|\:|\:|\:|\:|\:|\:|\:|\:|\:|\:|E
X(1)
Interchanging the order of integration:
| . t jot
y(t) = J’_ 2T[X(Jw)a't_Toe dt%joo
. Tor]
e To Ty le-30
= Z—TJ_OOX(jOO) DQ_T[S'nCDEEF dw (2)

(a) Invoking the formula for the inverse Fourier transform, we immediately deduce from
Eq. (2) that the Fourier transform of the integrator ougliis given by

Y(jw) = smc dﬂo%s_j WTo/2 (3)

Examining this formula, we also readily see tlyét) can be equivalently obtained by
passing the input signaft) through a filter whose frequency response is defined by

[fDToEF—j wTy/2

H(jw) = ——smc

The magnltude response of the filter is depicted in Fig. 1:

0.2

0.181
TI2*pi

0.16 - J—

0.14 Ideal Low Pass
Filter

012
0.1
0.08
ocer ] Figure 1

0.04

0.02[

0
-6*pilT =4*pi/T =2*pilT 0 2*pilT 4*pilT 6*pi/T

13



(b) Figure 1 also includes the magnitude response of an “approximating” ideal low-pass
filter. This latter filter has a cutoff frequeney, = 21/Ty and passband gain f/2t

Moreover, the filter has a constant delayTgf2. The response of this ideal filter to a
step function applied at time= O is given by

——dA

(t) - A

=H- es
20sinA
00

At t =T, we therefore have

, _ Ty 1 sinA
y(To) = — [ 5
_ Tog® sinA TTSinA |, []
== _m—d)\ J' y d)\
= ﬁ(s(wws(m)
= 1.09T,

From Eg. (1) we find that the ideal integrator output at tinveT in response to the
step functiorx(t) = u(t) is given by

y(To) = Izou(r)dr

It follows therefore that the output of the “approximating” ideal low-pass filter exceeds
the output of the ideal integrator by 9%. It is noteworthy that this overshoot is indeed a
manifestation of the Gibb’s phenomenon.

8.32 To transform a prototype low-pass filter into a bandstop filter of midband rejection
frequencyw, and bandwidttB, we may use the transformation

s Bs _ (1)
S + Wy
An as illustrative example, consider the low-pass filter:
1
= 2
H(s) = =5 (2)

Using the transformation of Eq. (1) in EqQ. (2), we obtain a bandstop filter defined by

1

H(s) = ———
Bs

+1

2, 2
s™+ wy

14



2, .2
_ S +w

52 +Bs+ w(z)
which is characterized as follows:
H(S)|S:O = H(S)|S:oo = 1

H(S)|s:ijwo = O

8.33 An FIR filter of type 1 has an even length and is symmetric aboutl/2 in that its
coefficients satisfy the condition

h[n] = h[M—-n] forn =0,1,...,M

The frequency response of the filter is

M
H(e'®) = ¥ h[nje ™
n=0

which may be reformulated as follows:

M1
2 M
iQy _ —-jnQ M7 _-imq/2 —-jnQ
H(e'?) = Zh[n]e +h[2}e + Y hinje
n=0 n:-|\24+1
M M
E-l —M— . E-l .
= ¥ hinje ™+ h 2 e M2 4 5 M - e M
L 2]
n=0 n=0
M M
2t 2
= 3 hinle?™+h 3 M2+ 5 nje MY (1)
n=0 T n=0

Define

a[l] = Zh[%—k} K=12 ...

- M
a[O]—h[z}
and let

- M_
n= > k

We may then rewrite Eqg. (1) in the equivalent form:

15



8.34

M
Us U
H('?) = MY 2 h[%—k}(e”“he JkQ)+h[%}D
i |
0
:
- e—JMQ/ZDz 2a[ k](eJkQ + e—]kQ) +a(0)
=1 %
M
072

e MQ/ZEZ a[ K] cog(kQ) )
=0

OOoOoOod

From Eqg. (2) we may make the following observations for an FIR filter of type I:

1. The frequency responsd(ejQ) has a linear phase component exemplified by the

L _iMQ/2
exponentiake™ .

2. AtQ =0,
M/2

HE) = 3 alk
k=0
AtQ =T,

M/2 Mk

HE™ = F alk(-1)*

k=0

The implications of these two results are that there are no restrictidmee&%) at
Q=0andQ =1L

For an FIR filter of type I, the filter lengtil is even and it is antisymmetric in that its
coefficients satisfy the condition

hin] = —h[M—n], 0sns%—1

The frequency response of the filter is

M
H(?) = Zh[n]e_jng
n=0

which may be reformulated as follows:

16



I=

2 M
HEY) = 3 hinje?™ + h[%}e‘jMQ/2+ S hinje™

n=0 n=%+1
- Z h[n]e JnQ \4) e—]MQ/2+ Z h[M_n]e—j(M—n)Q
_2_
n=0 n=0
M
El N 51 |
- z h[n]e jnQ 4 e—JMQ/Z_ Z h[n]e—j(M—n)Q (1)
L2
=0 n=0
Define
_ op[M _ M
a[k]—2h[2 } K=12..%
- nM
a[0] = h[z]
and let
-M_
k = > n

We may then rewrite Eq (1) in the equivalent form
M/2
iQ oiMQs2 M_ ek M gIMQ/2 _ -iMa/2 M —jkQ
H(?) = Zh[ k} +h[2} _e Zh[ k}e

M/2
_JMQ/ZEQz [k](eJkQ ij)+a[O]E

0. M/2
= ¢ IMY/25 ) z a[k] sin(kQ +a[0])D

M/2
= g IM/2 Y alKsin(kQ) )
k=0

From Eq. (2) we may make the following observations on the frequency response of an
FIR filter of Type Il

1. The phase response includes a linear component exemplified by the exponential
—jMQ/2
e :

2. AtQ =0,

17



H(E%) = 0
At Q =T, sinkm) = 0 for integek and therefore,

HE™ = 0

8.35 An FIR filter of type Il is characterized as follows:
» The filter length M is an odd integer.

» The filter is symmetric about the noninteger midpairt M/2 in that its coefficients

satisfy the condition
h[n] = h[M—-n] forOsn<s M

The frequency response of the filter is

M
H('®) = 3 h[nje ™
n=0

which may be reformulated as follows:

M-1
2 M
jQy _ —-jnQ —-jinQ
H(e'™) = Zh[n]e + Z [n]e
n=0 VES!
2
M-1 _M-1

n

2
hnje '™ + S h[M—n]e /(M=me
n=0

2
— z h[n](e—an+e—j(M—n)Q)

n=0
M-1 M EP M EP
2 M _ LM
i Ology " Itp ~"2°0
= e MY25 nnje +e 0
n=0 2 |
Define
b[K] = 2h['\"+1- } fork = 1,2, ... M*1
2 2
and let

18
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M+1

2—k

n =

We may then rewrite Eq. (1) in the equivalent form

M+1
2 ok-10 _igh_1

: - g 30 etk H]

HE?) = M2y haore  Z+e Q0

&2 0 b

M+1
2
—-iMQ/2 1
=g > b(k)cos%z%—é% (2)

k=1
From Eq. (2) we may make the following observations on the frequency response of an
FIR filter of type Il
1. The phase response of the filter is linear as exemplified by the exponential factor

-iMQ/2
e .

2. AtQ =0,
M1

2
HE™) = ¥ b(k
k=1

which shows that there is no restriction Idr@ejo)

At Q =T,
M1
>
H(™ = g M2 z b(k)cos%@(—%%
k=1
M+1

2
= g M2 S b(K)sin(Tk)
k=1
which is zero since sink) = 0 for all integer values &

8.36 An FIR filter of type IV is characterized as follows:
» The filter lengthM is an odd integer.
* The filter is antisymmetric about the noninteger midpomt= M/2 in that its
coefficients satisfy the condition

h[n] = -h[M —n] for0snsM

The frequency response of the filter is

19



M
H(e'?) = S hnje!™®

n=0
which may be reformulated as follows:
M-1
H(E®) = Y hine™+ 5 hinje!™
n=0 _M+1
2
M-1 M-1
7 2
= S h[nje™+ § h[M—nje’ M-
n=0 n=0
M-1 M-1
2 2
= ¥ hine™ -y hinje!™-Me
n=0 n=0
w1 0 M
_ —JMQ/Zih[n 0-id-3 _ejg“E%’E
n=0 C
Define
bk = 2h['\"—+1— } fork = 1,2, ..., M*1
2 2
and let
M+1
k = T—n

We may then rewrite Eq. (1) in the equivalent form

M+1
H(e]Q) _ JMQ/ZEh[M+1 }Eei%‘%gb_e-l%‘%%‘)é
M+l
= jeMe/2 Z Zh[——k}sin%__
M_+1

) 2
je™2 5 biksinfH-3
k=1

(1)

(2)

From Eqg. (2) we may make the following observations on the FIR filter of type IV:

20



8.37

8.38

1. The phase response of the filter includes a linear component exemplified by the

exponentiale_“v'Q/2 .
2. AtQ =0,
HEe®) =0
At Q =T,
M+1
' iMQ/2 2 1
| .
HE™ = je kzlb(k)sm%(—égng
M+1

2
. —jMQ/2 k+1
TS (<) blK
k=1
which shows thaH (¢'™) can assume an arbitrary value.

The FIR digital filter used as a discrete-time differentiator in Example 8.6 exhibits the
following properties:

» The filter lengthM is an odd integer.

* The frequency response of the filter satisfies the conditions:

1. AtQ =0,
HE%) =0
2. AtQ =11,
HE™) =0
These properties are basic properties of an FIR filter of type Il discussed in Problem 8.34.

We therefore immediately deduce that the FIR filter of Example 8.6 is antisymmetric
about the noninteger point= M/2.

For a digital IIR filter, the transfer functibtfz) may be expressed as

H() = %

whereN(z) andD(z) are polynomials iz, The filter is unstable if any pole dfi(2) or,
equivalently, any zero of the denominator polynoniidk) lies outside the unit circle in
thez-plane. According to the bilinear transform,

H(Z) = Ha(s)|s:z-1

z+1

21



whereH,(9) is the transfer function of an analog filter used as the basis for designing the

digital IIR filter. The poles ofH(z) outside the unit circle in the-plane correspond to
certain poles oH(s) in the right half of thes-plane. Conversely, the poles E{s) in the
right half of thes-plane are mapped onto the outside of the unit circle irethiane. Now

if any pole ofH,(s) lies in the right-half plane, the analog filter is unstable. Hence if any

such filter is used in the bilinear transform, the resulting digital filter is likewise unstable.

8.39 We are given an analog filter whose transfer function is defined by
N

Ak
Ha®) = 3 574
k=1 K

Recall the Laplace transform pair
dt L 1
e’ o —

S— ¢

It follows therefore that the impulse response of the analog filter is

N
hy(t) = ZAkedkt L)
k=1

According to the method of impulse invariance, the impulse response of a digital filter
derived from the analog filter of Eq. (1) is defined by

h[n] = Tgh(nTy)

whereTg is the sampling period. Hence, from Eg. (1) we find that

N
hn] = ZTSAkendkTs 2)
k=1

Now recall thez-transform pair:
en d.Ts 4 1

< d T, -1
1-e"“°z

Hence, the transfer function of the digital filter is deduced from Eq. (2) to be
N

_ TsAk
H(Z) - Z dkTs -1
k=1 1—-e " 'z

8.40 Consider a discrete-time system whose transfer function is denoké{@bBy definition,

22



_Y(2
H(z) = X(2
whereY(z) andX(2) are respectively thetransforms of the output sequenge] and input
sequence|n]. Let H.{(2) denote thez-transform of the equalizer connected in cascade

with H(2).

