
Chapter 10
The Z-Transform
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10.0 Introduction
Similar to LT which is a more general transform 
comparing to CTFT. Now we introduce z-
transform which is more general than DTFT.
z-transform is the discrete-time counterpart of 
the Laplace transform with noticeable 
differences.
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10.1  The z-Transform
The response y[n] of the LTI system to a 
complex exponential input of the form      is

(10.1)

where

(10.2)
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10.1  The z-Transform
The z-transform of a general discrete-time signal 
x[n] is defined as

(10.3)
雙邊z轉換定義
For convenience, the z-transform of x[n] will 
sometimes be denoted as            and the 
relationship between x[n] and its z-transform 
indicated as

(10.4)
z轉換關係符號
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10.1  The z-Transform
To explore the relationships between FT and 
ZF, we express the complex variable z in polar
form as

(10.5)

with r as the magnitude of z and ω as the angel 
of z.  In terms of r and ω, eq. (10.3) becomes
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10.1  The z-Transform
or equivalently, 

(10.6)

From eq. (10.6), we see that               is the 
Fourier transform of the sequence x[n]
multiplied by a real exponential      ; that is,

(10.7)
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10.1  The z-Transform
For r = 1, or equivalently,            , eq. (10.3) 
reduces to the Fourier transform; that is,

(10.8)

z轉換與傅立葉轉換的關係
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10.1  The z-Transform
TF can be seen as z-transform with z=ejω.

can be visualized as a circle with 
radius 1 centered at the origin. We call this 
circle “unit circle”
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Example   10.1
指數訊號的z轉換範例

Consider the signal                    .  Then, from 
eq. (10.3),

For convergence of X(z), we require that
(absolute summable).  

Consequently, the region of convergence is the 
range of values of z for which             , or 
equivalently,          . 
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Example   10.1
Then

(10.9)

Thus, the z-transform for this signal is well-
defined for any value of a, with an ROC 
determined by the magnitude of a according to 
eq. (10.9).  For example, for a = 1, x[n] is the 
unit step sequence with z-transform
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可得X(z)及ROC如(10.9)式。
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Example   10.1
We see that the z-transform in eq. (10.9) is a 
rational function.  Consequently, just as with 
rational Laplace transforms, the z-transform can 
be characterized by its zeros (the roots of the 
numerator polynomial) and its poles (the roots 
of the denominator polynomial).
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For this example, there is 
one zero, at z = 0, and one 
pole, at z = a.  The pole-zero 
plot and the region of 
convergence for Example 
10.1 are shown in Figure 
10.2 for a value of a 
between 0 and 1.  For           
, the ROC does not include 
the unit circle, consistent  
with the fact that, for these 
values of a , the Fourier 
transform of               does 
not converge.
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Example  10.2
Now let                           .  Then

(10.10)
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Example  10.2
If             , or equivalently,        , the sum in eq. 
(10.10) converges and 

(10.11)

可得X(z)及ROC如(10.11)式。
The pole-zero plot and region of convergence 
for this example are shown in Figure 10.3 for a 
value of a between 0 and 1.
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Example  10.2
745

X(z)  z
z a , z  a .
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Example  10.4
Let us consider the signal
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Example  10.4
The z-transform of this signal is

(10.19)
,
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Example  10.4
or equivalently, 

(10.20)

For convergence of X(z), both sums in eq. 
(10.19) must converge, which requires that

and                     , or equivalently,
.  The pole zero plot and ROC for this 

example are shown in Figure 10.5.
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10.2  The Region of Convergence for The z-
Transform
 Property 1:  The ROC of X(z) consists of a ring 

in the z-plane centered about the origin.
性質1：X(z)的ROC是由z平面上以原點為圓心的
環狀區域。

The ROC of the z-transform of x[n] consists of the 
values of z=rejω for which           is absolutely 
summable:

(10.21)
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10.2  The Region of Convergence for The z-
Transform
 Property 2: The ROC does not contain any 

poles.
性質2：ROC不包含任何極點。

 Property 3: If x[n] is of finite duration, then the 
ROC is the entire z-plane, except possibly z = 
0 and/or z = ∞.
性質3：若x[n]為有限時間訊號，則ROC為整個z
平面，但z = 0或z = ∞可能除外。
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10.2  The Region of Convergence for The z-
Transform

