Homework No. 5 Due 11:10am, May 4, 2006

- 3.50 Use the defining equation for the Fourier series coefficients to evaluate the Fourier series representation of the following signals: (20%)
 - (c) $x(t) = \sum_{m=-\infty}^{\infty} e^{j\frac{2\pi}{7}m}\delta(t-2m)$
 - (d) x(t) as depicted in Figure P3.50(a) of the textbook.
- 3.51 Use the definition of the Fourier series to determine the time-domain signals represented by the following Fourier series coefficients: (20%)
 - (c) $X[k] = (\frac{-1}{3})^{|k|}, \omega_0 = 1$
 - (d) X[k] is depicted in Figure P3.51(a) of the textbook, $\omega_0 = \pi$.
- 3.54 Use the defining equation for the Fourier transform to evaluate the frequency-domain representations of the following signals: (20%)
 - (c) $x(t) = te^{-t}u(t)$
 - (d) $x(t) = \sum_{m=0}^{\infty} a^m \delta(t-m), |a| < 1.$
- 3.67 Find the frequency response and the impulse response of the system having the output y(t) for the input x(t): (20%)

(b)
$$x(t) = e^{-3t}u(t), y(t) = e^{-3(t-2)}u(t-2)$$

(f) $x(t) = e^{-2t}u(t), y(t) = 2(t-2)e^{-2(t-2)}u(t-2).$

- 3.77m For the $X(\omega)$ shown in Figure P3.77, if $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)[u(\omega+3) u(\omega-1)]$, please evaluate the following quantities. (20%)
 - (a) $\int_{-\infty}^{\infty} x(t)dt$ (b) $\int_{-\infty}^{\infty} |x(t)|^2 dt$ (c) $\int_{-\infty}^{\infty} x(t)e^{-jt}dt$ (d) $\arg\{x(t)\}$ (e) x(0)