Chapter 10
The Z-Transform

Min Sun



10.0 Introduction

Similar to LT which is a more general transform
comparing to CTFT. Now we introduce z-
transform which is more general than DTFT.

z-transform is the discrete-time counterpart of
the Laplace transform with noticeable
differences.



10.1 The z-Transform

The response y[n] of the LTI system to a
complex exponential input of the form z"is

ylnl=H(z)z", (10.1)
where

H(z)= ) h[n]z™". (10.2)



10.1 The z-Transform

The z-transform of a general discrete-time signal
x[n]is definedas  , .,

X(z)= > x[n)z"™", (10.3)
R R =
For convenience, the z-transform of x/n] will

sometimes be denoted as Zixlz]} and the

relationship between x/n] and its z-transform
indicated as ,
x[n]¢—— X (2). (10.4)
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10.1 The z-Transform

To explore the relationships between FT and
ZF, we express the complex variable z in polar
form as

z=re’’, (10.5)

with r as the magnitude of z and w as the angel
of z. Interms of r and w, eq. (10.3) becomes

X (re’”) = f:x[n](rejw)_”,



10.1 The z-Transform

or equivalently,

X(re’”) = i{x[n]f" %_j“’”. (10.6)

n=—00

From eq. (10.6), we see that X(re’?) is the
Fourier transform of the sequence x/n]
multiplied by a real exponential ¥ ; that is,

X(re’”)=F {x[n]r‘”}- (10.7)



10.1 The z-Transform

For r=1, or equivalently, |Z/=1 , eq. (10.3)
reduces to the Fourier transform: that is,

e =X(E@)=Fix[nll. (108
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10.1 The z-Transform

TF can be seen as z-transform with z=e*:

— L] . . . .
Zz=c¢€ can be visualized as a circle with
radius 1 centered at the origin. We call this
circle “unit circle”

Idm

1 Re
Figure 10.1 Complex z-plane. The
Z-transform reduces to the Fourier

transform for values of z on the unit
circle.

Unit circle
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Example 10.1  x@)=Y " (103)

Nn=—00

TaBGEN Iz f]

Consider the signal x[n]=a"u[n] . Then, from

eq. (10.9) X(z)= Za uln Z:(az_1 :

Nn=—00

For convergence of X(z), we require that

> »olez”|" < (absolute summable).
Consequently, the region of convergence is the
range of values of z for which |z|>|q| , Or az7!| <1
equivalently,




Example 10.1

A f5:X R 10.9)= -

X(z):i(az_l)”:l_l —=——, |g>lq (10.9)

az z—d

Thus, the z-transform for this signal is well-
defined for any value of a, with an ROC
determined by the magnitude of a according to
eq. (10.9). For example, fora =1, x[n]is the
unit step sequence with z-transform

1
X(z)= —,
|

‘Z‘>1.



Example 10.1

We see that the z-transform in eq. (10.9) is a
rational function. Consequently, just as with
rational Laplace transforms, the z-transform can
be characterized by its zeros (the roots of the
numerator polynomial) and its poles (the roots
of the denominator polynomial).



1 z
X(z az™')' = = , z| > |al.
(2)= Z( V== >
For this example there is
one zero, at z =0, and one

pole, at z=a. The pole-zero.

plot and the region of Unit Gircle
convergence for Example —
10.1 are shown in Figure

10.2 for a value of a Ohe
between 0 and 1. For |a|>1

the ROC does not include
the unit circle, consistent
with the fact that, for these
values of a , the Fourier
transform of aq"u[n] does
not converge.




Example 10.2 X(z)i ZOO: x[n]z™"(10.3)

n=—a0

Now let x[n]=—-a"u[-n—-1]. Then

e (10.10)
= —Z a'z'=1- Z(a_lz)"
n=l n=0
=1- : la 'z <1



Example 10.2

If la'2<1  or equivalently, |2/ <|q|, the sum in eq.
(10.10) converges and

1 1 z
X(Z)Zl— - = - = , |z|<|a|. (1011)

l-a z 1-az zZ—a

H[15:X(z) ROC41(10.11)=, -

The pole-zero plot and region of convergence
for this example are shown in Figure 10.3 for a
value of a between 0 and 1.



Example 10.2 X()=—, [ <ld|

Idm

Unit Circle

z-plane

Figure 10.3 Pole-zero plot and region of convergence for Example 10.2 for
D=4 < 1.
103 87 ROC B |z|<|a| 9B EIK -



x[n]=—a"u[-n—1] x[n]=a"u[n]

X@)=——, [ <l X(z)=2(az—1)"=zfa, 2| >dl.
I9m " Im
Hhitinle Unit Circle
z-plane z-plane
Re Re

differ only in their regions of convergence.



Example 10.4

Let us consider the signal

3

| SN R | B
=—(—=e"""Y'ulnl—— (e’ uln].
2].(3 ) uln] 2].(3 ) uln]

x[n]= (ljn sin(% n)u[n]



x[n]=a"u[n]

Example 10.4 XO=Ye 'y == ] s

-1
az zZ—da

The z-transform of this signal is

° 11 (1 . .Y 1(1 ...\
X(z2)= — | =™ ulnl——| =™ | ulnliz™
@) nzoo{2j(3 j L] 2](3 j | ]}
_ L.i(%ej’”“z_ljn —L.i(%e‘j””z‘ljn

2j1= 2]
| | 1 1

2j l_lejﬂ/4Z—1 2j l_le—jzz/4Z—1

(10.19)

5



Example 10.4

or equivalently,
1

z

342
X(z)= , _ 10.20
(Z_lejﬂ/4)(2_l€_J”/4) ( )

3

For convergence of X(z), both sums in eq.
(10.19) must converge, which requires that

(1/3)e’ 27| <1 and|1/3)e 27| <1, or equivalently,

2|>1/3 . The pole zero plot and ROC for this
example are shown in Figure 10.5.



10.2 The Region of Convergence for The z-
Transform

* Property 1: The ROC of X(z) consists of a ring
In the z-plane centered about the origin.
151 2 X(z)e5oROC A d z-T & *+ 2 g 8L 5 [f]s e
Bk ® B o
The ROC of the z-transform of x/n/ consists of the

values of z=re&/® for which x{»]r is absolutely

= Z ‘x[n]|r_” < oo,

- — (10.21)

400

summable: Z ‘x[n]r_”




10.2 The Region of Convergence for The z-
Transform

* Property 2: The ROC does not contain any
poles.