Let x'[n] denote the equalizer output in responsgrpas the input. Ideally,
X'[n] = x[n-n]
whereng is an integer delay. Hence,

X2 _Z X _ 7"
Hedd =33 ° V@ " HE

Puttingz = d® , We may thus write

8.41 The phase delay of an FIR filter of even lengtland antisymmetric impulse response is
linear with frequency2 as shown by

8(Q) = —-MQ

Hence, such a filter used as an equalizer introduces a constant delay
_ 06(Q) _

1(Q) = 30 M samples

The implication of this result is that as we make the filter length M larger, the constant
delay introduced by the equalizer is correspondingly increased. From a practical
perspective, such a trend is highly undesirable.
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Computer Experiments

%Solution to 8.42
b =firl(22,1/3,hamming(23));

subplot(2,1,1)

plot(b);

title(Impulse Response’)
ylabel(Amplitude’)
xlabel('Time (s)’)

grid

[H,w] = freqz(b,1,512,2*pi);
subplot(2,1,2)
plot(w,abs(H))
title('Magnitude Response’)
ylabel(’Magnitude’)
xlabel('Frequency (w)’)

grid

Impulse Response

Amplitude

Il Il Il Il
5 10 15 20 25
Time (s)

Magnitude Response
14

I
)

Magnitude
o o
o o B
T T T

1
>

o
N

o

I I I I I
0.5 1 15 2 25 3 3.5
Frequency (w)

o

%Solution to problem 8.43
clear;
M = 100;

n=0:M;
f = (n-M/2);
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%Integration by parts (see example 8.6)
h = cos(pi*f)./f - sin(pi*f)./(pi*f."2);

k = isnan(h);

h(k) = 0;

h_rect =h;

h_hamm = h .* hamming(length(h))’;

[H,w] = freqz(h_rect,1,512,2*pi);

figure(1)

subplot(2,1,1)

plot(h_rect);
titte("Rectangular Windowed Differentiator’)
xlabel(’Step’)
ylabel(Amplitude’)

grid

subplot(2,1,2)
plot(w,abs(H))
title(Magnitude Response’)
ylabel('Magnitude’)
xlabel('Frequency (w)’)

grid

[H,w] = freqz(h_hamm,1,512,2*pi);

figure(2);

subplot(2,1,1)
plot(h_hamm);
titte("Hamming Windowed Differentiator’)
xlabel(’Step’)
ylabel(Amplitude’)

grid

subplot(2,1,2)
plot(w,abs(H))
titte('Magnitude Response’)
ylabel(’'Magnitude’)
xlabel('Frequency (w)’)

grid
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8.44 For a Butterworth low-pass filter of ordérthe squared magnitude response is

1

nw N
1+ o0

H(jw)® =

wherew is the cutoff frequency.

(a) We are given the following specifications:
() W = 2rtx 800 rad/s

@i) At w=2rx 1,500 rad/s, we have
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10log1dH (jw)|* = —15 dB
or, equivalently

L2 1
HwI” = 37658

Substituting these values in Eq. (1):

_ ., [2mx1, 200N
31.6228= 1 [ELmssl

= 1+ (15"

Solving for the filter ordeN:

N %(I0930.6228Iog 15

= 4.2195
So we choosél = 5.

%Solution to Problem 8.44

omegaC =0.2;
N =5;
wc = tan(omegaC/2);

coeff = [ 1 3.2361 5.2361 5.2361 3.2361 1]; %(see table 8.1)

ns = wc”™N;
ds = coeff .* (wc.*[0:N]);
[nz,dz]=bilinear(ns,ds,0.5);

[H,W]=freqz(nz,dz,512);

subplot(2,1,1)

plot(W,abs(H))

title(Magnitude Response of IIR low-pass filter’)
xlabel(rad/s’)

ylabel(’Magnitude’)

grid

phi = 180/pi *angle(H);
subplot(2,1,2)
plot(W,phi)

title(Phase Response’)
xlabel(’rad/s")
ylabel('degrees’)

grid
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%set(gcf, ' name’,['Low Pass: order=" num2str(N) ' wc="num2str(omegaC)])

Magnitude Response of IIR low-pass filter

=
i
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I
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%Solution to Problem 8.45

omegaC = 0.6;
N =5;
wc = tan(omegacC/2);

coeff = [ 1 3.2361 5.2361 5.2361 3.2361 1]; %(see table 8.1)

ns = [1/wc”N zeros(1,N)];
ds = fliplr(coeff ./ (wc.MO:N)));
[nz,dz]=bilinear(ns,ds,0.5);

[H,W]=freqz(nz,dz,512);

subplot(2,1,1)

plot(W,abs(H))

title('Magnitude Response of IR high-pass filter’)
xlabel(rad/s’)

ylabel('Magnitude’)

grid

phi = 180/pi *angle(H);
subplot(2,1,2)
plot(W,phi)

title(Phase Response’)
xlabel(’rad/s")
ylabel('degrees’)
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grid
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%Solution to problem 8.46

w = 0:pi/511:pi;

den = sqrt(1+2*((w/pi)."2) + (w/pi)."4);
Hchan = 1./den;

taps = 95;

M = taps -1;

n=0:M;

f=n-M/2;

%Term 1
hh1 = fftshift(ifft(ones(taps,1))).*hamming(taps);

%Term 2

h = cos(pi*f)./f - sin(pi*f)./(pi*f.”2);
k=isnan(h); h(k)=0;

hh2 = 2*(hamming(taps)’.*h)/pi;

%Term 3

hh3a = -(1./(pi*f)) .* sin(pi*f);

hh3b = -(2./(pi*f).~2) .* cos(pi*f);

hh3c = (2./(pi*f).”3) .* sin(pi*f);

hh3 = hamming(taps) .* (hh3a + hh3b + hh3c)’;
hh = hhl’ + hh2 + hh3’;

hh(48)=2/3,;
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[Heq,w]=freqz(hh,1,512,2*pi);
p =0.7501;

Hcheq = (p*abs(Heq)).*Hchan’;
plot(w,p*abs(Heq), b--)

hold on

plot(w,abs(Hchan),'g-.")
plot(w,abs(Hcheq),r-")
legend('Heq’, 'Hcan’, 'Hcheq’,1)
hold off

xlabel(’Frequency (\Omega)’)
ylabel('Magnitude Response’)
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CHAPTER 9

Additional Problems

9.21 (a) The closed-loop gain of the feedback amplifier is given by

A
- 1+ BA (1)
We are given the following values for the forward amplificatdand feedback factor
B:
A=2,500
B =0.01
Substituting these values in Eq. (1):
2500 _ 2500 _

= 92.15

- 1+0.01x 2500 26

(b) The sensitivity of the feedback amplifier to changesimgiven by
_AT/T 1 _ 1
AA/A  1+BA 26
With (AA/A) = 10% = 0.10, we thus have
AT _ ARAQ
T §D—A_D

- 216(0.10) = 0.0038= 0.38%

9.22 (a) The closed-loop gain of the feedback system is
T = G,G,
1+HG,G,

(b) The return difference of the system is
F = 1+HG,G,
Hence the sensitivity of with respect to changes @}, is

G, _ AT/T
Srs AG,/ G,

1+HG,G,

: G .
(c) We are givenH = 1 andG,, = 1.5. Hence fo5;" =1% =0.01, we require
F = 100



The corresponding value G, is therefore

G = F-1

a

1
Slg
©

1
o))
o

9.23 The local feedback around the motor has the closed-loop3#ih + HG). The closed-
loop gain of the whole system is therefore
_ KGG/(1+HG)
1+K GG/ (1+HG)
— KchGp
1+HG,+K, GG,

9.24 The closed-loop gain of the operational amplifier is
Vo(s) _ Zy(9)

Vi(s)  Zy(9)
We are givernZy(s) = R; andZy(s) = Ry,. The closed-loop gain or transfer function of the

operational amplifier in Fig. P9.24 is therefore
V,(s) _ R
V(s) R,

9.25 (a) From Fig. P9.25, we have

1
= +
Z:(s) = Ry sC,

Z5(8) = R,
The transfer function of this operational amplifier is therefore
Vo(s) _ Zy(9)
Vy(s) T Zy(9)
R;
1

R, + ——
17 sc

= — __S_c_:l_Rz_ (1)
1+sCR;

(b) For positive values of frequenaythat satisfy the condition



1
(,O_Cl > >R1
we may approximate Eq. (1) as
V,(s)
Vl(S) - SClRZ

That is, the operational amplifier acts as a differentiator.

9.26 Throughout this problentj(s) = 1, in which case the open-loop transfer equa(s). In
any event, the open-loop transfer function of the feedback control system may be

expressed as the rational functiB(s)/(s’Q;(s)), where neither the polynomidi(s) nor
Qq(s) has a zero & = 0. Since 1¢is the transfer function of an integrator, it follows tipat

is the number of free integrators in the feedback loop. The grdereferred to as thg/pe
of the feedback control system.

(a) For the problem at hand, we are given

_ 15
¢ = T )s+3)

The control system is therefore type 0. The steady-state error for unit step is

_ 1
Hss = 1+K,
where
Kp = lim G(s)H(s)
s~ 0
That is,
L 15
Ko = Im 5D (+9)
15 _
=3 5
Hence,
_1o_1
ss” 1+5 6

For both ramp and parabolic inputs, the steady-state error is infinitely large.
(b) For
- >
Gl = s(s+1)(s+4)

the control system is type 1. The steady-state error for a step input is zero. For a ramp
of unit slope, the steady-state error is



L 5
vE M G DG

=2
4
The steady-state error is therefore

_4
Ogs = 5
For a parabolic input the steady-state error is infinitely large.

(c) For
G(s) =

5(s+1)

sz(s +3)
the control system is type 2. Hence, the steady-state error is zero for both step and
ramp inputs. For a unit parabolic input the steady-state error is

1
Dss_ R;
where
o 5(s+1)
Ka_shino s+3
-2
3

The steady-state error is therefore 3/5. For a unit parabolic input the steady-state error
is infinitely large.

(d) For

G(s) = 5(s+1)(s+2)

sz(s +3)
the control system is type 2. The steady-state error is therefore zero for both step and
ramp inputs. For a unit parabolic input the steady-state error is

1
Dss = R';
where
K = lim S*1(s*2)
s> 0 s+3
_ 10

3
The steady-state error is therefore 3/10.

9.27 For the results on steady-state errors calculated in Problem 9.26 to hold, all the feedback
control systems in parts (a) to (d) of the problem have to be stable.



@ G9HS) = GrisT)

The characteristic equation is
A(s) = (s+1)(s+3)+15

= S +4s+18
both roots of which are in the left-half plane. The system is therefore stable.

5
s(s+1)(s+4)
__ S5
33 + 582 +4s

(b) G(s)H(s) =

A(s) = $®+55%+4s+5

Applying the Routh-Hurwitz criterion:

3 1 4
2 5 5
d 1555 0
O 5 0

There are no sign changes in the first column coefficients of the array; the system is
therefore stable.

5(s+1)

2

() G(9)H(s) =
s (s+3)

A(s) = $®+35°+55+5

The Routh-Hurwitz array is:

3 1 5
2 3 5
d 103 0
O 5 0

Here again there are no sign changes in the first column of coefficients, and the control
system is therefore stable.



5(s+1)(s+2)
32(s+ 3)

(d) G(s)H(s) =

A(S) = S°+35° +55° + 155 + 10

= 33+852+15s+10

The Routh-Hurwitz array is

3 1 15
2 8 10
g 1108 0
O 10 0

Here again there are no sign changes in the first column of array coefficients, and the
control system is therefore stable.

928 (a)s'+25°+1=0
Equivalently, we may write
2
(°+1)° =0
which has double roots at= +j. The system is therefore on the verge of instability.

(b) st+Pf+s+05=0
By inspection, we can say that this feedback control system is unstable because the
term < is missing from the characteristic equation. We can verify this observation by
constructing the Routh array:

& 1 0 0.5
3 1 1 0
2 -1 05 0
ol +15 O

Y 95 O

There are two sign changes in the first column of array coefficients, indicating that the
characteristic equation has a pair of complex-conjugate roots in the right-half &f the
plane. The system is therefore unstable as previously observed.

(c) str2+28%+25+4 = 0



The Routh array is

& 3 4
3 2 0
2 4 0
4 2 0
O 4 0

There are two sign changes in the first column of array coefficients, indicating the
presence of two roots of the characteristic equation in the right-half et ftttene. The
control system is therefore unstable.