For x[n] with nonzero values from N1 to N2, where they are all finite, the z-transform is the 
sum of a finite number of terms; that is,

(10.22)
If N1<0 and N2>0, ROC does not include z=0 
or z= ∞.
If N1>0, ROC does include z=∞.
If N2<0, ROC does include z=0.
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Example  10.5
Consider the unit impulse signal δ[n]. Its z-
transform is given by

(10.23)

with an ROC consisting of the entire z-plane, 
including z = 0 and z = ∞.  On the other hand, 
consider the delayed unit impulse δ[n-1], for 
which

(10.24)

,1][][  


n
nZ znn 

749

.]1[]1[ 1


  zznn n

n
Z 



10.2  The Region of Convergence for The z-
Transform

The ROC consists of the entire z-plane, including z = 
∞ but excluding z = 0.  Similarly, consider an 
impulse advanced in time, namely, δ[n+1]. In 
this case,

(10.25)
the ROC include z=0, but there is a pole at 
infinity.
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10.2  The Region of Convergence for The z-
Transform
 Property 4:  If x[n] is a right-sided sequence, and if 

the circle             is in the ROC, then all finite values of 
z for which              will also be in the ROC.0rz 

0rz 
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10.2  The Region of Convergence for The z-
Transform

For right-sided sequences in general, eq. (10.3) takes 
the form

(10.26)
If N1<0,  ROC does not include ∞. If N1>=0, ROC 
includes ∞.
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10.2  The Region of Convergence for The z-
Transform
 Property 5: If x[n] is a left-sided sequence, and if 

the circle              is in the ROC, then all values of z
for which                    will also be in the ROC.
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10.2  The Region of Convergence for The z-
Transform

In general, for left-sided sequences, from eq. 
(10.3), the summation for the z-transform will be 
of the form

(10.27)
If N2>0, ROC does not include 0. If N2<=0, 
ROC includes 0.
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10.2  The Region of Convergence for The z-
Transform
 Property 6: If x[n] is two sided, and if the 

circle            is in the ROC, then the ROC will 
consist of a ring in the z-plane that includes 
the circle             .
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Example  10.6
Consider the signal

Then

(10.28) 
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Example  10.6
Since x[n] is of finite length, it follows form Property 
3 that the ROC includes the entire z-plane except 
possible the origin and /or infinity.  In fact, from our 
discussion of Property 3, since x[n] is zero for n<0, 
the ROC will extend to infinity.  However, since x[n]
is nonzero for some positive values of n, the ROC 
will not include the origin.  This is evident from eq. 
(10.28), from which we see that there is a pole of 
order N – 1 at z = 0.  
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Example  10.6
The N roots of the numerator 
polynomial are at

(10.29)
The root for k = 0 cancels the pole at z = a.  
Consequently, there are no poles other 
than at the origin.  The remaining zeros 
are at

(10.30)
The pole-zero pattern is shown in Figure 
10.9.
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Example  10.7
Let

(10.31)
This two-sided sequence is 
illustrated in Figure 10.10, 
for both b < 1 and b > 1.  
The z-transform for the 
sequence can be obtained 
by expressing it as the sum 
of a right-sided and a left-
sided sequence. 
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Example  10.7
We have

(10.32)

From Example 10.1,
(10.33)

and from Example 10.2,
(10.34)
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Example  10.7
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Example  10.7

(10.35)

or equivalently,

(10.36)

The corresponding pole-zero pattern and ROC 
are shown in Figure 10.11(e).
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10.2  The Region of Convergence for The z-
Transform
 Property 7:  If the z-transform X(z) of x[n] is 

rational, then its ROC is bounded by poles or 
extends to infinity.