MEE2 © ROCAH il & (o i -

» Property 3: If x[n] is of finite duration, then the
ROC is the entire z-plane, except possibly z =
0 and/or z = «,

f_iﬁ’* 53 ¢ Exn]EATRIFLERSE - BIIROC A #(lEz
Z1H] 0 {Hz = 08z = <« 1] gEfRA] -




10.2 The Region of Convergence for The z-
Transform

For x[n] with nonzero values from N, to N,
where they are all finite, the z-transform is the
sum of a finite number of terms; that is,

N2
X(2)= Zx[n]z_”.
n=N, (10.22)

If N,<O and N,>0, ROC does not include z=0
or z= .

If N,>0, ROC does include z=<.
If N,<0, ROC does include z=0.



Example 10.5

Consider the unit impulse signal o[n]. Its z-
transform is given by

Stz S slnlz" =1, (10.23)

with an ROC consisting of the entire z-plane,
including z=0 and z = «. On the other hand,
consider the delayed unit impulse 6[n-1], for
which

S[n—-1]<~t—> +2.05[11—1]2_” =z (10.24)



10.2 The Region of Convergence for The z-
Transform

The ROC consists of the entire z-plane, including z =
« put excluding z = 0. Similarly, consider an
iImpulse advanced in time, namely, d/n+1]. In
this case,

S[n+1]«~%t> Z5[n+1 z, (10.25)

the ROC include z O but there is a pole at
infinity.



10.2 The Region of Convergence for The z-
Transform

= Property 4: If x/n]is a right-sided sequence, and if

the circle |2| =¥, is in the ROC, then all finite values of
z for which |Z| > 7, will also be in the ROC.

Im




AN

Figure 10.7 With r; > rg, x[n]r;”"
decays faster with increasing n than
does x[n]ry". Since x[n] = 0,n < N,
this implies that if x[n]r; " is abso-
lutely summable, then x[n]r;" will be
n also.




10.2 The Region of Convergence for The z-
Transform

For right-sided sequences 1n general, eq. (10.3) takes
the form

X(z) = iJC[n]Z_”, (10.26)

If N,<0, ROC doés nbt include . If N;>=0, ROC
includes <.



10.2 The Region of Convergence for The z-
Transform

= Property 5: If x/n] is a left-sided sequence, and if

the circle ‘Z‘ =17, 1s 1n the ROC, then all values of z
for which 0 <|z| <, will also be in the ROC.

Im




10.2 The Region of Convergence for The z-
Transform

In general, for left-sided sequences, from eq.
(10.3), the summation for the z-transform will be
of the form

X(z2)= n;ox[n]z_”, 10.27)

If N,>0, ROC does not include 0. If N,<=0,
ROC includes 0.



10.2 The Region of Convergence for The z-
Transform

» Property 6: If x[n] is two sided, and if the
circle |z|=r, is in the ROC, then the ROC will
consist of a ring in the z-plane that includes

the circle |z|=r, .




Example 10.6

Consider the signal

a’, 0<n<N-1la>0
x[n]= .
{O, otherwise
Then
N-1
X(z)= Za"z‘"
o (10.28)
= Z(az_l)"
n=0
__1—(a24)N__ 1 zV-a"

-1~ _N-
1—az z zZ—a



1 VN —a"

Example 10.6 X(@) =7 (10.28)

z—d

Since x/n/ 1s of finite length, 1t follows form Property
3 that the ROC includes the entire z-plane except
possible the origin and /or infinity. In fact, from our
discussion of Property 3, since x/n/ 1s zero for n<0,
the ROC will extend to infinity. However, since x/n/
1s nonzero for some positive values of n, the ROC
will not include the origin. This is evident from eq.
(10.28), from which we see that there 1s a pole of
order N—1 atz=0.



Im

z-plane
Example 10.6 (N-1)st order pole Unit circle
A © O

The N roots of the numerator o Q

: O X :
polynomuial are at 5 o Re

: IO o) a

z, =ae’*™"M k=0]1,.N-1. -0
(10.29)

The root for £ = 0 cancels the pole at z = a.
Consequently, there are no poles other
than at the origin. The remaining zeros
N_ N
L 2 =@ 1928

are at
, X(z)=
27/ N N-1
]( ) k : I,OOO,N_lo Z Z a

z, =ae :
(10.30)

The pole-zero pattern 1s shown in Figure
10.9.




Example 10.7

Let

_
x[n]=b"",b6>0. 10%

]

D<b<=

This two-sided sequence is
illustrated in Figure 10.10,
forboth b<1and b > 1.
The z-transform for the
seguence can be obtained
by expressing it as the sum
of a right-sided and a left-
sided sequence.

(a)




Example 10.7

We have
x[n]=b"u[n]+b "u[-n—1]. (10.32)

From Example 10.1,

pruln)ets— |f>b, ~ (10.33)
1-bz"

and from Example 10.2,
1 (10.34)

: <t
1-p7'z7"" b

b "u[-n—-1]<«~—>



Example 10.7

1
b 'u[n]«2> , > b,
u[n] l_bZ—l ‘Z‘
b"u[-n—1]«~%— 1_1 —, |z <1.
1-b 'z b 0<b<1




Example 10.7

1 1

X(Z):l—bz_l _l—b_lz_“ b<‘2‘<g’ (10.35)

or equivalently,

b —1 z
b (z=b)(z-b"")’

1
b<lz<—.  (10.36)

X(z)= ;

The corresponding pole-zero pattern and ROC
are shown in Figure 10.11(e).



10.2 The Region of Convergence for The z-
Transform

* Property 7: If the z-transform X(z) of x[n] is
rational, then its ROC is bounded by poles or
extends to infinity.

MEET * FEix[n]iyziEHX(z) A = RIIEROC
e [ <2 [R ARG B2 A {ef R R




10.2 The Region of Convergence for The z-
Transform

* Property 8: If the z-transform X{(z) of x[n] is
rational, and if x/n] is right sided, then the ROC
Is the region in the z-plane outside the outermost
pole—i.e., outside the circle of radius equal to
the largest magnitude of the poles of X(z).
Furthermore, if x[n]is causal (i.e., if it is right
sided and equal to O for n < 0), then the ROC
also includes z = .