9.29 The characteristic equation of the control system is

S+f+s+K =0
Applying the Routh-Hurwitz criterion:

S 1 1
2 1 K
d 1K 0
O K 0

The control system is therefore stable provided that the parariesatisfies the
condition:
O0<K<1

9.30 (a) The characteristic equation of the feedback system is

3 2 _
as +a,s +ta;s+g =0

Applying the Routh-Hurwitz criterion:

s az ag

&2 a ag
aa) —a3dy
) 0

st a,

o Y

For the system to be stable, the following conditions must be satisfied



a;>0,a,>0,a,>0 and

8>3 — 338y
a

>0 (1)

(b) For the characteristic equation

3 2
S +s +s+K =20

we haveag = 1,a, = 1, andy; = 1 andag = K. Hence, applying the condition (1):

1x1-1xK >0
1

or

K<l

Also, we require thak > 0 since we must hava, > 0. Hence K must satisfy the

condition 0 >K < 1 for stability.

9.31 (a) We are given the loop transfer function

L(s) = ————, K>0

s(s +s+2)
_ 1,7

L(s) has three poles, onesat 0 and the other two at= — 5 * 1=

Hence, the root locus di(s) has 3 branches. It starts at these 3 pole locations and

terminate at the zeros &fs) ats = . The straight-line asymptotics of the root locus

are defined by the angles (see Eqg. (9.69))

0, = @ k=012

or Y3, 1, and 573. Their location point on the real axis of tsglane is defined by

(see Eq. (9.70))

0+0. 1, /70 70

O271%20 571320
3

Og =

=1
3

SinceL(s) has a pair of complex-conjugate poles, we need (in addition to the rules

described in the text) a rule concerning the angle at which the root locus leaves a
complex pole (i.e., angle of departure). Specifically, we wish to determine the angle
B4epindicated in Fig. 1 for the problem at hand:



s-plane X I
edep »
4—\91 o

Figure 1

The angled; and6, are defined by

-1
0, = tan D220 = tan(2.6458 = 1117

[1/20
6, = 90°
Applying the angle criterion (Eqg. (9.......... )):
Bgept 90° +111.7 = 180
Hence,
Ogep = —21.7C0°

We may thus sketch the root locus of the given system as in Fig. 2:

7 s-plane

Figure 2

(b) The characteristic equation of the system is

s3+52+25+K =0



Applying the Routh-Hurwitz criterion:

S 1 2
2 1 K
d 2K 0
O K 0

The system is therefore on the verge of instability wKen 2. For this value oK the

root locus intersects theraxis ats’ + K =0 ors = +j./K = +j./2, as indicated in
Fig. 2.

9.32 The closed-loop transfer function of a control system with unity feedback is

_ _L(s
T(s) = 1+L(9
We are given
K K
L = =
(s) s+D - 243
Hence
K
TS = 53—/
s +3+K

(a) ForK = 0.1 the system is overdamped

0.1
TS = 5——
s +s+0.1

wherew, = /0.1 andZ = 0.5/./0.1.

(b) ForK = 0.25 the system is critically damped:

0.25
e =5
s +s+0.25

wherew, = 0.5 and{ = 1.

(c) ForK = 2.5 the system is underdamped:

0.25
(e = 57—
S +s+2.5

wherew, = 25 and{ = 0.5/./25.

10



Figure 1 plots the respective step responses of these three special cases of the feedback
system.

%Solution to problem 9.32
t = 0:0.1:40;clc;

%Underdamped System
K=0.1,

w = sqrt(K);

z = 0.5/w;

fac = w*sqrt(1-z"2)*t + atan(sqrt(1-z"2)/z);
yl =1 - 1/sqrt(1-z"2).*exp(-z*w*t).*sin(fac);

figure(1);clf;

plot(t,yl,-")

%ylim([0 1.5])

xlabel("Time (s)’)
ylabel('Response’)
%title(Underdamped K = 0.1")
hold on

%Critically Damped System
K =0.25;

w = sqrt(K);

z =0.5/w

tau = 1/w

y2 =1 - exp(-t/tau) - t.*exp(-t/tau);
plot(t,y2,-.)

%Over Damped System

K = 2.50000;

w = sqrt(K);

z = 0.5/w;

tl =1/ (z*w - w*sqrt(z"2-1));
t2 = 1/ (z*w + w*sqrt(z"2-1));
k1 =0.5*(1+ z/sqrt(z"2+1));
k2 =0.5* (1 - z/sqrt(z"2+1));

y3 =1 - k1*exp(-t/tl) - k2*exp(-t/t2);
plot(t,y3,--")

hold off

legend (K=0.1K=0.25/K=2.5)

11
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9.33 We are given the loop transfer function
L(s) = K(s+ 0.45)
(s+1)

Figure 1 shows the root locus diagram of the closed-loop feedback system for varying
positive values oK.

%Solution to problem 9.33
num =[1 0.5];
den=[14641];

rlocus(num,den)
axis([-1.5.1-2.2 2.2))

Root Locus

15 -

05 -

Imag Axis
o
O
|

-15f .

-15 -1 -0.5 0
Real Axis
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9.34 We are given the loop transfer function

L) = ————
(s+1)"(s+5)

(a) Figure 1 shows the root locus diagram of the closed-loop feedback system for varying
K.
Next, putting s JFw,

L(jo) = ———
(jw+1)"(jo+5)

Parts (a), (b) and (c) of Fig. 2 show plots of the Nyquist locus of the systé&m=f&0,
72, and 100. On the basis of these figures we can make the following statements:
1. ForK =50 the locus does not encircle the critical point (-1, 0) and the system is
stable.
2. ForK =100 the locus encloses the critical point (-1, 9) and the system is unstable.
3. ForK =72 the Nyquist locus passes through the critical point (-1,0) and the system
is on the verge of instability.

(b) The critical valu&k = 72 is determined in accordance with the condition
Kcritical

1/2
(02 + 1) (wp + 25)

IL(jwp)| =

wherew, is the phase crossover frequency defined by

_ -1 —llji)—p['
180° = 2tan (oop)+tan 05 0

For a gain margin of 5 dB:
20|OglOK = 2aoglchritical'5
Hence

72 _ 712

= antilog(0.25) 17783 1049

(c) ForK = 40.49 the gain-crossover frequency is
2
(40.49% = (1+wg) (25+ ;)
Let wg = X, SO rewrite this equation in the form of a cubic equation in

x>+ 27x° +51x— 1614 = 0
The only positive root of is 6.2429. Hence

Wy = +/6.2429= 2.4986

14



The phase df(jw) atw = 2.4986 is

-1
2tan (2.498§ + tan 52

2

498
% = 2%x68.2+26.5

= 162.9

The phase margin is therefore
¢, = 180°-162.9 = 17.I°

%Solution to problem 9.34

clear; clc;
num = [1];

den=[17115];

figure(1);clf;

rlocus(num,den)

figure(2);clf;

nyquist(num,den)
xlim([-1.1 0.22])

Imag Axis

Root Locus

K =73.56

-15

-10

-5

Real Axis
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9.35

9.36

We are given

_ K
L(s) = S5+ 1)

Fors=jw,

L(jo) = ——

jo(jw+1)

from which we deduce:

L)l = —S— (1)
w(w +1)
arg{ L(jw)} = - 90 — tan_l(w) (2)

From Eq. (2) we observe that the phase response_grg)} is confined to the range [-90
-180]. The value of -180is attained only ato = c. At this frequency we see from Eq. (1)
that the magnitude respond«j{v)| is zero. Hence, the Nyquist locus will never encircle
the critical point (-1,0) for all positive values & The feedback system is therefore stable
forallK > 0.

We are given

L(s) = 5
s(s+1)

Fors=jw,

L(jo) = ——

P (jw+1)

from which we deduce:

: K
IL(jw)l =
(1)2((1)2 + 1)1

arg{ L(jw)} = 180—tan_1(oo)

/2

Hence the Nyquist locus will encircle the critical point (-1,0) for I O; that is, the
system is unstable for &l > 0.

We may also verify this result by applying the Routh-Hurwitz criterion:

S 1 o
2 1 K
d K 0

17



9.37

There are 2 sign changes in the first column of coefficients in the array, asskrirty
Hence the system is unstable forkalk 0.

We are given the loop transfer function

_ K
LO) = S )+ D)
(a) Fors=jw,
L(jw) = ——K
jo(jo+1)(jw+20)
Hence
. K
IL(jw)| = (1)
oo(w2+1)l/2(w2+4)1/2
arg{L(jw)} = — 90 —tan () —tan_lggg )

SettingK = 6 in Eq. (1) under the conditidn(juy)| = 1:

_ 2,2 2
36 = wp(wp+ 1)(oop+4)

wherewy, is the phase-crossover frequency. Putthig: X and rearranging terms:
x> +5x° +4x—36 = 0

Solving this cubic equation fax we find that it has only one positive root at 2.
Hence,

W, = 2
Substituting this value in Eq. (2):
_ 1
arg{ L(jw,)} = — 90 —tan Y(J/2) - tan %7/_2%
= -90°-54.8 -35.2 = -18C

This result confirmsw, as the phase-crossover frequency, &nd 6 as the critical

value of the scaling factor for which the Nyquist locusldfw) passes through the
critical point (-1,0).

18



We may also verify this result by applying the Routh-Hurwitz criterion to the
characteristic equation:

53+3sz+25+K =0

Specifically, we write

S 1 2

2 3 K

ss 6K O
3

L K

The system is therefore on the verge of instabilitykfer 6.

(b) ForK = 2 the gain margin is
20log, ,6— 200g,52= 20l0g,,3 = 9.542 dB
To calculate the phase margin #&r= 2 we need to know the gain-crossover frequency
Wg. At W =wy, |L(jw)| = 1. Hence for the problem at hand

2

1=
2 1/2, 2 1/2
wy(wy+1)  (wy+4)

Let wé = X, for which we may then rewrite this equation as
x> +5x°+4x—4 = 0
The only positive root of this equationxs= 0.5616. That is,

Wy = J0.5616 = 0.7494
The phase margin is therefore

-1 _
180° — (90° + tan (0.7494 + tan (0.3749)

90°-36.9° - 20.5
32.6°

(c) Letwy denote the gain-crossover frequency for the required phase migrgin 20°
We may then write
|L(joog)| =1

-1
- 90 - tan_l(wg) —tan g%’%

arg{ L(jw,)}
With

arg{ L(joo,)}
we thus have

180 —-20°

19



70°

-1
tan_l(wg) + tan Bl

Through a process of trial and error, we obtain the solution

Wy = 0.972

For|L(joog)| = 1 we thus require

K

3.0143

2 172
Wy (g + 1)

0.972 1.944§" %(4.9448

1/2
(005 +4)

The gain margin is therefore

0.6 o

20109, 5551247

9.38

1/2

20log,,2 = 6dB

For the purpose of illustration, suppose the loop frequency resphgnsehas a finite

magnitude ato = 0. Suppose also the feedback system representefjdyis stable. We
may then sketch the Nyquist locus of the system far®d < , including gain margin and
phase margin provisions, as follows

Im{L(jw)}
(00 =) i
FGop)l (=)
NS 6/ = Re{L (o)}
(-1,0)/ . ’(
critical point % Pm (w=0)

(@=0x)

The phase margin of the systempig (measured at the gain-crossover frequesgy The

gain margin i20log,

IL(jwp)|

(measured at the phase crossover frequghcy

9.39 We are given the loop frequency response

6K

L(jw) =

(jo+D(jo+2)(jw+3)

6K

T (0 + 6(j0) + (o) + 6

20



(a) Figure 1 on the next page plots the Bode diagrarh(jwb) for K = 1. Changing the
value of K merely shifts the loop gain response by a constant amount equal to
20log, (K. This constant gain is tabulated as follows:

20log, K, dB

16.90
18.06
10.08
20.00
20.83

el
o ©o~N| X

Applying the gain adjustments (as shown in this table) to the loop response of Fig. 1,
we may make the following observations:

1. The feedback system is stableor 7, 8, 9.
2. ltis on the verge of instability fé¢ = 10.
3. ltis unstable foK = 11.

Hence the system is on the verge of instabilityfer 10.
(b) For K = 7 the gain margin is

20|oglogl795 - 3.008 dB

To calculate the phase margin we need to know the gain-crossover fregqyeAty
w = wy the following condition is satisfied

42

1/2 1/2
(g +1)" (oo +4) (e +9)