性質7：若x[n]的z轉換X(z)為有理式，則其ROC
的範圍受限於極點或是延伸至無限。
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10.2  The Region of Convergence for The z-
Transform
 Property 8: If the z-transform X(z) of x[n] is 

rational, and if x[n] is right sided, then the ROC 
is the region in the z-plane outside the outermost 
pole—i.e., outside the circle of radius equal to 
the largest magnitude of the poles of X(z).
Furthermore, if x[n] is causal (i.e., if it is right 
sided and equal to 0 for n < 0), then the ROC 
also includes z = ∞.
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10.2  The Region of Convergence for The z-
Transform
 Property 9: If the z-transform X(z) of x[n] is 

rational, and if x[n] is left sided, then the ROC is 
the region in the z-plane inside the innermost 
nonzero pole—i.e., inside the circle of radius 
equal to the smallest magnitude of the poles of 
X(z) other than any at z = 0 and extending 
inward to and possibly including z = 0.  In 
particular, if x[n] is anticausal (i.e., if it is left 
sided and equal to 0 for n > 0),then the ROC 
also includes z = 0.
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Example  10.8
Let us consider all of the possible ROCs that 
can be connected with the function

(10.37)

The associated pole-zero pattern is shown in 
Figure 10.12(a).  Based on our discussion in 
this section, there are three possible ROCs that 
can be associated with this algebraic 
expression for the z-transform.
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Example  10.8
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Example  10.8
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10.3  The Inverse z-Transform
This expression can be obtained on the basis of the 
interpretation, developed in Section 10.1, of the z-
transform as the Fourier transform of an 
exponentially weighted sequence.  Specifically, as 
expressed in eq. (10.7),

(10.38)
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10.3  The Inverse z-Transform
for any value of r so that              is inside the ROC.  
Applying the inverse Fourier transform to both sides 
of eq. (10.38) yields

or

(10.39)
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10.3  The Inverse z-Transform
Using the inverse Fourier transform expression 
in eq. (5.8), we have

or moving the exponential factor       inside the 
integral and combining it with the term        ,

(10.40)
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dz=jrejωdω =>dω=1/(jrejω)dz=(1/jz) dz
(10.41)

The value of r can be chosen as any value for which X(z) converges—i.e., any value such that the circular contour of integration            is in the ROC.
The integration around a counterclockwise closed circular contour centered at the origin with radius r, and |z|=r must be in ROC.
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10.3  The Inverse z-Transform
There are, however, a number of alternative 
procedures for obtaining a sequence from its z-
transform.

反z轉換亦有一些替代的方法，如部分分式展開
法等等。
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Example 10.9
Consider the z-transform

(10.42)

There are two poles, one at z = 1/3 and one at z = 
¼, and the ROC lies outside the outermost pole.  
That is, the ROC consists of all points with 
magnitude greater than that of the pole with the 
larger magnitude, namely the pole at z = 1/3.  
From Property 4 in Section 10.2, we then know 
that the inverse transform is a right-sided 
sequence.
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Example 10.9
As described in the appendix, X(z) can be 
expanded by the method of partial fractions.  
For this example, the partial-fraction expansion, 
expressed in polynomials in        , is

(10.43).
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Example 10.9
Thus, x[n] is the sum of two terms, one with z-
transform                       and the other with z-
trandform                    .  In order to determine 
the inverse z-transform of each of these 
individual terms, we must specify the ROC 
associated with each.  Since the ROC for X(z)
is outside the outermost pole, the ROC for each 
individual term in eq.  (10.43) must also be 
outside the pole associated with that term.
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Example 10.9
That is, the ROC for each term consists of all 
points with magnitude greater than the 
magnitude of the corresponding pole.  Thus,

(10.44)
where

(10.45)
(10.46)
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Example 10.9
From Example 10.1, we can identify by 
inspection that

(10.47)
and 

(10.48)

and thus,
(10.49)
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10.3  The Inverse z-Transform
The inverse transform of each term can then be 
obtained by inspection.  In particular, suppose that the 
partial-fraction expansion of X(z) is of the form

(10.55)

若將X(z)展開成(10.55)式的部分分式型式，則可個
別求其反z轉換。
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10.3  The Inverse z-Transform
So that the inverse transform of X(z) equals the 
sum of the inverse transforms of the individual 
terms in the equation.  If the ROC of X(z) is 
outside the pole at           , the inverse transform 
of the corresponding term in eq. (10.55) is             
.  On the other hand, if the ROC of X(z) is inside
the pole at           , the inverse transform of this 
term is                    .
若X(z)的單項的ROC在極點 外側，在其反z
轉換，為 ；若X(z)的單項的ROC在極點

