2018 Signal and System HW10 (For your practice)

No need to submit ©

10.21. Determine the z-transform for each of the following sequences. Sketch the polezero plot and indicate the region of convergence. Indicate whether or not the Fourier transform of the sequence exists.

(a)
$$\delta[n+5]$$

(b)
$$\delta[n-5]$$

(c)
$$(-1)^n u[n]$$

(d)
$$(\frac{1}{2})^{n+1}u[n+3]$$

(e)
$$(-\frac{1}{3})^n u[-n-2]$$

(f)
$$(\frac{1}{4})^n u[3-n]$$

(a)
$$o[n+3]$$
 (b) $o[n-3]$
(c) $(-1)^n u[n]$ (d) $(\frac{1}{2})^{n+1} u[n+3]$
(e) $(-\frac{1}{3})^n u[-n-2]$ (f) $(\frac{1}{4})^n u[3-n]$
(g) $2^n u[-n] + (\frac{1}{4})^n u[n-1]$ (h) $(\frac{1}{3})^{n-2} u[n-2]$

(h)
$$(\frac{1}{3})^{n-2}u[n-2]$$

10.22. Determine the z-transform for the following sequences. Express all sums in closed form. Sketch the pole-zero plot and indicate the region of convergence. Indicate whether the Fourier transform of the sequence exists.

(a)
$$(\frac{1}{2})^n \{ u[n+4] - u[n-5] \}$$

(b)
$$n(\frac{1}{2})^{|n|}$$

(c)
$$|n|(\frac{1}{2})^{|n|}$$

(a)
$$(\frac{1}{2})^n \{ u[n+4] - u[n-5] \}$$
 (b) $n(\frac{1}{2})^{|n|}$
(c) $|n|(\frac{1}{2})^{|n|}$ (d) $4^n \cos[\frac{2\pi}{6}n + \frac{\pi}{4}]u[-n-1]$

10.25. Consider a right-sided sequence x[n] with z-transform

$$X(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})}.$$
 (P10.25-1)

(a) Carry out a partial-fraction expansion of eq. (P10.25-1) expressed as a ratio of polynomials in z^{-1} , and from this expansion, determine x[n].

(b) Rewrite eq. (P10.25–1) as a ratio of polynomials in z, and carry out a partialfraction expansion of X(z) expressed in terms of polynomials in z. From this expansion, determine x[n], and demonstrate that the sequence obtained is identical to that obtained in part (a).

10.32. Consider an LTI system with impulse response

$$h[n] = \begin{cases} a^n, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

and input

$$x[n] = \begin{cases} 1, & 0 \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}.$$

- (a) Determine the output y[n] by explicitly evaluating the discrete convolution of x[n] and h[n].
- (b) Determine the output y[n] by computing the inverse z-transform of the product of the z-transforms of the input and the unit sample response.