1 =

Let wg = X and so rewrite this equation as
x> +14x° + 49— 1728 = 0
The only positive root of this cubic equation ixat 7.8432. Hence,

W, = «/7.8432= 2.8006
The phase margin fa€ = 7 is therefore

-1 -1 _
180° —tan (2.8006 —tan (1.4003 —tan 1(.9335)
= 180°-70.4 -54.5 - 43
= 12.2

Proceeding in a similar fashion we get the following results:

* ForK=38, gain margin = 1.938 dB
phase margin = 7.39
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* ForK=09, gain margin = 0.915 dB
phase margin - 3.41

%Solution to problem 9.39
clear; clc;

for K=7:11,

figure(K-6)

num = [6*K];

den=[16 11 6];
subplot(1,2,1)
margin(num,den)
subplot(1,2,2)
nyquist(num,den)
text(0.3,0.3,[K =’ num2str(K)])
end

Bode Diagram

Gm = 3.098 dB (at 3.3166 rad/sec), Pm = 12.154 deg (at 2.8005 rad/sec) Nyquist Diagram
20 . ‘ :
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Bode Diagram

Gm = 1.9382 dB (at 3.3166 rad/sec), Pm = 7.3942 deg (at 2.9889 rad/sec) Nyquist Diagram
20
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Bode Diagram

Gm = 0.91515 dB (at 3.3166 rad/sec), Pm = 3.408 deg (at 3.1598 rad/sec) Nyquist Diagram
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Gm = 4.7762e-006 dB (at 3.3166 rad/sec), Pm = 3.3141e-006 deg (at 3.3166 rad/sec)
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Bode Diagram

Gm = -0.82785 dB (at 3.3166 rad/sec), Pm = -2.9625 deg (at 3.462 rad/sec) Nyquist Diagram
50

8 F T T 3
6 4
o 0
hA
[}
E
£ 4+ 4
(=]
[
= 50
2r 4
@
x
<
-100 N o
8 O0f 4
0 %,
£
—45
,2 . -
-90
=)
)
@ 135 -4
@
=4
o
180 e NG
_6 . -
-225
-270 -8k i | ! . . Lo
10" 10° 10" 10° 2 0 2 4 6 8 10
Frequency (rad/sec) Real Axis
Figure 5

26



9.40 Figures 1, 2, 3, and 4 on the next four pages plot the Bode diagrams for the following loop
transfer functions:

_ 50
D T
_ o
OIS = e G269
© L(s) = ——
(s+1)
@ L(s) = —10(s+0.5)

(s+1)(s+2)(s+5)
%Solution to problem 9.40
clear; clc;

figure(1)

num = [50];
den=[13 2],
margin(num,den)

figure(2)

num = [5];
den=[18 17 10J;
margin(num,den)

figure(3)

num = [5];
den=[1331];
margin(num,den)

figure(4)

num = [10 5];
den =[18 17 10];
margin(num,den)

figure(4)

num = [10 5];
den =[18 17 10];
margin(num,den)
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Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = Inf, Pm = 24.432 deg (at 6.8937 rad/sec)
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Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = 28.036 dB (at 4.1248 rad/sec), Pm = Inf
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Bode Diagram

Gm = 4.0836 dB (at 1.7322 rad/sec), Pm = 17.37 deg (at 1.387 rad/sec)
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Bode Diagram
Gm = Inf, Pm = Inf
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9.41

From Example 9.9 we have the loop transfer function
0.5K(s+ 2)

L) = v 12)(5-2)
Fors=jw,
L(je) = 05K (jw+2)

jo(jo+12)(ju-4)

Figures 1, 2, and 3 on the next three pages plot the Bode diagrabfgaffor K = 100,
128, and 160, respectively.

From these figures we make the following observations:

(a) The phase-crossover frequengy= for allK.

(b) For K = 128 the Bode diagram exactly satisfies the conditidrfgw)] = 1 and
arg{L(jw)} = 180°. Hence the system is on the verge of instabilitykfer 128.

(c) ForK = 100 the gain margin is -2.14 dB, which is negative. The system is therefore
unstable foK = 100.

(d) ForK = 160 the gain margin is 1.94 dB, which is positive. The system is therefore
stable forK = 160.

These observations reconfirm the conclusions reached on the stability performagge of
in Example 9.9.

%Solution to problem 9.41

clear; clc;

figure(1)

K=128;
num =
den =]

0.5*K*[1 2];
18 -48 0];

[Gm128,Pm128,Wcgl128,Wcpl28] = margin(num,den)

figure(2)

K=100;

num = 0.5*K*[1 2];

den =

18 -48 0];

[Gm100,Pm100,Wcgl100,Wcpl00] = margin(num,den)

figure(3)

K=160;
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num = 0.5*K*[1 2];
den =[18-480];
[Gm160,Pm160,Wcgl160,Wcpl60] = margin(num,den)

Bode Diagram

Gm = -1.9287e-015 dB (at 4 rad/sec), Pm =0 (unstable closed loop)
40 T T
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o
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Figure 1
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Bode Diagram

Gm = 2.1442 dB (at 4 rad/sec), Pm = -12.476 deg (at 2.8831 rad/sec)
40 T T

Stable

20
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Figure 2
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Bode Diagram

Gm =-1.9382 dB (at 4 rad/sec), Pm =7.9361 deg (at 5.1942 rad/sec)
T T
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Figure 3
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9.42 Letr(t) denote the feedback (return) signal produced by the sét@rThen, following
the material presented in Section 9.16, we may, insofar as the computation of the Laplace
transformR(s) = L{r(t)} is concerned, replace the sampled-data system of Fig. P9.42 with
that shown in Fig. 1 below:

X(s)

Figure 1

The blocks labelleds(s) andB(s) are defined as follows, respectively,

1. A5(s) = transfer function of the discrete-time components of the system

=Dg9) (1—& "

wheret is the sampling period and
D(s) = D] _ -,

2. B(s) = transfer function of the continuous-time components of the system

Impulse
sampler

X5(S) Es(9)

+

R5(s)

Impulse
sampler

A

As(S)

R(s)

B(s)

)

= 2G,(8)Gy(IH (9

whereG(s), Gy(s), andH(s) are as indicated in Fig. P9.42.

Adapting Eq. (9.94) of the text to the problem at hand:

Rs(s) _ Lg(s)

Xs(s)  1+Lg(s)

where

Ls(s) = A5(s)Bg(s)

TheBg(s) is itself defined in terms & (s) by the formula

35(5) = % S B(s— jkwy)

S k=-00

wherewg = 21Ty,

36

(1)

(2)



9.43

From Fig. P9.42 we note that
E(s) = H(s)Y(9

Hence,

Es(s) = Hs(s)Y5(s)

where

(o]

Ha(s) = = 3 H(s- jkay)

Sk:-oo

Eliminating Ez(s) between Egs. (1) and (3):

L5(s)/Hx(s)

Ys(®) = T3

X5(8)

Changing this result to thetransform:

v(z = HaHE L'E'Z()Z)X(z)

where

(CERZCI

and so on fok(2), H(2), andX(2).

From the material presented in Section 9.16 we note that (see EqQ. (9.94))

Ls(s)
Y5(9) = 1355l

where

L5(s) = As(s)Bs(s)

For the problem at handys(s)  aii(s) are defined as follows, respectively:

37
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1. Ag(s) = (1—€ " ")Dg(s) 3)
where

Ds(s) = D@| _

[ee]

1 . 21
2. Bx(s) = _I—_; Z B(s— jkwy) , Wy = -_F;
k=-c0
where
B(s) = ~G(s)
s
_ K
-3
S

We are given

_ z-10
D(2) = K%L5+7D

= K(2.5-2 1)
Hence,

Dy(s) = K(2.5-€ ")

The use of Eq. (3) thus yields

As(s) = K(1—€°*)(2.5-€ ")
K(2.5-358 " +eg "

)

Correspondingly, we may write
1, -2
A(2) = K(25-3% "+z7)

Next, with B(s) = K/s® we may write
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b(t) = L™{B(s)}

2
_ Kt
Hence,
z —nsT;
Bs(s) = Z b[n]e
k=-00

_ K > 2 —nsTy
= E Zn e
k=0
which may be summed to yield
B(2) = Bs(S)| 1,
e =z

2 2 _ _

_ KTg z(z+1) KTg 7H1+71h

B 3 1.3
4 z-1° 4 @a-7Y

The use of Eqg. (2) yields

L@ = Ly(9)| o,
= A(2)B(2)
Ts 7l 1+7h

%)
4 -y

= K*(25-3.5% '+7

2.2 _ — —
_KTs ZYes-zh@a+2
1.2
4 (1-77

Finally, the closed-loop transfer function of the system is

_ _L®@
T(2) = 1+L(2)

whereL(z) is defined by Eq. (4).
9.44 Here again following the material presented in Section 9.16 we may state that

Y(2 _ _L(®
X(2) 1+L(2
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where

L(2) = Ls(9)] o _

L5(s) = A5(s)Bs(s)
—sT,

As(s) = (1-e )
_ 1 _ 2m
Bs(s) = T Z B(s— jkwy), Wy = T
k=-00
1
B(s) = SG(9)
_ 5
sz(s+ 2)
_ _5/4+5/22+ 5/4
S S S+2
To calculateBx(s) we first note that
5 2t
b(t) = ——u(t)+ tu(t)+ e u(t)
Hence,
By(s) = 3 blnle '
n=-co
_ 5 ® -nsT, B ® -n 2nsT
=228 tp)ne 42
n=0 n=0
Correspondingly, we may write
5 1 .5 TZ 5 1
B(Z):_Z 5t5 S 2 S
1-z (1-27) 1 z

From the expression foks(s)

A2 = (1-77)

The loop transfer function of the system is therefore
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L(2) = A(9B(2)

-1
_ Tz
:(1—21)[—2 1_1+g S 2+g _12T 1}
1—7 -1 sy~

Putting this expression on a common denominator:

5 ZN((-1+2T +e )+ (1—e " *(1+21)2Y)
L(Z) = Z]-

(1-z2h(1-e 7Y
The closed-loop transfer function is

_ _L®»
@ =173

(a) For sampling periodg = 0.1s, the loop transfer function takes the value

S 7 (=1+02+e°A + (1-e41.2)7Y)
021

4 (1-z7H(1-e2%h
5 7'(0.019+ 0.017 )
4 1-z7hHa-o0s819™
The closed-loop transfer function is therefore
5 7'(0.019+ 0.017 )
4 (1-7"(1-0.81% 1)
.5 Z7(0.019+ 0.017 %)
4 (1-z7Y1-081%1

> 70,019+ 0.017Y

_ 4
(1-71)(1-0.81% ™) +i—:’1 71(0.019+ 0.01Z %)

L(2) =

T(29 =

1

gz‘1(0.019+ 0.017 Y

1-1.795 " +0.840
T(2) has a zero at = -0.895 and a pair of complex poleszat 0.898+ j0.186. The
poles are inside the unit circle and the system is therefore stable.
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(b) For sampling period@g = 0.05sL(2) takes the value

2N (=1+ 0.1+ e + (1—e N 1.1))7Y
1
L(z) =

(1 _ Z—l)(l _ e—O.lZ—l)
_ 5 Z'(0.005+ 0.005 )
4 (1-7Y(1-0.99%"
The closed-loop transfer function is therefore
5 7 '(0.005+ 0.005 )
-1 -1
() = 4 1-z7h(1-0.99&™)
.5 Z(0.005+ 0.005")
4 (1-7Y(1-0.99& ™

g ~1(0.005+ 0.005 %)

(1-71(1-0.99& ") + ?1 71(0.005+ 0.005™)

1

_ 0,008 (1+7 Y
1-1.98% "+ 1.00%
T(z2 hasazeroat=1 and a pair of complex poleza0.995+j0.109. The poles lie

inside the unit circle in the-plane and the sampled-data system remains stable. Note,

however, the reduction in the sampling period has pushed the closed-loop poles much
closer to the unit circle.
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Advanced Problems

9.45

(a) We are given the loop transfer function
L(s) = G(s)H(s)

_ BA

1+008 + 0
Qo T 50
BAwWyS

Q32 + WS+ Qcoé
wherewy is the center frequency ard is the quality factor. The poles af(s) are
given by the roots of the quadratic equation:

2 2
Qs +wys+Quy =0

That is,
1 _ 2 2 2
S = Z?_%Jr Wy —4Q"wy)

(6V)
= 5g(- 1= 14Q"-1)

With Q assumed to be large, we may approximate the poles as

=52(-1%]2Q) = 2% jw

20 t] -7 10

which lie inside the left half of the-plane and very close to thjes-axis. The loop
transfer functiorL(s) has a single zero &= 0. Hence, the root locus of the closed-
loop feedback amplifier starts at the two poles, tracing out the path illustrated in Fig. 1
for Q = 100 andy, = 1.