內側，則其反z轉換為 。
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Example  10.13
Consider

This expression can be expanded in a power series by 
long division:

.,1
1)( 1 azazzX  
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Example  10.13
or

(10.58)

The series expansion of eq. (10.58) converges, 
since          , or equivalently,            .  Comparing 
this equation with the definition of the z-transform 
in equation (10.3), we see, by matching terms in 
powers of z, that x[n] = 0, n < 0; x[0] = 1; x[1] = a; 
x[2] =      ; and in general,                       which is 
consistent with Example 10.1.

....11
1 221

1  
 zaazaz

az  11 az

2a ][][ nuanx n
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X(z) x[n]zn
n

 (10.3)



Example  10.13
If, instead, the ROC of X(z) is specified as         
or, equivalently,               , then the power-series 
expansion for                 in eq. (10.58) does not 
converge.  However, we can obtain a 
convergent power series by long division again.

az 
11 az
)1/(1 1 az
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Example  10.13
or

(10.59)

In this case, then, x[n] = 0, n≧0; and                    ,
,…; that is,                             .  This is 

consistent with Example 10.2.
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10.4.1  First-Order Systems
The impulse response of a first-order causal discrete-
time system is of the general form

(10.64)
and from Example 10.1, its z-transform is

(10.65)
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10.4.1  First-Order Systems
For             , the ROC includes the unit circle, and 
consequently, the Fourier transform of h[n]
converges and is equal to H(z) for                .

(10.66)
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Note first that, as illustrated in Figure 10.13, the magnitude of the 
peak of              at ω = 0 decreases as       decreases toward 0.)( jeH a



10.4.1  First-Order Systems
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10.4.2  Second-Order Systems
with impulse response and frequency response given 
in eqs. (6.64) and (6.60), which we respectively 
repeat here as

(10.67)

and

(10.68)
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Where 0 < r < 1 and 0 ≦ θ ≦ π.  Since                     , 
we can infer from eq. (10.68) that the system 
function, corresponding to the z-transform of the 
system impulse response, is

(10.69)
The poles of H(z) are located at

(10.70)
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When r approach 1, the frequency response peak more 
sharply. Corresponding to r decreasing, the impulse 
response decays more rapidly and the step response 
settles more quickly.
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10.4.2  Second-Order Systems
766



10.5.1  Linearity
If

and

then
with ROC 

containing
(10.71)

線性性質（即重疊原理）
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10.5.2  Time Shifting
If 

then

(10.72)

時間移位性質
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with ROC = R, except for
the possible addition or dele
-tion of the origin or infinity.
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10.5.3  Scaling in the z-Domain
If 

then

(10.73)

刻度變換性質
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10.5.3  Scaling in the z-Domain
An important special case of eq. (10.73) is when

.  In this case,                and

(10.74)
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10.5.4  Time Reversal
If

then

(10.75)

時間倒轉性質
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10.5.5  Time Expansion
Specifically, the sequence            , introduced in 
Section 5.3.7 and defined as 

(10.76)
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10.5.5  Time Expansion
has k – 1 zeros inserted between successive values of 
the original signal.  In this case, if

then

(10.77)
時間延展性質
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10.5.5  Time Expansion

The interpretation of this result follows from the 
power-series form of the z-transform, from which we 
see that the coefficient of the term       equals the 
value of the signal at time n.  That is, with

it follows that

(10.78)

770

,][)( 


n
nznxzX

X(zk )  x[n]
n

 (zk )n  x[n]zkn
n

  x[m / k]zm
mint mul of k


 xk[m]zm
m

  Z{xk[m]}

nz


 ,0

],/[][)(
knxnx k

if n is a multiple of k
if n is not a multiple of k



10.5.6  Conjugation
If 

(10.79)
then

(10.80)
共軛性質

Consequently, if x[n] is real, we can conclude from 
eq. (10.80) that 
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10.5.7  The Convolution Property
If 

and 

then

(10.81)
迴旋運算性質
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Example  10.15
Consider an LTI system for which