10.2 The Region of Convergence for The z-
Transform

= Property 9: If the z-transform X{(z) of x/n] is
rational, and if x/n] is left sided, then the ROC is
the region in the z-plane inside the innermost
nonzero pole—i.e., inside the circle of radius
equal to the smallest magnitude of the poles of
X(z) other than any at z = 0 and extending
inward to and possibly including z=0. In
particular, if x[n] is anticausal (i.e., if it is left
sided and equal to O for n > 0),then the ROC
also includes z = 0.



Example 10.8

Let us consider all of the possible ROCs that
can be connected with the function

1

X(z)= :
(l—;z_l)(l—2z_l) (10.37)

The associated pole-zero pattern is shown In
Figure 10.12(a). Based on our discussion in
this section, there are three possible ROCs that
can be associated with this algebraic
expression for the z-transform.



1

I

X(z)= :
(1_52 1-2z71)

Example 10.8

dm I9m

Unit circle gasrer Unit circle

/ z-plane ” /
T /;,3 :

y T Re \\ , Re

@ (b)



Example 10.8

9m

Unit circle

z-plane

L A
AN

Re

N

()

X(2)=

1
| Oy
(1—52 1-2z7)
9m

-~ Unit circle

~

N
\ Z-plane
Y

(d)

Figure 10.12 The three possible ROCs that can be connected with the
expression for the z-transform in Example 10.8: (a) pole-zero pattern for X(2);
(b) pole-zero pattern and ROC if x[n] is right sided; (c) pole-zero pattern and
ROC if x[n] is left sided; (d) pole-zero pattern and ROC if x[n] is two sided. In
each case, the zero at the origin is a second-order zero.



10.3 The Inverse z-Transform

This expression can be obtained on the basis of the
interpretation, developed in Section 10.1, of the z-
transform as the Fourier transform of an
exponentially weighted sequence. Specifically, as
expressed in eq. (10.7),

X(z=re")= F{X[n]’”_n }» (10.38)



10.3 The Inverse z-Transform

for any value of r so that z = e’ 1s inside the ROC.
Applying the inverse Fourier transform to both sides

of eq. (10.38) yields
x[nlr" =F" {X(rej”)},

or

x[n]=r"F~ [X (re’ w)] (10.39)



10.3 The Inverse z-Transform

Using the inverse Fourier transform expression
In eq. (5.8), we have

1 . .
x[n]=r"—| X(re’*)e’"dw,
D 927

or moving the exponential factor 7" inside the
integral and combining it with the term e’

x[n]= 1 X (re’)re’”) dw.



x[n] = 1 X (re’*)re’”)" dw.
D 927

dz=jreldw =>dw= 1/(JreJ°°)dz (1/jz) dz
x[n]= §X(z)z" 'dz, (10.41)

The value of r can be chosen as any value for
which X(z) converges—i.e., any value such that
the circular contour of mtegratlon z|=r isin the
ROC.

The integration around a counterclockwise
closed circular contour centered at the origin
with radius r, and |z|=r must be in ROC.



10.3 The Inverse z-Transform

There are, however, a number of alternative
procedures for obtaining a sequence from its z-
transform.

2 ZgE e — R Y 574 » A0S 7 72U B
e



Example 10.9

Consider the z—transfcs)rm

3-57 sl (10.42)
(1-%51)(1—%2-1) 3
There are two poles, one at z=1/3 and one at z =
Ya, and the ROC lies outside the outermost pole.
That is, the ROC consists of all points with
magnitude greater than that of the pole with the
larger magnitude, namely the pole at z = 1/3.
From Property 4 in Section 10.2, we then know
that the inverse transform is a right-sided

sequence.

X(z)=




Example 10.9

As described in the appendix, X(z) can be
expanded by the method of partial fractions.
For this example, the partial-fraction expansion,
expressed in polynomials in z s

2
1 (10.43)
3



Example 10.9

Thus, x/n]is the sum of two terms, one with z-
transform 1/[1-(1/4)z] and the other with z-
trandform 2/[1-(1/3)z'|. In order to determine
the inverse z-transform of each of these
individual terms, we must specify the ROC
associated with each. Since the ROC for X(z)
IS outside the outermost pole, the ROC for each
individual term in eq. (10.43) must also be
outside the pole associated with that term.



x[n]=a"u[n]

Example 10.9 | Z(az_l)_ sl

l—az

That is, the ROC for each term consists of all
points with magnitude greater than the
magnitude of the corresponding pole. Thus,

xln]=x,|n]+x,[n], (10.44)
where
, 1 1
x,[n]«Z— T ‘Z‘>Z’
-z (10.45
x,[n]«Z—> f_l ‘z‘>%. (10'46)



Example 10.9

From Example 10.1, we can identify by
Inspection that

xl[n]=@nu[n] (10.47)
and
1Y |
X, [n] = 2(§j ulnj, (10.48)
and thus,

x[n]: (ljnu[n]+ 2(ljnu[n] 10.49)

4 3



10.3 The Inverse z-Transform

The mnverse transform of each term can then be
obtained by inspection. In particular, suppose that the
partial-fraction expansion of X(z) 1s of the form

X(2)= Z

v,(; = B-X(z)E B = (10.55)8 engRa & 84158 » P F B
W RH F oz o

—az (10.55)



10.3 The Inverse z-Transform

So that the inverse transform of X(z) equals the
sum of the inverse transforms of the individual
terms in the equation. If the ROC of X(z) is
outside the pole atz=a; , the inverse transform
of the corresponding term in eq. (10.55) is

. Q¥el other hand, if the ROC of X(z) is inside
the pole at . thesmyerse transform of this
term is — Aa'u[-n—1]

= X(z)HEIEIROCTIEIRES z=a, M| » FEE 2z
A > By Aaluln] ;5 FEX(z) Y EIEFIROCTEfRES

z=a, P > BIELRZ 2085 By - Aaful-n—1]




Example 10.13

Consider 1
X(z)=

— ., [>]d]
This expression can be expanded in a power series by

long division:




A-I-OO

Example 10.13 X(z)= ) x[n]z"(10.3)

Nn=—00

or

—=l+az ' +a’z7 +.... (10.58)
l—az
The series expansion of eq. (10.58) converges,
since 14 >la | or equivalently, \az‘1\<.1 Comparing
this equation with the definition of the z-transform
iIn equation (10.3), we see, by matching terms in
powers of z, that x[n]=0, n<O0; x[0] = 1; x[1] = a;
x[2] = a®; and in general, x[n]l=a"u[n] which is
consistent with Example 10.1.