%Solution to problem 9.45

w=1;
Q =100;

num = [w O];

den = [Q w Q*W"2];
figure(1)
rlocus(num,den)
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(b) The closed-loop transfer function is

_ G(s)
T = 135(9nm)
which may be expressed in the form
e
+ BA
T(s) = P

1 Q msn, 1,0 Q o

(1 + BAH 6o ! [ +BALLs O

From this expression we immediately deduce that the application of feedback
produces two effects:

1. It reduces the gain of the amplifier by the factofA.+

2. It reduces the quality fact@ by the same amount 13A.

By definition, we have

_ o
R
whereB is the bandwidth. Therefore, for fixea,, if the quality factorQ is reduced by

the amount 1 A as a result of applying the feedback, the closed-loop bandwidth is
increased by the same amount.

9.46 (a) The “sensor” transfer function is

H(s) =
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Hence the closed-loop gain (i.e., transfer function) of the phase-locked loop model
shown in Fig. P9.46 is

V(s) _ G(9)
P, (s)  1+G(9H(s)
_ KgH(s)(1/K,)

1+ %KOH(S)

_ sKyH(8)(1/K,)
~ s+ K H(s) (1)

(b) For positive frequencies that satisfy the conditidfgH(jw)| >> w, we may
approximate Eq. (1) as
V(s) ~SKOH(S)(1/KV)
D,(s)  KGH(9)

=3
KV
Correspondingly, we may write

1 d
v(t) == ()
Vv

9.47 The error signai(t) is defined as the difference between the actuating or target sigbal

and the controlled signal (i.e., actual respong#) Expressing these signals in terms of
their respective Laplace transforms, we may write

E(s) = Y4(s)-Y(9

= [1-T(9)]Y4(s) 1)
- G(9)H(s)

= - eerE e

_ 1

" [ romm] @

The steady-state erroof a feedback control system is defined as the value of the error
signale(t) when timet approaches infinity. Denoting this quantity by, ~ we may thus
write

O = lim e(t) (3)

ss
s-0

Using the final value theorem of Laplace transform theory described in Chapter 6, we may
redefine the steady-state errog, in the equivalent form
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SS

Oge = lim SE(S (4)

Hence, substituting Eq. (2) into (4), we get
sYy(s)

Jos = My TrG(9HE ©
Equation (5) shows that the stead-state errgg of a feedback control system depends on

two quantities:
* The open-loop transfer functida(s)H(s) of the system
* The Laplace transforry(s) of the target signaly(t)

However, for Eqg. (5) to be valid, the closed-loop control system of Fig. 9.14 must be
stable.

In generalG(s)H(s) may be written in the form of a rational function as follows:

G(IH(s) = L ©)
s"Q4(s)
where neither the polynomi#(s) nor Q(s) has a zero as = 0. Since 14 is the transfer
function of an integrator, it follows that is the number of free integrators in the loop
transfer functionG(s)H(s). The orderp is referred to as the/peof the feedback control
system. We thus speak of a feedback control system being of type 0, type 1, type 2, and so
onforp=0,1,2,..., respectively. In light of this classification, we next consider the steady-
state error for three different input functions.

Step Input
For the step inpuyy(t) = u(t), we haveYy(s) = 1/s. Hence, Eq. (5) yields the steady-state

error

O = lim __r
ss s.0 1+G(9)H(s)
_ 1
C1+K, 0
whereK, is called theposition error constantdefined by
Kp = lim G(s)H(s)
s-0
= lim P ®)
50 5°Qy(s)

Forp > 1, K, is unbounded and therefote,, = 0. RorF O, K, is finite and therefore

O #0. Accordingly, we may state that the steady-state error for a step input is zero for

a feedback control system of type 1 or higher. On the other hand, for a system of type 0,
the steady-state error is not zero, and its value is given by Eq. (7).
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Ramp Input
For the ramp inpugy(t) - tu(t), we haveyy = 1K°. In this case. Eq. (5) yields

5 5.0 st s 9H(s)
=1
T K, (9)
whereK, is thevelocity error constantdefined by
Ky = lim sG(9H(s)
s-0
= jim —PE (10)
s-0 gP Q(s)
Forp > 2, K, is unbounded and therefore,, = 0. For 1, K|, is finite andl ., #0 .

Forp=0,K,iszeroand] ., = o .Accordingly, we may state that the steady-state error

for a ramp input is zero for a feedback control system of type 2 or higher. For a system of
type 1, the steady-state error is not zero, and its value is given by Eq. (9). For a system of
type 0, the steady-state error is unbounded.

Parabolic Input
For the parabolic inpuiy(t) = (t%/2)u(t), we haveYy = 153 The use of Eq. (5) yields

O, = lim 1
® s-o 52+szG(s)H(s)
_ 1
g (11)
whereK, is called theacceleration error constantiefined by
K, = lm —(& (12)

50 s7Qy(s)

Forp > 3, K, is unbounded and therefore,, = 0. For 2, K, is finite and therefore

O, =0.Forp=0,1,K,is zero and thereforel ., = o . Accordingly, we may state that

for a parabolic input, the steady-state error is zero for a type 3 system or higher. For a
system of type 2, the steady-state error is not zero, and its value is given by Eq. (11). For a
system of type 0 or type 1, the steady-state error is unbounded.

In Table 1, we present a summary of the steady-state errors according to system type as
determined above.
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Additional Notes

A type 0 system is referred to agegulator The object of such a system is to maintain a

physical variable of interest at some prescribed constant value despite the presence of

external disturbances. Examples of regulator systems include:

» Control of the moisture content of paper, a problem that arises in the paper-making
process

» Control of the chemical composition of the material outlet produced by a reactor

» Biological control system, which maintains the temperature of the human body at
approximately 3%C despite variations in the temperature of the surrounding
environment

Table 1: Steady-State Errors According to System Type

Step Ramp Parabolic
Type O 1/(1 +Kp) 00 00
Type 1 0 1/K, 00
Type 2 0 0 1/K,

Type 1 and higher systems are referred ts@somechanism3he objective here is to
make a physical variable follow, or track, some desired time-varying function. Examples
of servomechanisms include:

» Control of a robot, in which the robot manipulator is made to follow a preset
trajectory in space

» Control of a missile, guiding it to follow a specified flight path

» Tracking of a maneuvering target (e.g., enemy aircraft) by a radar system

Example: Figure P9.47 shows the block diagram of a feedback control system involving a
dc motor The dc motor is an electromechanical device that converts dc electrical energy
into rotational mechanical energy. Its transfer function is approximately defined by

K
G(s) = ———
() s(t s+1)
whereK is the gain and|_is the load time constant. Here it is assumed that the field time

constant of the dc motor is small compared to the load time constant. The transfer function
of the controller is

1s+1
The requirement is to find the steady-state errors of this control system.

The loop transfer function of the control system in Fig. P9.47 is

_ K(ats+1)
G(9H(9"5@Ls+1XTS+1)

which represents a type 1 system. Comparing Eq. (13) with Eq. (6), we have for the
example at hand

(13)

48



9.48

Ps) = _%erm

Q) = B 2+ 11

p=1
Hence the use of these values in Egs. (8), (10), and (12) yields the following steady-state
errors for the control system of Fig. P9.47:

(a) Step inputd . =0.

(b) Ramp input:0 .. = K = constant.

(c) Parabolic input:0 ., = o

The effect of making the gai large is to reduce the steady-state error of the system due
to a ramp input. This, in turn, improves the behavior of the system as a velocity control

system.
Controller DC motor

+ +1 K
Input—b?—v aTTss+ 1 s+ ) » Output
Figure P9.47

From Fig. P9.20 the closed-loop transfer function of the feedback system is
K/ (s2 + 25)
1+ K/ (s +2s)

K
=5 (1)
S +2s+ K

T(s) =

In general, we may expre$6s) in the form

T (0)
() = , 2)
S +2(w,s+w,
Hence, comparing Egs. (1) and (2):
TO) =1 3)
w, = JK (4)
{=1w, = 1J/K (5)

We are giverK = 20, for which the use of Egs. (4) and (5) yields
= /20 = 4.472 rad/second
¢ =0.224
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9.49

The time constant of the system is

T= . 1 second

an

The loop transfer function of the feedback control system is
L(s) = G(s)H(s)

_ 0.2Kp
"~ (s+1)(s+3)
The closed-loop transfer function of the system is
_ _L(s)
T(s) = 1+L(9
0.2Kp

S +4s+(3+0.Xp)

For a second-order system defined by
T(0)w;
2

T(9) = S
S +2(w,s+w,

the damping factor i and the natural frequencyas,. Comparing Egs. (1) and (2):

20w, = 4

2
Wy

= 3+0.X,
T(0)w’ = 0.2Kp,

Hence,
0, = B0,
{ =2/,[3+0.X;
T(0) = 0.2K,/(3+0.Kp)

We are required to have
w, =2 rad/s

Hence the use of Eq. (3) yields

[3+0.2K, = 2

That is,
Kp = —2 =5

w
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Next, the use of Eg. (4) yields
2

J3+0.2x 5
2

/2

which means that the system is critically damped.

=1

The time constant of the system is defined by

T =

|
[N |l
=]

= 0.5 seconds

H

x 2

(Note: The use of Eqg. (5) yields

(
T(0) = 925 :%

9.50 The loop transfer function of the system is

_ Ki10.25
L(s) = Kp+ < g0

Ki/Key 1 0
T+ 10

0.25Kpr +

With K,/Kp = 0.1 we have
0.25K(s+0.1
p(s+0.1) 0
S(s+1)

L(s) =

The root locus of the system is therefore as shown in Fig. 1:
jw

Figure 1
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9.51

The closed-loop transfer function of the system is

T(e) = 11:(525) @)

Substituting Eq. (1) into (2):
0.25Kp(5+0.1)
T(s) =
S(s+1) +0.25Kp(s+0.1)

3)

For a closed-loop a = -5 we require that the denominator Bfs) satisfy the following
equation

(s+5)(s+a) =0 (4)
wheres = -a is the other closed-loop pole of the system. Comparing the denominator of
Eq. (3) with Eq. (4):

5+a=1+0.2%;

5a = 0.1x 0.2,

Solving this pair of equations fé& anda, we get
_ 20 _
Kp = 1295 - 16.33

a = 0.005x K, = 0.08165

The loop transfer function of the PD controller system is

L(s) = (Kp+ Kps) ot

[§(s+ 1)U

Kep 1 O
= + —

Ko+ R+ D)0

We are giverKp/Kp = 4. Hence,
Kp(s+4)
L = —_
(s) (st 1)

We may therefore sketch the root locus of the system as follows:
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%Solution to problem 9.51
clear; clc;

figure(1)

K=1,

num = K*[1 4];

den =[1 (1+K) K*4];
rlocus(num,den)

figure(2)

K=3;

num = K*[1 4],

den =[1 (1+K) K*4];
rlocus(num,den)

Root Locus

Imag Axis
S

2 +j2sqrt(2)

2 - j2sqrt(2)
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9.52

The closed-loop transfer function of the system is
_ _L(s)
T(s) = )

Kop(s+4
_ _ Kols*t4) (1)

S+s+ Kp(s+4)

We are required to choos€, so as to locate the closed-loop polessat —2 * j2./2
That is, the characteristic equation of the system is to be

(s+2+j2/2)(s+2-j2J2) = 0

or
+4s+12 = 0 )
Comparing the denominator of Eq. (1) with Eq. (2):
1+Kp = 4
4Ky = 12

Both of these conditions are satisfied by choosing

(a) For a feedback system using PI controller, the loop transfer function is

L(s) = Bw%%'(s)

whereL’(s) is the uncompensated loop transfer functions Egow we may write

K| 1 :

The contribution of the PI controller to the loop phase response of the feedback system

IS

1 Kpw
- 0 0
@ =-90°+tan =/——

UK, O

For all positive values dkp/K|, the angle ta‘r’r(pr/Kl) is limited to the range [0,90

It follows therefore that the use of a PI controller introduces a phase lag into the loop

phase response of the feedback system, as shown in Fig. 1.