(10.82)

where

Note that
(10.83)
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Example 10.15
with ROC equal to the entire z-plane except the 
origin.  Also, the z-transform in eq. (10.83) has a 
zero at z = 1.  From eq. (10.81), we see that if

then

(10.84)
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Example  10.15
with ROC equal to R, with the possible deletion of 
z = 0 and/or addition of z = 1.
Note that for this system

771
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Example  10.15
That is, y[n] is the first difference of the 
sequence x[n]. Since the first-difference 
operation is commonly thought of as a discrete-
time counterpart to differentiation, eq. (10.83) 
can be thought of as the z-transform counterpart 
of the Laplace transform differentiation
property presented in Section 9.5.7.
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10.5.8  Differentiation in The Z-Domain
If 

Then

(10.87)

z域微分性質
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Example  10.17
If

(10.88)
Then

(10.89)

By differentiating, we have converted the z-transform 
to a rational expression.  The inverse z-transform of 
the right-hand side of eq. (10.89) can be obtained by 
using Example 10.1 together with the time-shifting
property, eq. (10.72), set forth in Section 10.5.2.
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Specifically, from Example 10.1 and the linearity 
property,

(10.90)
Combining this with the time-shifting property 
yields

Consequently,
(10.91)
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10.5.9  The Initial-Value Theorem
If x[n] = 0, n < 0, then

(10.95)
初值定理

This property follows by considering the limit of each 
term individually in the expression for the z-
transform, with x[n] zero for n < 0.  With this 
constraint, 
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Example  10.19
The initial-value theorem can also be useful in 
checking the correctness of the z-transform 
calculation for a signal.  For example, consider 
the signal x[n] in Example 10.3.  From eq. 
(10.12), we see that x[0] = 1.  Also, from eq. 
(10.14),

which is consistent with the initial-value theorem.
表10.1為常用的z轉換性質。
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10.5.10  Summary of Properties

In Table 10.1, we summarize the 
properties of the z-transform.
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10.6  Some Common z-Transform Pairs
In Table 10.2, we have listed a number of 
useful z-transform pairs.

表10.2為常用的z轉換對（常用的訊號及其z
轉換）。
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10.6  Some Common z-Transform Pairs
776



10.7  Analysis and Characterization of LTI 
Systems Using z-Transforms

The z-transform plays a particularly important role 
in the analysis and representation of discrete-time 
LTI systems.  From the convolution property 
presented in Section 10.5.7,

(10.96)

LTI系統的輸入、輸出及脈衝響應的z轉換滿足
（10.96）式的關係。
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10.7.1  Causality
As we saw in Property 8 in Section 10.2, for a causal
system the power series

does not include any positive power of z->ROC 
include infinity.
A discrete-time LTI system is causal if and only if 
the ROC of its system function is the exterior of a 
circle, including infinity.
一離散時間LTI系統為因果的，若且唯若系統函數
的ROC為某個圓的外側，包含無限大處。
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10.7.1  Causality
A discrete-time LTI system with rational system function H(z) is causal if and only if: (a) the ROC is the exterior of a circle outside the outermost pole; and (b) with H(z) expressed as a ratio of polynomials in z, the order of the numerator cannot be greater than the order of the denominator (i.e., no pole at infinity).
一個具有有理式系統函數H(z)的離散時間LTI系統
為因果的，若且唯若：(a) ROC為最外側極點之
外的某個圓的外側；且(b) H(z)表成多項式比值後
，分子次數不大於分母次數。

777



Example  10.21
Consider a system with system function

(10.97)

Since the ROC for this system function is the exterior 
of a circle outside the outermost pole, we know that 
the impulse response is right-sided.  To determine if 
the system is causal, we then need only check the 
other condition required for causality, namely that 
H(z), when expressed as a ratio of polynomials in z, 
has numerator degree no larger than the 
denominator.  For this example,
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Example  10.21
(10.98)

so that the numerator and denominator of H(z) are both 
of degree two, and consequently we can conclude that 
the system is causal.  This can also be verified by 
calculating the inverse transform of H(z). In particular, 
using transform pair 5 in Table 10.2, we find that the 
impulse response of this system is

(10.99)

Since h[n] = 0 for n<0, we can confirm that the system is 
causal.
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10.7.2  Stability
An LTI system is stable if and only if the 
impulse response is absolutely summable.
=> if and only if the ROC of its system function 
H(z) includes the unit circle,             .