Example 10.13

If, instead, the ROC of X(z) is specified as\Z\ <\a\
or, equivalently, aZ‘l\ >1  then the power-series
expansion for 1/(1-az™") in eq. (10.58) does not
converge. However, we can obtain a
convergent power series by long division again.




A-I-OO

Example 10.13 X(z)= ) x[n]z"(10.3)

Hn=—00

or

=—a'z—a’z"—... (10.59)
In this case, then, x[n] =0, n>0; and x[-1]=-a",

x[-2]=-a"..; thatis, n]=—a"u[-n—1]. Thisis
consistent with Example 10.2.



10.4.1 First-Order Systems

The impulse response of a first-order causal discrete-
time system 1s of the general form

hln]=a’uln]. (10.64)

and from Example 10.1, its z-transform 1s

H(z)= =, |o>]a 00




10.4.1 First-Order Systems

For |a|<1 , the ROC includes the unit circle, and
consequently, the Fourier transtorm of //n/
converges and is equal to H(z) for z =¢e’“ .

H(ej”) — (10.66)

_]a).

1—ae



Note first that, as illustrated in Figure 10.13, the magnitude of the

peak of f(e¢/?)atw = 0 decreases as ‘a decreases toward 0.

20

Unit circle

v1 g \w 10 L
Va2 \ . —a=0.95
\{ |

(@) | (b)



10.4.1 First-Order Systems <

IHE")
/2

Im

D

10.3 & (10.64) £ (10.66) N8 — M &
GO EZE AL ALERE - AR
B T4 BALE EVL o = 0 BFPTAF 9
v, Sy, 8 KRR K o RE8g g 48T
% 0o=00F6938 R HBALF K A0 F o
Figure 10.13 (a) Pole and zero
vectors for the geometric determina-
tion of the frequency response for a
first-order system for a value of a be-
tween 0 and 1; (b) magnitude of the
frequency response for a = 0.95 and

a = 0.5; (c) phase of the frequency
response for a = 0.95 and a = 0.5.



10.4.2 Second-Order Systems

with impulse response and frequency response given
1in eqgs. (6.64) and (6.60), which we respectively
repeat here as

' 10.67
Hn] =" sm(ffz +1)60 un) ( )
sin @
and
H(e'?) = :
1-2rcos@e’” +rie’?®’ (10.68)



1

— 5
1P 4 pfe /¢

H(e'?) =
1-2rcoste

Where 0 <r<1land 006 1. Since H(“)=H(z)
we can infer from eq. (10.68) that the system
function, corresponding to the z-transform of the
system impulse response, Is

1
1-(2rcos@)z"' +r°z% (10.69)
The poles of H(z) are located at

zLel?

H(z)=

_ . J0 7 (10.70)



When r approach 1, the frequency response peak more
sharply. Corresponding to » decreasing, the impulse
response decays more rapidly and the step response

settles more quickly. HE")

9m “
Unit circle

r=0.95

r=0.75




10.4.2 Second-Order Systems

LH(E™)

/2

— /2

Figure 10.14 (a) Zero vector v, and pole
vectors v, and v, used in the geometric cal-
culation of the frequency responses for
a second-order system; (b) magnitude
of the frequency response correspond-
ing to the reciprocal of the product

of the lengths of the pole vectors for

r =0.95and r = 0.75; (c) phase of
the frequency response for r = 0.95
and r = 0.75.



10.5.1 Linearity

If
x[n]<Z—> X,(2), withROC =R,

and

x,[n]<Z>X,(z), withROC=R,,

then
ax,[n]+bx,[n]<~Z—aX,(z) +bX,(z),with ROC
containing R NR,.
(10.71)
atrEE (HIEZEE)




10.5.2 Time Shifting

If
x[n]«~%—X(z), withROC =R,

then

x[n — N, ] (L) Z_HOX(Z), with ROC = R, except for

the possible addition or dele

(10.72)

-tion of the origin or infinity.

S L EZ DA ]



10.5.3 Scaling in the z-Domain

If
x[n]<~£— X(z), withROC =R,

then

n Z i . .
ZOX[n](—)X[ZO ], with ROC—‘ZO R (10.73)

s SR



10.5.3 Scaling in the z-Domain

An 1mmportant special case of eq. (10.73) 1s when

J @y

zy =€ In this case, |Z%|R=R and

e’ " x[n]«~t— X(e’™"z). 074



e’ x[n]«-~— X(e'™z).

Im Im

Unit circle z-plane Unit circle

h S

(a) (b)

Figure 10.15 Effect on the pole-zero plot of time-domain multiplica-
tion by a complex exponential sequence ¢/“0”: (a) pole-zero pattern for the
z-transform for a signal x[n]; (b) pole-zero pattern for the z-transform of
x[n)eln”,



10.5.4 Time Reversal

If
x[n]«~£—> X(z), withROC =R,

then

p 1 , 1
x|—n] <——>X(;j, with ROC = '3 (10.75)

5 fe R A



10.5.5 Time Expansion

Specifically, the sequence Xy)[#], introduced in
Section 5.3.7 and defined as

x|n/k], if nis a multiple of k
Xyl = . .
0, if n is not a multiple of k (10.76)



10.5.5 Time Expansion

has k — 1 zeros inserted between successive values of
the original signal. In this case, 1f

x[n]<£— X(z), withROC =R,
then

Xplnl«<“—>X ("), withROC=R"",
(10.77)

IRF I



10.5.5 Time Expansion

x[n/k], if nis a multiple of k
Xplnl= L .
0, if nis not a multiple of k

The 1nterpretation of this result follows from the
power-series form of the z-transform, from which we
see that the coefficient of the term _-» equals the
value of the signal at time n. That 1s, with

X(z)= ix[n]z_”,

1t follows that
XY= xnl)" =D x[nlz* = D x[m/klz™"
Nn=—00 H=—00 m=intmul of k

(10.78)



10.5.6 Conjugation

If

n]<Z—>X(z), withROC =R, (10.79)

then

*

x [n]«<£>X (z), withROC=R. (10.80)
HEtEE
Consequently, 1f x/n/ 1s real, we can conclude from

. (10.80) that o
- ) X(z2)=X (z2).