(b) For a feedback system using PD controller, the loop transfer function of the system

may be expressed as
L(s) = (Kp+Kps)L'(s)

wherelL'(s) is the uncompensated loop transfer function.sFojw, the contribution
of the PD controller to the loop phase response of the system‘?sél(@m/Kp). For all
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positive values oKp/Kp, this contribution is limited to the range [0,.90We therefore

conclude that the use of PD controller has the effect of introducing a phase lead into
the loop phase response of the system, as illustrated in Fig. 2.

%Solution to problem 9.52

clear; clc;

w = 0:0.01:5*pi;
Kp=1.2;
Ki=1;

y = -pi/2 + atan(w*Kp/Ki);
plot(w,y)

xlabel(\omega’)
ylabel('Phase

hi’)

title(’-

i/2 + tan™{-1}(\omega Kp/Ki)")

figure(2)

y = -pi/2 + atan(w*Kp/Ki);
plot(w,y)

xlabel(\omega’)
ylabel('Phase

hi’)

title('tan™{-1}(\omega Kp/Ki)’)

-TU2 + tan’l(w Kp/Ki)
T

Kp/Ki = 1.2

—1.2F 4

-1.4 -

Figure 1

-1.6
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!an’l(m Kp/Ki)
T

-0.2-

-0.4r

Kp/Ki=1.2

-0.6F

-0.8

Phase ¢

—1.2F

-1.4

Figure 2

-1.6

K
9.53 The transfer function of the PID controller is definedKoy + ?' +Kps . Therequirement

is to use this controller to introduce zerosat-1 +j2 into the loop transfer function of the
feedback system. Hence,

S+ (Kp/Kp)s+ (K /Kp) = (s+1)°+(2)°
= ?+25+5

Comparing terms:

K
_P =2
KD

==

The loop transfer function of the compensated feedback system is therefore

KI
KP+ z + KDS
(s+1)(s+2)

_ Kp(s +2s+5)
"~ s(s+1)(s+2)

L(s) =
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Figure 1 displays the root locus &fs) for varying Kp. From this figure we see that the
root locus is confined to the left half of theplane for all positive values dk,. The
feedback system is therefore stabledgr> 0.

%Solution to problem 9.53

clear; clc;

num = [1 2 5];
den=[1320];
rlocus(num,den)

Imag Axis
o

h 73‘5 "i ?‘5 ; 1‘5 1 — ’,/‘5 ’,‘/ - Figure 1

9.54 LetK denote the action of the proportional controller. We may then express the loop
transfer function of the controlled inverted pendulum as

Kp(s+3.1)(s-3.1)
(s +4.4)(s—4.4)

L(s) =

which has zeros a = +3.1 and poles a = 0 (order 2) and = +4.4. The resulting root
locus is sketched in Fig. 1. This diagram shows that for all positive valud§,athe
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closed-loop transfer function of the system will have a pole in the right-half plane and a
pair of poles on thgo-axis.

A
s-plane
double
/ pole
X—» 0 O—at—X o
-4.4 -3.1 0 3.1 4.4
v

Figure 1

Accordingly, the inverted pendulum cannot be stabilized using a proportional controller
for Kp > 0. The reader is invited to reach a similar conclusiokot 0.

The stabilization of an inverted pendulum is made difficult by the presence of two factors
in the loop transfer functiol(s):

1. A double pole as= 0.
2. A zero as= 3.1 in the right-half plane.

We may compensate for (1) but nothing can be done about (2) if the compensator is itself
to be stable. Moreover, we have to make sure that the transfer function of the compensator
is proper for it to be realizable. We may thus propose the use of a compensator (controller)
whose transfer function is

Ks(s—4.4)
(s+1)(s+2)(s+3.1)

C(s) =

The compensated loop transfer function is therefore (after performing pole-zero
cancellation)

L'(s) = C(g)L(s)
_ K(s-3.1)
T (s+1)(s+2)(s+4.4)

Figure 2 shows a sketch of the root locus lOf(s) . From this figure we see that the
compensated system is stable provided that the gain fastatisfies the condition

4x2

<K<
OK3.1

= 2.839
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%Solution to problem 9.54

clear; clc;

num = [1 0 -961/100];
den =[1 0 -484/25 0 0];
rlocus(num,den)

figure(2); clc;

num = [1 -3.1];

den =[1 37/5 76/5 44/5];
rlocus(num,den)

Root L
s
3k
2L
1k
<
> OFXx——0O
E
b
s
4k
I !
4 3 -2 1 0 1
Real Axis
Root L
T
)
2
g
E
/
20/
-30 i
I ! I
5 3 2 1
Real Axis
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9.55

For linear control systems, the transient response is usually measured in terms of the step
response. Typically, the step response, denoted by y(t), is oscillatory as illustrated in Fig.
P9.55. In describing such a response, we have two conflicting criteria: swiftness of the
response, and closeness of the response to the desired response. Swiftness of the response
is measured in terms of the rise time and peak time. Closeness of the response to the
desired response is measured in terms of the percentage overshoot and settling time. these
four quantities are defined as follows:

* RisetimeT,, is defined as the time taken by the step response to rise from 10% to 90%

of its final valuey().
« PeaktimeT,, is defined as the time taken by the step response to reach the overshoot

(overall) maximum valug sy
» Percentage overshooP.O., is defined in terms of the maximum valyg,, and final
valuey(e) by
p.o, = Yma¥(®)
y()
» Settling time T, is defined as the time required by the step response to settle within
+0% of the final valug/(e), whered is user specified.

x 100

Figure P9.55 illustrates the definitions of these four quantities, assuming(&jat 1.0.

They provide an adequate description of the step respgseMost importantly, they

lend themselves to measurement. Note that in the case of an overdamped system, the peak
time and percentage overshoot are not defined. In such a case, the step response of the
system is specified simply in terms of the rise time and settling time.

For reasons that will become apparent later, the underdamped response of a second-order
system to a step input often provides an adequate approximation to the step response of a
linear feedback control system. Accordingly, it is of particular interest to relate the above-
mentioned quantities to the parameters of a second-order system.

Example: Consider an underdamped second-order system of damping/ratio and natural
frequencyw,,. Determine the rise time, peak time, percentage overshoot, and settling time
of the system. For settling time, use 1.

Solution: Unfortunately, it is difficult to obtain an explicit expression for the rise tifpe

in terms of the damping ratid  and natural frequengy. Nevertheless, it can be
determined by simulation. Table 9.2 presents the results of simulation for the range 0.1

¢ <0.9. In this table we have also included the results obtained by using the approximate
formula:

T = Q—f(o.eo+ 2.1Q)
n

This formula yields fairly accurate results for &.& < 0.8, as can be seen from Table 1.
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To determine the peak tim§, we may differentiate Eq. (...) with respect to tirhand
then set the result equal to zero. We thus obtain the solttrorsand

t= — n=012..

oonAll—Zz’

Table 1: Normalized Rise Time as a Function of the Damping
Ratio { for a Second-Order System

Wy Ty
Z Simulation Approximate Value
0.1 1.1 0.82
0.2 1.2 1.03
0.3 1.3 1.25
0.4 1.45 1.46
0.5 1.65 1.68
0.6 1.83 1.90
0.7 2.13 2.11
0.8 2.5 2.33
0.9 2.83 2.54

The solutiont = o« defines the maximum of the step respop&gonly when( > 1 (i.e.,
the critically damped or overdamped case). We are interested in the underdamped case.
The first maximum of/(t) occurs fom = 1; hence the peak time is

T = LS
p =
wnA/l — ZZ
The first maximum of(t) also defines the percentage overshoot. Thus, puttingy, in
Eqg. (...) and simplifying the result, we get

-1/ (/1-2%)
ymax = 1 te
The percentage overshoot is therefore
p.0.= 106" 1)

Finally, to determine the settling timE; we seek the time t for which the step response
y(t) defined in Eq. (...) decreases and stays witb#b of the final valug(e) = 1.0. For

0 = 1, this time is closely approximated by the decaying exponential fa&:_tzoml"t , as
shown by

e T <001

or

N

.6
,

T .=

S

N

=)
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9.56 We often find that the poles and zeros of the closed-loop transfer furiqgprof a
feedback system are grouped in the com@gtane roughly in the manner illustrated in
Fig. P9.56. In particular, depending on how close the poles and zeros argdpdkis we
may identify two groupings:

1. Dominant poles and zerpw/hich are those poles and zerosi¢$) that lie close to the
jw-axis. They are said to be dominant because they exert a profound influence on the
frequency response of the system. Another way of viewing this situation is to
recognize that poles close to th@-axis correspond to large time constants of the
system. The contributions made by these poles to the transient response of the system
are slow and therefore dominant.

2. Insignificant poles and zerpsvhich are those poles and zeros E) that are far
removed from thejw-axis. They are said to be insignificant because they have
relatively little influence on the frequency response of the system. In terms of time-
domain behavior, poles that are far away from jteeaxis correspond to small time
constants. The contributions of such poles to the transient response of the system are
much faster and therefore insignificant.

Let s = -a ands = -b define the boundaries of the dominant poles and the insignificant
poles, as indicated in Fig. P9.56. As a rule of thumb, the grouping of poles into dominant
poles and insignificant poles is justified if the rdtlais greater than 4.

Given that we have a high-order feedback system whose closed-loop transfer function fits
the picture portrayed in Fig. P9.56, we may then approximate the systemduyueed-

order modelsimply by retaining the dominant poles and zerosT¢d). The use of a
reduced-order model in place of the original system is motivated by the following
considerations:

* Low-order models are simple; they are therefore intuitively appealing in system
analysis and design.
* Low-order models are less demanding in computational terms than high-order ones.

A case of particular interest is when the use of a first-order or second-order model as the
reduced-order model is justified, for then we can exploit the wealth of information
available on such low-order models.

When discarding poles and zeros in the derivation of a reduced-order model, it is
important to rescale the fain of the system. Specifically, the reduced-order model and the
original system should have the same gain at zero frequency.

Example: Consider again the linear feedback amplifier. Assuming tKat= 8,
approximate this system using a second-order model. Use the step response to assess the
quality of the approximation.

Solution: ForK = 8, the characteristic equation of the feedback amplifier is given by
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S+65°+11s+54 = 0
Using the computer, the roots of this equation are found to be
s=-5.7259 = —0.1370+ j3.0679
The locations of these three roots are plotted in Fig. 2. We immediately observe from the
pole-zero map of Fig. 2 that the polessat -0.1370 +3.0679 are the dominant poles, and
the poles as = -5.7259 is an insignificant pole. The numerator of the closed-loop transfer
function T(s) consists simply of B. Accordingly, the closed-loop gain of the feedback
amplifier may be approximated as
6K’
(s+0.1370+ j3.0679(s+ 0.1370-j3.0679
6K’

s”+0.274% +9.4308
To make sure thal'(s) is scaled properly relative to the origir{g), the gainK' is
chosen as follows:

. _ 9.4308_ , _
K' = ——52——X8 = 1.3972
for which we thus havé'(0) F0).
In light of Eq. (9.41), we set
2lw, = 0.2740

T'(s)=

W’ = 9.4308
from which we readily find that
¢ = 0.0446
w, = 3.0710

The step response of the feedback amplifier is therefore underdamped. The time constant
of the exponentially damped response is from Eq. (9.44)

=L -1 _g2093
'~ Io, T 0137

The frequency of the exponentially damped response is

w N1-7% = 3.0710/ 1-( 0.0448

= 3.0679 rad/s
Figure 3 shows two plots, one displaying the step response of the original third-order
feedback amplifier withK = 8, and the other displaying the step response of the
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approximating second-order model wiy = 1.3972. The two plots are very similar,
which indicates that the reduced-order model is adequate for the example at hand.