一個LTI系統為穩定，若且唯若H(z)的ROC包含
單位圓 。
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Example  10.22
Consider again the system function in eq. (10.97).  
Since the associated ROC is the region           , which 
does not include the unit circle, the system is not 
stable.  This can also be seen by noting that the 
impulse response in eq. (10.99) is not absolutely 
summable.  If, however, we consider a system whose 
system function has the same algebraic expression as 
in eq. (10.97) but whose ROC is                    , then the 
ROC dies contain the unit circle, so that the 
corresponding system is noncausal but stable. 
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Example  10.22
In this case, using transform pairs 5 and 6 from 
Table 10.2, we find that the corresponding impulse 
response is 

(10.100)

which is absolutely summable.
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Example  10.22
Also, for the third possible choice of ROC 
associated with the algebraic expression for 
H(z) in eq. (10.97), namely,                    , the 
corresponding system is neither causal (since 
the ROC is not outside the outermost pole) nor 
stable (since the ROC does not include the unit 
circle).  This can also be seen from the impulse 
response, which (using transform pair 6 in Table 
10.2) is

].1[22
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10.7.2  Stability
A causal LTI system with rational system 
function H(z) is stable if and only if all of the 
poles of H(z) lie inside the unit circle—i.e., 
they must all have magnitude smaller than 1.

一個具有有理系統函數H(z)的因果LTI系統為穩定
，若且唯若H(z)的所有極點均位於單位圓內。亦
即，所有的極點的大小均小於1。
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Example  10.24
The system function for a second-order system 
with complex poles was given in eq. (10.69), 
specifically,

(10.101),)cos2(1
1)( 221   zrzrzH 

779



With poles located at                   and                    .  
Assuming causality, we see that the ROC is outside 
the outermost pole (i.e.,           ).  The pole-zero plot 
and ROC for this system are shown in Figure 10.16 for 
r < 1 and r > 1.  For r < 1, the poles are inside the unit 
circle, the ROC includes the unit circle, and therefore, 
the system is stable.  For r > 1, the poles are outside 
the unit circle, the ROC does not include the unit 
circle, and the system is unstable.
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Example 10.25
Consider an LTI system for which the input x[n] and 
output y[n] satisfy the linear constant-coefficient 
difference equation

(10.102)
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Example 10.25
Applying the z-transform to both sides of eq. 
(10.102), and using the linearity property set 
forth in Section 10.5.1 and the time-shifting
property presented in Section 10.5.2, we obtain

or

(10.103) 

Y (z) 1
2 z1Y (z)  X(z) 1
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Example 10.25
From eq. (10.96), then,

(10.104)
This provides the algebraic expression for H(z), but 
not the region of convergence.  In fact, there are two 
distinct impulse responses that are consistent with the 
difference equation (10.102), one right sided and the 
other left sided. Correspondingly, there are two 
different choices for the ROC associated with the 
algebraic expression (10.104).
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Example 10.25
One,             , is associated with the assumption 
that h[n] is right sided, and the other              , 
is associated with the assumption that h[n] is 
left sided.
Consider first the choice of ROC equal to          .  
Writing

2/1z 2/1z
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Example 10.25
we can use transform pair 5 in Table 10.2, 
together with the linearity and time-shifting 
properties, to find the corresponding impulse 
response

].1[2
1

3
1][2

1][
1 





 

nununh
nn

780
,

2
11
1

3
11)(

1
1







 
z

zzH



Example 10.25
For the other choice of ROC, namely,             , 
we can use transform pair 6 in Table 10.2 and 
the linearity and time-shifting properties, 
yielding

In this case, the system is anticausal (h[n] = 0 
for n > 0) and unstable.
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10.7.2  Stability
In particular, consider an LTI system for which 
the input and output satisfy a linear constant-
coefficient difference equation of the form

(10.105) 

N階線性常係數差分方程式（N階LTI系統）
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10.7.2  Stability
Then taking z-transforms of both sides of eq. 
(10.105) and using the linearity and time-
shifting properties, we obtain
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10.7.2  Stability
So that 