10.5.7 The Convolution Property

If
x[n]<Z—> X ,(z), withROC=R,,

and

x,[n]«Z>X,(z), withROC=R,,

then

x,[n]* x,[n]«*—> X,(2)X,(2), with ROC containingr NR,.
(10.81)

e E E S



Example 10.15

Consider an LTI system for which

yln] = h[n]*x[n],

where
hln]=ol|n]-ol|n—1].
Note that

Sin]—o[n—11«2>1-z

ek

(10.82)

(10.83)



Example 10.15

with ROC equal to the entire z-plane except the
origin. Also, the z-transform in eq. (10.83) has a
zero at z=1. From eq. (10.81), we see that 1f

x[n]<£—> X (z), withROC =R,
then

ynl«——(1-z")X(2),

(10.84)



Example 10.15

with ROC equal to R, with the possible deletion of
z =0 and/or addition of z = 1.

Note that for this system

y[n]=|0[n]- 8[n—1]* x{n] = x[n]— x{n—1].



Example 10.15

That is, y[n] is the first difference of the
sequence x[n]. Since the first-difference
operation is commonly thought of as a discrete-
time counterpart to differentiation, eq. (10.83)
can be thought of as the z-transform counterpart
of the Laplace transform differentiation
property presented in Section 9.5.7.



10.5.8 Differentiation in The Z-Domain

If
x[n]«%—> X(z), withROC =R,

Then

nx[n]<«~——z ax(z) , WwithROC =R. (10.87)

dz

ZIigk o EE



Example 10.17

It
X(Z) :10g(1+aZ_1), ‘Z‘ >‘a, (1088)
Then )
nx[n]<=*—-z ax(z) _az -, ‘Z‘ > ‘a‘. (10.89)

dz 1+az

By differentiating, we have converted the z-transform
to a rational expression. The inverse z-transform of
the right-hand side of eq. (10.89) can be obtained by
using Example 10.1 together with the time-shifting
property, eq. (10.72), set forth in Section 10.5.2.



nx[n]¢<=—>—z ,  WwithROC =R.

Specifically, from Example 10.1 and the linearity
property,

n Z a
a(—a) M[n](_—)l—lraz_l : z| >|a|. (10.90)
Combining this with the time-shifting property
yields L
a(—a)"'u[n—-1]«~*> el —, ‘z‘>‘a‘.
1+ az
Consequently,
(10.91)

x[n]= —(za)” uln—1].
n




10.5.9 The Initial-Value Theorem

If x/n/ =0,n <0, then
0] = lim X (z).

e (10.95)
YHMEEH

This property follows by considering the limit of each
term individually in the expression for the z-
transform, with x/n/ zero for n <0. With this
constraint,

X(z)= ix[n]z_”.



Example 10.19

The initial-value theorem can also be useful in
checking the correctness of the z-transform
calculation for a signal. For example, consider
the signal x[n] in Example 10.3. From eq.
(10.12), we see that x[0] = 1. Also, from eq.
(10.14), 3

2 -1

lim X (z) =lim T =
o R

Z—>0 (1 .

1
32
which Is consistent with the initial-value theorem.

=101 %5 ANz RIEE -




10.5.10 Summary of Properties

TABLE 10.1 PROPERTIES OF THE z-TRANSFORM
Section Property Signal z-Transform ROC
x[n] X R
x![”] Xi(2) R,
xa[n] X5(2) Ry
10.5.1 Linearity ax,[n] + bx;[n] aX,(z) + bX>(2) At least the intersection of R, and R,
10.5.2 Time shifting x[n — ny] z7"0X(z) R, except for the possible addition or
deletion of the origin
10.5.3 Scaling in the z-domain e/ x[n) X(e fwog) R
Zaln] x(3) Lk
a'x[n] X(a'2) Scaled version of R (i.e., [a|R = the
set of points {|a|z} for z in R)
10.5.4 Time reversal x[—n] Xz Inverted R (i.e., R™' = the set of
points z~', where z is in R)
. ; xlrl, n=rk i k k(i 7 1k
10.5.5 Time expansion Xln] = for some integer r X(zY) RY* (i.e., the set of points z*, where
0, n#rk L
zisin R)
10.5.6 Conjugation x*[n] X (z") R
10.5.7 Convolution xi[n]* x2[n] X, (2)X5(z) At least the intersection of R, and R,
10.5.7 First difference x[n] = x[n — 1] (1-zHX(2) At least the intersection of R and
|zl >0
10.5.7 Accumulation DN | %X(z) At least the intersection of R and
g |z >1
105.8 Differentiation nx[n] —zdiiZ) R
in the z-domain
10.5.9 Initial Value Theorem

If x[n] = 0 for n <0, then
x[0] = lian(z)

In Table 10.1, we summarize the
properties of the z-transform.



10.6 Some Common z-Transform Pairs

In Table 10.2, we have listed a number of
useful z-transform pairs.

7<10.2 5y FHIYZES A (s YRR Sz
W)




10.6 Some Common z-Transform Pairs

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
1. 8[n] 1 Allz
1
2. uln] p—— ld>1
1
3. —u[-n—1] e |z <1
4, 8[n — m] " All z, except
0@Gfm=>0)or
oo (if m < 0)
. 1
5. a"uln] T= a7 |z| > |a|
6 —a'ul-n—1] —— 12 < e
LT l—oz! .
-1
n —az
7. nauln] A= e |z > ler|
ey — 1] O
8 —na"u[-n-1] = |zl < lar
1 — [coswp]z™"
9. [coswonluln] T Dsear X179 gl =1
. [sinwglz ™!
10. [sin wonluln] T |zl > 1
. 1 — [reoswglz™
1. [ coswonluln]  — Broosenle | T P2 2| > r
; -1
12. [r" sinwonlu[n] Dfinolz lo| > r

1 - [2rcoswylz ' + r2z?




10.7 Analysis and Characterization of LT]
Systems Using z-Transforms

The z-transform plays a particularly important role
in the analysis and representation of discrete-time
LTI systems. From the convolution property
presented 1n Section 10.5.7,

Y(z)=H(2)X(z2), (10.96)

LTIZR&H A ~ Bt R RS2 e 288 UR e
(10.96) Z(HYRH IR -



10.7.1 Causality

As we saw 1n Property 8 1in Section 10.2, for a causal
system the power series

H(z)= i hn)z

does not include any positive power of z->ROC
include infinity.