Imaginary
Dominant
pole X s-plane
Insignificant
pole
X Real
Dominant
pole X

Figure 1: Pole-zero map for feedback amplifier with ¢am 8.

Root Locus

Imag Axis
=)

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1
Real Axis

Figure 2: Root locus of original 3rd order system
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o o
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I
~

o
N

o

Time

Figure 3: Step response for third-order system shown as dashed curve, and step response
for (reduced) second-order system shown as solid curve.

%Solution to problem 9.56

%0Original 3rd order system
num = 6*8;

den =[16 11 54];

figure(2)

rlocus(num,den)

figure(3)
[order3,T] = step(tf(num,den));

%Reduced 2nd order system
num = 6*1.3972;

den =[1 0.2740 9.4308];
[order2,T] = step(tf(num,den));

plot(T,order3,’b-", T,order2,'r--")
legend(’3rd Order’Reduced 2nd Order’)
xlabel('Time")

ylabel('Response’)
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9.57

Consider first the original system described by the transfer function
48

T(s) = S
(s+5.7259(s” + 0.274G + 9.4308

The corresponding Bode diagram, obtained by puttingjow, is plotted in Fig. 1 on the
next page.

Consider next the reduced-order model described by the transfer function
Q) — 8.3832

T (S) - 2

s +0.274G + 9.4308

which is obtained fronT(s) by ignoring the distant pole at= -5.7259 and readjusting the
constant gain factor. Figure 2, on the page after the next one, plots the Bode diagram of the
approximating system.

Comparing these two figures, 1 and 2, we see that the frequency responses of the original
feedback system and its reduced-order approximate model are close to each other over the
frequency range 8 w< 4.0.

%Solution to problem 9.57

clear; clc;

num = [8.3832];

den =[1 0.2740 9.4308];
margin(num,den)

figure(2); clc;
num = [48];

den =[1 6 11 54];
margin(num,den)

Second Order

- Figure 1: Frequency response
of original system
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Figure 2: Frequency response
of reduced-order model

9.58 The guidelines used in the classical (frequency-domain) approach to the design of a linear
feedback control system are usually derived from the analysis of second-order
servomechanism dynamics. Such an approach is justified on the following grounds. First,
when the loop gain is large the closed-loop transfer function of the system develops a pair
of dominant complex-conjugate poles. Second, a second-order model provides an
adequate approximation to a higher-order model whose transfer function is dominated by
a pair of complex-conjugate poles.

Consider then a second-order system whose loop transfer function is given by

_ K
T(s) = s(ts+ 1)

This system was studied in Section 9.11. When the loopl§asriarge enough to produce

an underdamped step response (i.e., the closed-loop poles form a complex-conjugate pair),
the damping ratio and natural frequency of the system are defined by, respectively (see
Drill Problem 9.8),

1 K
and . = J:
2.JTK A T

Accordingly, we may redefine the loop transfer function in ternis of wgras follows:
2

— ('On
L(S) = S(S+—ZZ(A)n) (1)

By definition, the gain crossover frequengyis determined from the relation
IL(jwg)] =1

Therefore, putting = jwyg in Eg. (1) and solving fowg, we get
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W, = wnJA/4z4+ 1-27° )

The phase margin, measured in degrees, is therefore

1w
@, = 180° —90° —tan E@—Z—(%:E
= tan_lgg—f;%%
= tan_lg X E (3)
O J Jat" v 12"
Equation (3) provides an exact relationship between the phase margin , & quantity

pertaining to the open-loop frequency response, and the dampingatio , a quantity
pertaining to the closed-loop step response. This exact relationship is plotted in Fig. 1. For
values of the damping ratio in the range < 0.6, Eq. (3) is closely approximated by

¢, =100, 0<{<06

Equivalently, we may write

_ O
¢ = oo
where, as mentioned previously, the phase maxgjn is measured in degrees. This

approximation is included as the dashed line in Fig. 1.

x7<0.6 (4)

Once we have obtained a value for the damping rétio , we can use Eq. (2) to determine
the corresponding value of the natural frequengyin terms of the gain cross-over
frequencywy. With the values off  andy, at hand, we can then go on to determine the

rise time, peak time, percentage overshoot, and settling time as descriptors of the step
response using the formulas derived in ..........
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 4—— Approximate

Figure 1

Computer Experiments

9.59 We are given

L(s) = ——
(s+1)

The MATLAB command for finding the value df corresponding to a desired pair of
closed-loop poles, and therefore damping fagtor , is given below.

The root locus of the unity feedback system is presented in Fig. 1. A damping
factor { = 0.5 corresponds to a pair of dominant closed-loop poles lying on the angles
+ 120., Hence using the command rlocfind, we obtain the uélael.

The corresponding values of the complex closed-loop poles aré€.5 + j0.866.

Hence the natural frequenay, = J0.5°+0.866 = 1

%Solution to Problem 9.59

num = [1];
K=0;
den=[1331];

rlocus(num,den)

K = rlocfind(num,den)
den=[1331];

[Wn z]=damp(den)
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9.60 The MATLAB command for this experiment is presented below.

Figure 1 displays the root locus for the loop transfer function

K

L(s) = ———
s(s +s+2)

The value oK, corresponding to a pair of complex poles with damping fagtor

is computed to bK = 1.46 using rlocfind.

=0.0707,

Figure 2 presents the Bode diagramld) for K = 1.5. From this figure we find the

following:

(1) Gain margin - 6.1 dB
Phase crossover frequency = 1.4 rad/sec

(2) Phase margin = 7.3
Gain crossover frequency = 0.6 rad/sec

%Solution to Problem 9.60

figure(1); clf;

num = [1];
den=[1120]
rlocus(num,den)
axis([-1 1 -2 2)])

K = rlocfind(num,den)
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figure(2); clf;

K=1.5;
num = K*[1];
margin(num,den)
g 0
- ] Figure 1
\\\

Gm = 2.4988 dB (at 1.4142 radisec), Pm = 34.487 deg (at 1.1118 rad/sec)
T

Magnitude (dB)

Phase (deg)

Figure 2

Frequency (rad/sec)

9.61 The MATLAB code for this experiment is presented below.

Figure 1 displays the root locus of the feedback system defined by the loop transfer
function

L(s) = K(s—1)

(s+1)(s°+s+1)
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Using the command rlocfind, we find that the valuekofor which the only real closed-
loop pole lies on thgw-axis (i.e., the system is on the verge of instabilityKiss 1. We
may verify this result by constructing the Routh array for the characteristic equation
(s+1)(s"+s+1)+K(s=1) = 0

as shown by

$1 2+K
s 2 K
1 4+ 3K 0

ForK =1 there is only one sign change in the first column of array coefficients.

Figure 2 displays the Nyquist locus bfjw) for K = 0.8. We see that the critical point is
not enclosed, and therefore the feedback system is stable.

Figure 3 displays the Bode diagramIdjw) for K = 0.8. From this figure we obtain the
following values:

Gain margin = 2.0 dB
Phase-crossover frequency = 0 rad/sec.

Note that the gain margin is exactly equal to

~20log; K = 2009y = 2B

%Solution to Problem 9.61

figure(1); clf;

K=1;

num = K*[1 -1];
den=[1221];
rlocus(num,den)
ylim([-5 5])

K = rlocfind(num,den)

figure(2); clf;
K=0.8;

num = K*[1 -1];
nyquist(num,den)

return
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figure(3); clf;
K=0.8;

num = K*[1 -1J;
margin(num,den)

uuuuuuuuu

/ : Figure 1

Figure 2

9.62 The MATLAB code for this experiment is below.

We are given a feedback system with the loop transfer function
K(s+1

I S s

S +55 +6s +2s5-8

This L(s) is representative of a conditionally stable system in that for it to be stible,
must lie inside a certain range of values.

The characteristic equation of the system is
st 4687+ (K +2)s+(K=8) = 0
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Constructing the Routh array:

st 6 K-8
$ 5 K+2 0
$* 5.6-0.XK K-8 0
1 51.2+ 0.X —0.2K? 0

56— 0.X
s K-8 0

From this array we can make the following deductions:

1. For stability,K > 8, which follows from the last entry of the first column of array
coefficients. FOK = 8, the system is on the verge of instability. From the fourth row, it

follows that this occurs for the last row®.

2. From the fourth row of the array, it also follows tKanust satisfy the condition

51.2+ 0.X —0.2K*>0

for the system to be stable. That is,

(K -16.508(K + 15.508 <0

from which it follows that for stability

K <16.508

If this condition is satisfied, then 5.6 - B.2 0.

WhenK = 16.508 the system is again on the verge of instability. From the third row of
the Routh array, this occurs when

(5.6— 0.X)s*+ (K —-8) = 0
or

_ .. [8508_ _.
S=xj 5300 +)1.923

Accordingly, we may state that the feedback system is conditionally stable providéd that
satisfies the condition

8<K<16.508
The result is confirmed using the following constructions:

(a) Rootlocus. Figure 1 shows the root locus of the system. Using the command rlocfind,
we obtain the following values &f:
Kmin =8
K = 16.5

max
ForK < 8, the system has a single closed-loop pole in the right-half plane. For
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K > 16.5, the complex closed-loop poles of the system move to the right-half plane.
Hence for stability, we must have &<< 16.5.

(b) Bode diagram. Figure 2(a) shows the Bode diagrab{sffor
Kmax+ Kmin
2

_ 165+ 8
2

= 12.25
From this figure we obtain the following stability margins:

Gain margin = -3.701 dB; phase-crossover frequency = 0 rad/s

Phase margin = 14.58jain-crossover frequency = 1.54 rad/s
Figure 2(b) shows the Bode diagram #& 8. From this second Bode diagram we see
that the gain margin is zero, and the system is therefore on the verge of instability.
Figure 2(c) shows the Bode diagram #r 16.508. From this third Bode diagram we
see that the phase margin is zero, and the feedback system is again on the verge of
instability.

(c) Nyquist diagram. Figure 3(a) shows the Nyquist diagramL@iw) for K = 12.25,

which lies betweet,,, = 8 andK,,ox = 16.5. The critical point (-1,0) is not encircled

for this value ofK and the system is therefore stable. Figure 3(b) shows the Nyquist
locus ofL(jw) for K = 8. The locus of Fig. 3(b) passes through the critical point (-1,0)
exactly and the system is therefore on the verge of instability. Figure 3(c) shows the
Nyquist locus forK < 8, namelyK = 5. The locus of Fig. 3(c) encircles the critical
point (-1,0) and the system is again unstable. Figure 3(d) shows the Nyquist locus for
K > 16.508, namelyK = 20. The locus of Fig. 3(d) encircles the critical point (-1,0)
and the system is therefore unstable. Finally, Fig. 3(c) shows the Nyquist lodgs=for
16.508. Here again we see that the locus passes through the critical point (-1,0)
exactly, and so the system is on the verge of instability.

Care has to be exercised in the interpretation of these Nyquist loci, hence the
reason for the use of shading.