(10.106)

系統函數與差分方程系數的關係式

H (z)  Y (z)
X(z) 

bkzk
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Example  10.26
Suppose that we are given the following information 

about an LTI system:

1.  If the input to the system is                        , then the 
output is
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Example  10.26
2. If                       , then the output is                      .  As 

we now show, from these two pieces of information, 
we con determine the system function H(z) for this 
system, including the value of the number a, and can 
also immediately deduce a number of other properties 
of the system.
The z-transforms of the signals specified in the first 
piece of information are

(10.107)
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Example  10.26

(10.108)

From eq. (10.96), it follows that the algebraic 
expression for the system function is

(10.109)
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Example  10.26
Furthermore, we know that the response to

must equal          multiplied by the 
system function H(z) evaluated at z = -1.  Thus 
from the second piece of information given, we 
see that

(10.110).
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Example  10.26
Solving eq. (10.110), we find that a = -9, so that 

(10.111)

or

(10.112)
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Example  10.26
or, finally,

Also, from the convolution property, we know 
that the ROC of          must include at least the 
intersections of the ROCs of           and           .  
Examining the three possible ROCS for  
(namely,                             and           ), we find 
that the only choice that is consistent with the 
ROCs of              and           is              .

.
6
1

6
5 3

1
6

13
)(

2

2




zz
zz

zH

)(1 zY )(1 zX )(zH )(zH
2/1,2/13/1,3/1  zzz

)(1 zX )(1 zY 2/1z

782
,

)3
11)(2

11(
)6

11)(21(
)(

11

11








zz
zz

zH

,6
1,

6
11
1)(

11 





z
z

zX



Example  10.26
Since the ROC for the system includes the unit 
circle, we know that the system is stable.  
Furthermore, from eq. (10.113) with H(z) viewed 
as a ratio of polynomials in z, the order of the 
numerator does not exceed that of the 
denominator, and thus we can conclude that the 
LTI system is causal.  Also, using eqs. (10.112) 
and (10.106), we can write the difference equation 
that, together with the condition of initial rest, 
characterizes the system:
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10.8.1  System Functions for 
Interconnections of LTI Systems

The specific equations for the interconnection 
of Figure 10.17 exactly parallel eqs. (9.159)—
(9.163), with the final result that the overall 
system function for the feedback system of 
Figure 10.17 is 
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Example  10.28
Consider the causal LTI system 
with system function

(10.116)

Using the results in Section 10.7.3, 
we find that this system can also 
be described by the difference 
equation
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Example  10.31
Finally, consider the system function

(10.121)

Writing

(10.122)
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1 7
4 z1  1

2 z2 Þ
y[n] x[n] 7

4 x[n1] 1
2 x[n 2]

suggests 
representing the 
system as the 
cascade of the 
system in Figure 
10.20(a) and the 
system with 
system function

7881
1 1

4 z1  1
8 z2

Þ y[n] 1
4 y[n1] 1

8 y[n 2] x[n]

x[n]



The result is the direct-form block diagram shown in 
Figure 10.21, the details of the construction of which 
are examined in Problem 10.38.  The coefficients in 
the direct-form representation can be determined by 
inspection form the coefficients in the system 
function of eq. (10.121).
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Example  10.31
We can also write H(z) in the forms

(10.123)

and 

(10.124)

Eq. (10.123) suggests a cascade-form representation, 
while eq. (10.124) leads to a parallel-form block 
diagram.  These are also considered in Problem 10.38.
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10.9  The Unilateral z-Transform
The unilateral z-transform of a sequence x[n] is 
defined as 

(10.125)
單邊z轉換的定義
As in previous chapters, we adopt a convenient 
shorthand notation for s signal and its unilateral z-
transform:

(10.126)
訊號與其z轉換對應的符號
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Example 10.33
Let

(10.129)
In this case the unilateral and bilateral transforms are 
not equal, since                    .  The bilateral transform 
is obtained form Example 10.1 and the time-shifting
property set forth in Section 10.5.2.  Specifically,