A discrete-time LTI system 1s causal if and only 1f
the ROC of its system function 1s the exterior of a
circle, including infinity.

— B EILTIZR SRR R » 75 HIES 288 e
YROC R HAEBERYYMAT - EEHER AR -




10.7.1 Causality

A discrete-time LTI system with rational system
function H(z) is causal if and only if: (a) the ROC
IS the exterior of a circle outside the outermost
pole; and (b) with H(z) expressed as a ratio of
polynomials in z, the order of the numerator
cannot be greater than the order of the
denominator (i.e., no pole at infinity).

*(IEJE%@W%%LI@%QH(Z)EI’J%E@QH#F%LTl%Z}E
MR > 25 HIESS : (a) ROC Ry MAlE: 2

FN R AE B EI’WME'J H.(b) H(z)Z=R AL EIR
» TR KR T BER B <




Example 10.21

Consider a system with system function

H(z)= ; _1+1_;Z_1, ‘Z‘>2 (1097)

Since the ROC for this system function is the exterior
of a circle outside the outermost pole, we know that
the impulse response is right-sided. To determine if
the system is causal, we then need only check the
other condition required for causality, namely that
H(z), when expressed as a ratio of polynomials in z,
has numerator degree no larger than the
denominator. For this example,



Example 10.21

5 > S
2——z 2z"——z

e p— 27 (10.98)
(1—22_1)(1—22_1) 22—2Z+1

so that the numerator and denominator of H(z) are both
of degree two, and consequently we can conclude that
the system is causal. This can also be verified by
calculating the inverse transform of H(z). In particular,
using transform pair 5 in Table 10.2, we find that the
iImpulse response of this system is

h[n]{(;j"m}u[n]. (10.99)

Since h[n] = 0 for n<0, we can confirm that the system is
causal.



10.7.2 Stability

An LTI system is stable if and only if the
Impulse response is absolutely summable.

=> if and only if the ROC of its system function
H(z) includes the unit circle, |z|=1 .

%ILTI%%J%%% 5 HEEH(z2)RYROCHE &=
=R iVALE!




1 1
H(z)= T + o |Z| >2(10.97)

Example 10.22  '73° O

hn] {Gj + 2”}{[;1](10.99)

Consider again the system function 1n eq. (10.97).
Since the associated ROC is the region |z]>2 , which
does not include the unit circle, the system 1s not
stable. This can also be seen by noting that the
impulse response 1n eq. (10.99) 1s not absolutely
summable. If, however, we consider a system whose
system function has the same algebraic expression as
in eq. (10.97) but whose ROC is 1/2<|z[<2 | then the
ROC dies contain the unit circle, so that the
corresponding system 1s noncausal but stable.




1
Example 10.22 H@=—g—+—= 05< | <2

In this case, using transform pairs 5 and 6 from
Table 10.2, we find that the corresponding impulse
response 1S

h[n]= Gj uln]—2"u[-n—1], (10.100)

which 1s absolutely summable.



Example 10.22

Also, for the third possible choice of ROC
associated with the algebraic expression for
H(z) in eq. (10.97), namely, |z|<1/2 , the
corresponding system is neither causal (since
the ROC is not outside the outermost pole) nor
stable (since the ROC does not include the unit
circle). This can also be seen from the impulse
response, which (using transform pair 6 in Table

10.2) is o
hin]= _{(Ej + 2”}1[—1@ —1].



10.7.2 Stability

A causal LTI system with rational system

function H(z) is stable if and only if all of the
poles of H(z) lie inside the unit circle—i.e.,
they must all have magnitude smaller than 1.

*{I,E\jﬁ HE ARG HEH(Z)HY
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Example 10.24

The system function for a second-order system
with complex poles was given in eq. (10.69),
specifically,

1

H(z) =
(2) 1-(2rcos@)z™' +r°z"

=, (10.101)
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With poles located at z; = re’’  and z,=re "
Assuming causality, we see that the ROC is outside
the outermost pole (i.e., |z|>|| ). The pole-zero plot
and ROC for this system are shown in Figure 10.16 for
r<landr>1. Forr<1, the poles are inside the unit
circle, the ROC includes the unit circle, and therefore,
the system is stable. For r> 1, the poles are outside
the unit circle, the ROC does not include the unit
circle, and the system is unstable.

Re




Example 10.25

Consider an LTI system for which the input x/»/ and
output y/n/ satisty the linear constant-coefficient
difference equation

y[n]—%y[n—l]=x[n]+§x[n—1], (10.102)



1 1
Example 10.25 rl=oyln=1]=xnl+Zxin=1].

Applying the z-transform to both sides of eq.
(10.102), and using the linearity property set
forth in Section 10.5.1 and the time-shifting
property presented in Section 10.5.2, we obtain

Y(2)— %Z_IY(Z) =X(z)+ %Z_lX(Z),

or 1

_ 3
HEH=AE L (10.103)




Example 10.25

From eq. (10.96), then, |
Y(Z) 1+§Z_1
H(z)= =—1
X(z) _1L_ - (10.104)

This provides the algebraic expression for H(z), but
not the region of convergence. In fact, there are two
distinct impulse responses that are consistent with the
difference equation (10.102), one right sided and the
other left sided. Correspondingly, there are two
different choices for the ROC associated with the
algebraic expression (10.104).



Example 10.25

One, |£|>1/2 , is associated with the assumption
that h[n] is right sided, and the other|z|<1/2
IS associated with the assumption that h[n] is
left sided.

Consider first the choice of ROC equal tolz|>1/2
Writing

H(z)=(1+%zlj } -
l——z

2




(1 )1
Example 10.25 H<Z>—(”§Z jl_lz;
2
we can use transform pair 5 in Table 10.2,
together with the linearity and time-shifting
properties, to find the corresponding impulse

response

h[n]:(%j u[n]+%(%j uln—1]J.




Example 10.25

For the other choice of ROC, namely, A<!/2

we can use transform pair 6 in Table 10.2 and
the linearity and time-shifting properties,
yielding

h[n]= —(%) u[—n—1] —%(%) uln—1].

In this case, the system is anticausal (h/n] =0
for n > 0) and unstable.