%Solution to Problem 9.62

figure(1); clf;

K=1,

num = K*[1 1];
den=[1562-8];
rlocus(num,den);

Kmin = rlocfind(num,den)
Kmax = rlocfind(num,den)

figure(2); clf;

Kmid = (Kmin+Kmax)/2;
num = Kmid*[1 1];
margin(num,den)
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figure(3); clf;
nyquist(num,den)

30 ot fx B
:
E
] Figure 1
Bode Diagram
Gm = 2.6725 dB (at 1.924 rad/sec), Pm = 15.132 deg (at 1.5257 rad/sec)
@
|
g
§
&
-225
Figure 2
igur
Frequency (rad/sec)
H
g
E
-2 -18 -16 -14 -12 -1 -0.8 0.6 -0.4 -0.2 0
Real Axis
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%Solution to Problem 9.63

figure(1); clf;

K=1;

numl = 0.5*K*[1 2];
denl =[1 16 48 0],
subplot(3,1,1)
rlocus(numl,denl)

%Make figure 9.22

K=1;
num2 = K;
den2 =[110]j;

subplot(3,1,2)
rlocus(numz2,den2)

%Make figure 9.28
K=1,;

numa3 = 0.5*K*[1 2];
den3 =[18-48 0],
subplot(3,1,3)
rlocus(num3,den3)

figure(2); clf;
subplot(2,2,1)
nyquist(numl,denl)
subplot(2,2,3)
nyquist(num2,den2)
subplot(2,2,4)
nyquist(num3,den3)

Imag Axis
o

I I I |
-12 -10 -8 -6

Imag Axis
°

Imag Axis
o

I I I I I
-12 -10 -8 -6 -4 -2 0
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Nyquist Diagram

Imaginary Axis

Nyquist Diagram Nyquist Diagram

Imaginary Axis
Imaginary Axis

1 Figure 2

9.64 We are given a unity feedback system with loop transfer function

_ K
L(s) = S5+ 1)
K
= (1)
S+s
The closed-loop transfer function of the system is

_ _L(s)
) = 19

K
s T )
s +s+K

(a) WithK =1, T(s) takes the value

1
T(s) = 57— (3)
S +s+1
In general, the transfer function of a second-order system is described as
_ o

S +2(,,w,s+ w,
Comparing Egs. (3) and (4):
w,=1
(, =05
The closed-loop poles of the uncompensated system With 1 are located at

1 H 3
= —=+4 —
S 2_1/\/;l
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Figure 1 shows the root locus of the uncompensated system.

jw
closed-looph
pole for -
K=1—a}----1 j¥3/2
splane . o
o o
n--- - VER
Figure 1 v

(b) The feedback system is to be compensated so as to produce a dominant pair of closed-
loop poles withw, =2 and{,, = 0.5 . That is, the damping factor is left unchanged but

the natural frequency is doubled. This set of specifications is equivalent to pole

locations ats = —1+ j./3 , as indicated in Fig. 2, shown below.

It is clear from the root locus of Fig. 1 that this requirement cannot be satisfied by a
change in the gaiK of the uncompensated loop transfer functigg). Rather, we may
have to use a phase-lead compensator as indicated in the problem statement.

Closed-loop jw
pole\‘
--------- jv3
s-plane
5 5 — 1 120°
Nt 3 o
1 1 1 0
T at
e ~jV3
Figure 2

We may restate the design requirement:
» Design a phase-lead compensated system so that the resulting root locus has a

dominant pair of closed-loop polessat —1+ j./3 as indicated in Fig. 2.

For this to happen, the angle criterion of the root locus must be satisfied at

s = —1+ j./3. With the open-loop poles of the uncompensated system @tand
s= -1, we readily see from Fig. 2 that the sum of contributions of these two poles to
the angle criterion is

-120°-90° = =210
We therefore require a phase advance &t@8atisfy the angle criterion.
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Figure 2 also includes the pole-zero pattern of the phase-lead compensator, where the
angles9, and62 are respectively defined by

0, = tan ﬁ’ D (5)
-0
[l 0
9, = tan 1D£% (6)
i
where the parametessandt pertain to the compensator.
To realize a phase advance of 30, we require
or
8, = 30°+6,
Taking the tangents of both sides of this equation:
‘ang. = tan30° + tano,
A1 = T tan30 tare,
. tano,
1——tan@
/\/:—3 2

Using Egs. (5) and (6) in (7) and rearranging terms, we find that avithl the time
constant is constrained by the equation

12-0.95r + 0.025= 0

Solving this equation for:
T=0923 or Tt =0.027

The solutiont = 0.923 corresponds to a compensator whose transfer function has a
zero to the right of the desired dominant poles and a pole on their left. On the other
hand, for the solutiom = 0.027 both the pole and the zero of the compensator lie to the
left of the dominant closed-loop poles, which conforms to the picture portrayed in Fig.
2. Se we choose= 0.027, as suggested in the problem statement.

(c) The loop transfer function of the compensated feedback systenfa0 is
Lo(s) = Ge(s)L(s)
_ats+1 K
Ts+1 s(s+1)

80



_ K(0.27s+1)
"~ s(s+1)(0.02%+ 1)

Figure 3(a) shows a complete root locud ¢f). An expanded version of the root locus
around the origin is shown in Fig. 3(b). Using the RLOCFIND command of

MATLAB, the point —1+ j./3 is located on the root locus. The value Kf
corresponding to this closed-loop pole is 3.846.

%Solution to Problem 9.64

figure(1); clf;
K=1;

t=0.027;

num = K*[10*t 1];
den =[t 1+t 1 0O];
rlocus(num,den)

figure(2); clf;
rlocus(num,den)
axis([-51 -4 4))

K = rlocfind(num,den)

Figure 1
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\
\

Figure 2
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9.65 The loop transfer function of the compensated feedback system is
L(s) = G(s)H(s)
10K (ats+ 1)

T 5025+ D)(1s+ 1)’ o<l 1)

We start the system design with the requirement for a steady-state error of 0.1 to a ramp
input of unit slope. The system under study is a type-1 system; see Problem 9.47. The
velocity error constant of such a system is given by

K, = IimosG( 9H(s)

\Y

Hence,
, 10K (ats+1)
K, = |
v M025+ 1) (ts+ 1)
= 10K

From the definition oK,

1
—K—V:O.l or K, = 10
HenceK = 1.

Next, we use the prescribed value of percentage overshoot to calculate the minimum
permissible phase margin. We do this in two steps:

1. We use the relation between percentage overshoot P.O. and damping ratio  (see
Problem 9.55)

2
P.O. = 10@ ™/ /¢ )
with P.O. = 10% in response to a step input, the use of Eqg. (2) yields
¢ _1 _
= ﬁlogelo = 0.7329

J1-2°

Hence, solving fol

¢ = 0.5911

We may thus sef = 0.6.

2. We use the relation between phase mangin and damping §atio  (see Problem
9.55)
10 0
¢, = tan ! %

G 0
DJ /74Z4+ 1_2sz

Using the valug = 0.6:
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10 O
¢m - tan 1D 1.2

D«/AM X 0.64 +1-2x 0.6ZD
= tan (1.6767)
= 59.1¢
Hence, we may sep , = 59°

The next step in the design is to calculate the minimum value of the gain-crossover
frequencymq . To do this, we use the requirement that the 5% settling time of the step

response should be less than\&e may again proceed in two stages:

1. Using the formula for the settling tifiggyingWith d = 5% = 0.05 (see Problem 9.55)
_anTs
e

= 0.05
Solving this equation fawy, with Tseing= 2 seconds and = 0.6:
_ log20
“h T 2%06
= 2.5 rad/s

2. Using the formula for the gain-crossover frequency (see Problem 9.58):

W, = wnJA/4z4+ 1-27°
2.5JA/4>< 06+1-2x06

1.79 rad/s
So we may seby = 1.8 rad/s.

The stage is now set for calculating the parameters of the compensating network. Figures
1(a) and 1(b) show the uncompensated loop gain response and loop phase response,
respectively. From Fig. 1(a) we see thatuat wy = 1.8 rad/s, the uncompensated loop
gain is 14.4 dB, which corresponds to the numerical value 5.23. Hence,

1

GZ%ZOJQ

We also note that the corner frequencyrdshould coincide withyy/10, and so we may

w
Sl o

1
at

With wy = 1.8 rad/s and = 0.19, we thus get
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_ 10

G(A)g

_ 10
0.19x 1.8
29 seconds

The transfer function of the compensator is therefore

_ L [O1s+1g
H(s) = K710

5.6s+ 1
20s+1

Performancewluation and Fine dning
The compensated loop transfer function is

L(s) = G(s)H(s)
_ 10(5.6s+1)
"~ 5(0.2s+ 1)(29s+ 1)

Figure 2 shows the compensated loop response of the feedback system. According to this
figure, the phase margip,, is 65%&nd the gain-crossover frequenoy is 1.823 rad/s,

both of which are within the design specifications.

Figure 3 shows the response of the closed-loop system to a step input. The overshoot is
less than the prescribed value of 10%. But the 5% settling time is greater than the
prescribed value of 2 seconds. We therefore need to fine tune the compensator design.

We propose to move the pole-zero pattern of the compensator’s transfer fuRik¢gon
away from thgw-axis so as to reduce the settling time. Specifically, we meét{gyas

_52s+1
HES) = Z0s+1
Hence the modified loop transfer function is
10(5.%+1
L(s) = —X ) 3)

5(0.2s)(20s+ 1)

Figures 4 and 5 show the modified loop frequency response and closed-loop step response
of the feedback system, respectively. From these figures we observe the following:

1. The phase margin is 62.8nd the gain-crossover frequency is 2.359, both of which are
within the design specifications.

2. The percentage overshoot of the step response is just under 10% and the 5 percent
settling time is just under 2 seconds.
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We can therefore say that the modified transfer function of Eq. (3) does indeed meet all the
prescribed design specifications.

Design of the Compensator

Figure 6 shows an operational amplifier circuit for implementing the phase-lead
compensator, characterized by the transfer function
5.2s+1
H =
() = Sos+1

The transfer function of this circuit is
V,(s) B RZD R,C;s+1 0
Vi(s) R;HR;+R,)C;s+10

ChooseC; = 10pF. We may then solve these three equations for the resistive elements of
the circuit:

R, = 0.52MQ
R, = 1.48MQ
Ry = 1.48MQ

With this, the system design is completed.
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%Solution to Problem 9.65

%Uncompensated
figure(1); clf;

num = [10];

den =[0.2 1 0];
margin(num,den)

%Compensated
figure(2); clf;

a=>5.6;

b=0.2;

num = [10*a 10];

den =[29*b (b+29) 1 O];
margin(num,den)

%Fine Tuned

figure(4); clf;

a=5.2;

b=0.2

num = [10*a 10];

den = [20*b (b+20) 1 O];
margin(num,den)

Bode Diagram
Gm =Inf, Pm = 38,668 deg (at 6.2481 rad/sec)
T

Uncompensated Loop Response

14.4dB

(dB)

Magnitude

40~ wg=1.8

Phase (deg)

Frequency (rad/sec)
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Bode Diagram
Gm = Inf, Pm = 65.46 deg (at 1.8226 rad/sec)
T T

Compensated Loop Response

Magnitude (dB)

Phase (deg)

Figure 2
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9.66 The MATLAB code is attached.

(a) We are given the loop transfer function
K(s—1)
(s+1)(s°+s+1)

L(s) =

This is the same as tHgs) considered in Problem 9.61, except for the fact that this
time the gain factoK is negative. Let
= —K' K'20

We may then rewrite(s) as
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K'(—s+ 1)
(s+1)(s°+s+1)

L(s) =

Now we can proceed in exactly the same way as before, treKting as a positive gain
factor.

Figure 1 shows the root locus &fs). Using the command rlocfind, we find that the
system is on the verge of instability (i.e., the closed-loop poles reside exactly on the

jw-axis) whenK’ = 1 oK =-1.

We may verify this special value oK' using the Routh-Hurwitz criterion. The
characteristic equation of the system is

S+25%+(2-K)s+(1+K') = 0

Hence, constructing the Routh array:

$ 1 2_K'
& 2 1+K'
1 3(1-K')

S - 0

so 1+K' 0

The third element of the first column of array coefficients is zerowker 1 K or
-1. This occurs when

252+(1+K') =0

or

S= %]

as shown on the root locus in Fig. 1.

(b) We are given the loop transfer function
L(s) = = 3K(S+21)
S +55 +6s +2s-8
which is the same as thie(s) considered in Problem 9.62, except this tilkeis
negative.

SetK = —K' , whereK' is nonnegative. Hence we may rew(geas
—K'(s+1)

s4+ 553 + 632 +25-8

and thus proceed in the same way as before.

L(s) =
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Figure 3 shows the root locus bfs) for six different values oK, namelyK =-1, -2, -
3 andK =-0.1, -0.2, -0.3. We see that for all these valueKadr the corresponding

values ofK’ , we see that the root locus has a pole in the right-half plane. Indeed, the

feedback system described here will always have a closed-loop pole in the right-half
plane. Hence, the system is unstable foKat! 0.

%3Solution to Problem 9.66

figure(1); clf;
num = -1*[1 -1];
den=1[1221]
rlocus(num,den)

figure(2)
K=[-3-2-1-0.4-0.2-0.1];
for n = 1:length(K),
num = K(n)*[1 1]
den=[1562-8];
subplot(2,3,n)
rlocus(num,den)
title([K = 'num2str(K(n))])
end

Figure 1
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