(10.130)
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Example 10.33
In contrast, the unilateral transform is

or 

(10.132)
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10.9  The Unilateral z-Transform
10.3 shows an alternative way to obtain inverse 
transform. For  instance, in Example 10.13 we 
performed long division on the bilateral transform

(10.134)
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10.9  The Unilateral z-Transform
In two ways, corresponding to the two possible ROCs 
for X(z). Only one of these choices, namely, that 
corresponding to the ROC |z| > |a|, led to a series 
expansion without positive powers of z, i.e., 

(10.135)
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10.9  The Unilateral z-Transform
In particular, if we consider a rational function of z
written as a ratio of polynomials in z (not in       ), i.e.,

(10.136)

the degree of the numerator must be no bigger than 
the degree of the denominator.
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Example 10.35

A simple example illustrating the preceding point is 
given by the rational function in eq. (10.130), which 
we can write as a ratio of polynomials in z:

(10.137)
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Example 10.35
There are two possible bilateral transforms that can be 
associated with this function, namely those 
corresponding to the two possible ROCs,               and

.  The choice             corresponds to a right-
sided sequence, but not to a signal that is zero for all 
n < 0, since its inverse transform, which is given by 
eq. (10.129), is nonzero for n = -1.
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Example 10.35
More generally, if we associate eq. (10.136) with the 
bilateral transform with the ROC that is the exterior 
of the circle with radius given by the magnitude of 
the largest root of q(z), then the inverse transform will 
certainly be right sided.  However, for it to be zero 
for all n < 0, it must also be the case that 
degree(p(z)) ≦ degree(q(z)).
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10.9.2  Properties of The Unilateral z-
Transform

表10.3列出單邊
z轉換常用的性
質，未列出ROC
及因其區域必在
某一個圓之外。
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10.9.2  Properties of The Unilateral z-
Transform

Let us examine the difference in the convolution 
property first.  Table 10.3 states that if                    for 
all n < 0, then

(10.138)

(10.138)式可應用在因果LTI系統上。

793

).()(][][ 2121 zznxnx UZ 
0][][ 21  nxnx



Example 10.36
Consider the causal LTI system described by the 
difference equation

(10.140)

together with the condition of initial rest.  The system 
function for this system is

(10.141)
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Example 10.36
Suppose that the input to the system is x[n] = αu[n],
where α is a given constant.  In this case, the 
unilateral (and bilateral) z-transform of the output 
y[n] is

(10.142)

Applying Example 10.32 to each term of eq. (10.142) 
yields

(10.143)
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10.9.2  Properties of The Unilateral z-
Transform

An important point to note here is that the convolution 
property for unilateral z-transforms applies only if the 
signals          and           in eq. (10.138) are both 
identically zero for n < 0.

單邊z轉換的迴旋運算性質只適用於 及
在n < 0時均為0。
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10.9.2  Properties of The Unilateral z-
Transform

To develop the shifting property for the unilateral 
transform, consider the signal

(10.144)
Then
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10.9.2  Properties of The 
Unilateral z-Transform
or

(10.145)

so that

(10.146)
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10.9.2  Properties of 
The Unilateral z-
Transform

By repeated application of eq. (10.146), the 
unilateral transform of

(10.147)

is

(10.148)
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W (z)  y[1] z1Y (z)  x[2] z1(x[1] z1X(z))
 x[2] x[1]z1  z2(z).
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10.9.2  Properties of The Unilateral z-
Transform

There is also a time advance property for 
unilateral transforms that relates the transform 
of an advanced version of x[n] to X(z).
Specifically, as shown in Problem 10.60,

(10.149)].0[)(]1[ zxzznx UZ 
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Example  10.37
Consider again the difference equation (10.140) with 
x[n] = αu[n] and with the initial condition

(10.150)

利用單邊z轉換求解差分方程的範例。
已知輸入x[n]及輸出的初始條件y[-1]。
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Example  10.37
Applying the unilateral transform to both sides of eq. 
(10.140) and using the linearity and time delay 
properties, we obtain

(10.151)

先對差分方程取z轉換並代入初始條件。
Solving for Y(z) yields

(10.152)

求出輸出的z轉換y(z)。
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10.10   Summary
 Z-Transform

 ROC & properties
 Zero-Pole
 Properties
 Unilateral Transformation
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