10.7.2 Stability

In particular, consider an LTI system for which
the input and output satisfy a linear constant-
coefficient difference equation of the form

Zaky[n—k]zzm:bkx[n—k]. (10.105)

NEgSRVE R RBOE 77 TR Z0 (NFELTIRE)



10.7.2 Stability

Then taking z-transforms of both sides of eq.
(10.105) and using the linearity and time-
shifting properties, we obtain

N M
Zakz_kY(Z) = Zbkz_kX(z),
o k=0 k=0

M

Y(Z)Z a,z "= X(Z)Z bz,

k=0



10.7.2 Stability

So that

FAU R 7 T AR B Bl (R 2

(10.106)






Example 10.26

Suppose that we are given the following information
about an LTI system:

. It the mput to the system 1s x[n]=(1/6)"u[n], then the
output 1s

] —{ @ + 10@7}/{[:1],



Example 10.26

2.1f x[n]=(=1)" ,then the output is Y.l7] =%(—1)n. As
we now show, from these two pieces of information,
we con determine the system function H(z) for this
system, including the value of the number a, and can

also immediately deduce a number of other properties
of the system.

The z-transforms of the signals specified 1n the first
piece of information are
1

X, (2) = ; - (10.107)
1——z"

6




X (z)= ) zZ| > —,
Example 10.26 1_%2-1 6
K(Z):l—ilzl—i_l—llozl
(@a+10)—(5+ %)z
Sl R Y (10.108)

B 1 1 .7
(1—22 )(1—32 )

From eq. (10.96), it follows that the algebraic
expression for the system function is

(a+10)—(5+§)z‘1}{1—12_1

H(z)=Y1(Z)—{ 6 } (10.109)

X, (2) B

I 1
(1—52 )(I—EZ )



Example 10.26  y[n]=H(z)z",

Furthermore, we know that the response to

x,[n]=(=D" must equal (-1)" multiplied by the
system function H(z) evaluated at z=-1. Thus
from the second piece of information given, we
see that

{(a+10)+5+a}[7}
T H(-1) = S1el (10.110)
4 3.4

)

7 n
aln]=72(=1)
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Solving eq. (10.110), we find that a = -9, so that

4 1
(1-2z )(l—gz )

H(z)=— >, (10.111)
(1—52 )(1—52 )
or
13 , 1 _
l—gzl+—zz (10.112)
H(z)= ,



4 1
(1-2z )(l—gz )

Example 10.26 H(z)=—— 1

(1—52_ )(1—52_ )

or, finally, 2 1B 1 1 1
H(Z): 6 3 Xl(Z): 1 _1’ ‘Z‘>g,
o) 5 1 1__Z
zi——zZ+— 6
6 6

Also, from the convolution property, we know
that the ROC of Y;(2) must include at least the
intersections of the ROCs of X,(z) and H(z) .
Examining the three possible ROCS for H(z)
(namely |2/ <1/3,1/3 <|z|<1/2,and|z|>1/2 ), we find
that the only choice that is consistent with the

ROCs of X,(2) and Y, (2) IS ‘Z‘>1/2 .

z




Example 10.26  H(2)= 2 S

Since the ROC for the system includes the unit
circle, we know that the system is stable.
Furthermore, from eq. (10.113) with H(z) viewed
as a ratio of polynomials in z, the order of the
numerator does not exceed that of the
denominator, and thus we can conclude that the
LTI system is causal. Also, using egs. (10.112)
and (10.106), we can write the difference equation
that, together with the condition of initial rest,

characterizes the system:

y[n]—%y[n—1]+%y[n—2] = x[n]—%x[n—l]+%x[n—2].



10.8.1 System Functions for
Interconnections of LTI Systems

4 e[n]
] (- ;':[(,f]) > yn]

H(2) | e—d
h,[n] Figure 10.17 Feedback intercon-
nection of two systems.

The specific equations for the interconnection
of Figure 10.17 exactly parallel egs. (9.159)—
(9.163), with the final result that the overall
system function for the feedback system of
Figure 10.17 is

Y(Z) ZH(Z)Z HI(Z)

X(z) 1+H1(Z)H2(Z). (10.115)




x[n] _b-® l > y[n]

Example 10.28 [
Consider the causal LTI system [ ]e— Wi
with system function @

1 e [ g7 > yin]

Hz)=—— 10.116 Ol |
1——z" (10.116)

4 =
Using the results in Section 10.7.3, )
we find that this system can also s —i@—{ 1@ i
be described by the difference
equation 25 e

ha[n]
in] = i~ 11=ain), H,(2)=1

H,(z)=-1/4z""
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Finally, consider the system function

7 -1 1 )
1—22 —EZ
H(z)= 0 n :
l+—z"'—=z7
4 8

Writing

H(z)=

(10.121)

(10.122)



=l -1yl -2]=an]

1+=z"'—=z

4 8
suggests

representing the
system as the
cascade of the
system in Figure

10.20(a) and the el -

system with z”
system function |
o -
l-—z'-—z" =
4 Z
y[n]:x[n]—zx[n—l]—lx[n—2] B )
4 2




The result is the direct-form block diagram shown in
Figure 10.21, the details of the construction of which
are examined in Problem 10.38. The coefficients in
the direct-form representation can be determined by
inspection form the coefficients in the system
function of eq. (10.121).
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We can also write H(z) in the forms

( 1 1V A
VSl Err 10.12
H(z)=| —4 (10.123)
1 1
l+—z l——2z
and 20 A 4Ty
H(2)= 4+ 5{3 ) 141/3 |
l+=z" 1-=z"" (10.124)
2 4

Eq. (10.123) suggests a cascade-form representation,
while eq. (10.124) leads to a parallel-form block
diagram. These are also considered in Problem 10.38.



10.9 The Unilateral z-Transform

The unilateral z-transform of a sequence x/n/ 1s
defined as

X(2)= ix[n]z_”.

A TEFR
As 1 previous chapters, we adopt a convenient

shorthand notation for s signal and 1ts unilateral z-
transform:

(10.125)

x[n]«Z>X(2) =UZAnl}  (10.126)
Al gt B L ZHE A A E A 157 917




Example 10.33 n-n]«"—>z"X(2),

Let

n+l

xlnl=a "uln+1]. (10.129)

In this case the unilateral and bilateral transforms are
not equal, since x[-1]=1% 0. The bilateral transform
1s obtained form Example 10.1 and the time-shifting
property set forth in Section 10.5.2. Specifically,

z

Y@=, [4>]a

1+az (10.130)



z

Example 10.33  X(2)= 5

1+az

9

In contrast, the unilateral transform 1s

or

2| >la

(10.132)



10.9 The Unilateral z-Transform X(Z)=ix[n]f”.

10.3 shows an alternative way to obtain inverse
transform. For 1nstance, in Example 10.13 we
performed long division on the bilateral transform

G — (10.134)




10.9 The Unilateral z-Transform

In two ways, corresponding to the two possible ROCs
for X(z). Only one of these choices, namely, that
corresponding to the ROC |z| > |a|, led to a series
expansion without positive powers of z, 1.e.,

1

l—az

—=l+az ' +a’z " +.., (10.135)

series expansion without positive powers of z =>
Not every rational function of z can be an unilaternal
z-transform.



10.9 The Unilateral z-Transform

In particular, if we consider a rational function of z
written as a ratio of polynomials in z (not in z 1), i.e.,

p(z) 10.136
q(z) ( )

the degree of the numerator must be no bigger than
the degree of the denominator.




Example 10.35

n+l

x[n]l=a" u[n+1]. X@=——". |>a

A simple example 1llustrating the preceding point 1s
given by the rational function in eq. (10.130), which
we can write as a ratio of polynomials 1n z:

(10.137)
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There are two possible bilateral transforms that can be
associated with this function, namely those
corresponding to the two possible ROCs, Z|<la| and

Z|>|al - The choice |2/>a corresponds to a right-
sided sequence, but not to a signal that 1s zero for all
n < 0, since its inverse transform, which 1s given by
eq. (10.129), 1s nonzero forn = -1.



p(2)
Example 10.35 ()’

More generally, 1f we associate eq. (10.136) with the
bilateral transform with the ROC that 1s the exterior
of the circle with radius given by the magnitude of
the largest root of g(z), then the inverse transform will
certainly be right sided. However, for it to be zero
for all n <0, it must also be the case that

degree(p(z)) = degree(q(z)).



10.9.2 Properties of The Unilateral z-

Transform

7210351 Bz

ZH R FEIME
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TABLE 10.3 PROPERTIES OF THE UNILATERAL z-TRANSFORM

Property Signal Unilateral z-Transform

e x[n] X(2)
- x,[n] X (2)
- x;[n] Xs(z2)
Linearity ax;[n] + bx;[n] adl,(z) + bX1(2)
Time delay x[n —1] 7 'X(2) + x[—1]
Time advance x[n + 1] 72X (2) — zx[0]
Scaling in the z-domain el x[n] X(e/ng)

zpx[n] X(2/20)

a’" x[n] X(a'2)
Time expansion xi[n] = { Homl, 1 = ik X(zH)

0, n # mk for any m

Conjugation x*[n] X*(z%)
Convolution (assuming xy[n] * x2[n] L1(2)X5(2)

that x,[n] and x;[n]
are identically zero for
n<0

First difference

Accumulation

Differentiation in the
z-domain

x[n] — x[n — 1]

Z x[k]

k=0

nx[n]

(1 -z7)A(z) - =[-1]
1
e a

X(2)

Initial Value Theorem

x[0] = lim % (2)




10.9.2 Properties of The Unilateral z-
Transform

Let us examine the difference in the convolution
property first. Table 10.3 states that if xilzl=x[n]=0for
all n <0, then

x,[n] % x,[n]«—— X, (2)X, (2).

(10.138)

(10.138) R O] FEFIAE R ELTIZ 4 | -




Example 10.36

Consider the causal LTI system described by the
difference equation

yln]+3y[n=1]=x|n],

together with the condition of 1nitial rest. The system
function for this system 1s

1

(10.140)

H(z) =



Example 10.36

Suppose that the input to the system 1s x/n/ = ou/n],
where a 1s a given constant. In this case, the

unilateral (and bilateral) z-transform of the output
. = 4 zZ) = @
y[n/1s y(z)=HE)X() (EE vy
_G/4a  1/da (10.142)

143z 1-z7'

Applying Example 10.32 to each term of eq. (10.142)
yields  y[n]= aB + (%)(—3)"}4[;1].
(10.143)



10.9.2 Properties of The Unilateral z-
Transform

An 1mportant point to note here 1s that the convolution
property for unilateral z-transforms applies only 1f the
signals x,[z] and x,[#] in eq. (10.138) are both
identically zero for n <0.

BB AN e E B E FOE Y xlnl Fz xln]
1Fn < OHFE5 B0 -




10.9.2 Properties of The Unilateral z-
Transform

To develop the shifting property for the unilateral
transform, consider the signal

y[n] :x[n—l]. (10.144)
Then

Y(2)= i x[n—1]z™"

= x[-1]+ i x[n—1]z""



Y(z)= ) x[n—1]z""
10.9.2 Properties of The =2t

Unilateral z-Transform = x[~1]+ xn-1]z"
01 = x[-1]+ ix[n]z_(”“),
Y(z)=x[-1]+z") x[n]z", (10.145)
n=0
so that

Y(z) = x[-1]+z7'X(2). (10.146)



10.9.2 Properties of  Y(2) = x[-1]+z7' X(2).

The Unilateral z-

‘ransform yln]=x[n-1].

By repeated application of eq. (10.146), the
unilateral transform of

win|=y|ln—-1]=x[n-2] (10.147)

IS
W(z)=y[-1]+z"Y(2)=x[-2]+z" (x[-1]+z ' X(2))
= x[2]+x[-1]z"" +27X(2). (10.148)



10.9.2 Properties of The Unilateral z-
Transform

There is also a time advance property for
unilateral transforms that relates the transform
of an advanced version of x/n] to X(z).
Specifically, as shown in Problem 10.60,

An+1]1«%>zX(z)—zxf0]. (10149




+3y|n—1|= 10.140
Example 10.37 njt3yin=1]=n)( )

Consider again the difference equation (10.140) with
x/n] = aufn] and with the initial condition

V-=1]=p. (10.150)

I B B2 oK oy TR el -
ELR Ax/n] B gAY [-1]




R T

Applying the unilateral transform to both sides of eq.
(10.140) and using the linearity and time delay
properties, we obtain

a (10.151)

1

Y(2)+38+3z"'Y(2)=

|

o Ty AR BRI ARG R -
Solving for Y(z) yields

Y(2)= 3, o (10.152)
1+3z7" (A+3zH)(1-zT")

KW Iz 4y (2) -




10.10 Summary

= Z-Transform
o ROC & properties
o Zero-Pole
o Properties
o Unilateral Transformation



