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9.0 Introduction
As we will see, the Laplace and z-transforms have 
many of the properties that make Fourier analysis so 
useful. Especially for investigating the stability or 
instability of a (feedback) system, which cannot be 
done for FT.
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3.2 The Response of LTI Systems to 
Complex Exponentials
 The importance of complex exponentials stems from 

the fact that the response of an LTI system to a 
complex exponential input is the same complex 
exponential with only a change in amplitude; that is,

continuous time: , (3.1)
discrete time:                           ,                (3.2)

where the complex amplitude factor H(s) or H(z) will in 
general be a function of the complex variable s or z.

 We use to set s=jω, z=ejω
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9.1  The Laplace Transform
response of a linear time-invariant system with 
impulse response h(t) to a complex exponential 
input of the form         is

(9.1)
where

(9.2)

H(s) is the Laplace transform of the impulse 
response h(t)

.)()(
,)()(

dtethsH
esHty

st

st

 


ste

655



9.1  The Laplace Transform
The Laplace transform of a general signal x(t) is 
defined as

(9.3)

拉氏轉換定義
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9.1  The Laplace Transform
For convenience, we will sometimes denote the 
Laplace transform in operator form as  L{x(t)} and 
denote the transform relationship between x(t) and 
X(s) as    

(9.4)
When s = jω, eq. (9.3) becomes

(9.5)

which is FT.                                                (9.6)     
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9.1  The Laplace Transform

Another straightforward relationship to TF:
consider X(s) as specified in eq. (9.3) with s 
expressed as x = σ + jω, so that

(9.7)

or
(9.8)

Note that α can be positive or negative.
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Example 9.1
指數函數的拉氏轉換推導範例

Let the signal                      .  From Example 4.1, the 
Fourier transform X(jω) converges for a>0 and is 
given by

(9.9)

From eq. (9.3), the Laplace transform is

(9.10)
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Example 9.1
or, with s = σ + jω,

(9.11)

By comparison with eq. (9.9) we recognize eq. 
(9.11) as the Fourier transform of                 , and 
thus,

(9.12)
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Example 9.1
Or equivalently, since s = σ + jω and                      ,

That is

For example, for a = 0, x(t) is the unit step with 
Laplace transform X(s) = 1/s,                   .
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X(s)  1
s a , Âe{s}  a. (9.13)

eatu(t) L  1
s a , Âe{s}  a. (9.14)
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9.1  The Laplace Transform
If a is positive, then X(s) can be evaluated at σ = 0 to 
obtain

(9.15)

when a ≦0 ， has valid LT but not FT.
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Example 9.2
For comparison with Example 9.1, let us consider as a 
second example the signal

(9.16)

Then

(9.17)
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Example 9.2
or

(9.18)

For convergence in this example, we require that
, or                       ; that is,

(9.19)
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9.1  Region of Convergence (ROC) 658

eatu(t) L  1
s a , Âe{s}  a. (9.19)

eatu(t) L  1
s a , Âe{s}  a. (9.14)



9.1  The Laplace Transform
We will have more to say about the ROC as we 
develop some insight into the properties of the 
Laplace transform.

ROC為「收歛區域」的簡寫。
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Example  9.4
In this example, we consider a signal that is 
the sum of a real and a complex exponential:

(9.24)

Using Euler’s relation, we can write
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Example  9.4
and the Laplace transform of x(t) then can be 
expressed as

(9.25)
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Example  9.4
Each of the integrals in eq. (9.25) represents 
a Laplace transform of the type encountered 
in Example 9.1.  It follows that
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Example  9.4
For all three Laplace transforms to converge 
simultaneously, we must have                      .  
consequently, the Laplace transform of x(t) is

(9.29)

or, with terms combined over a common 
denominator,

(9.30)
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9.1  The Laplace Transform
In each of the four preceding examples, the 
Laplace transform is rational, i.e., it is a ratio of 
polynomials in the complex variable s, so that 

(9.31)

As suggested by examples, X(s) will be rational 
whenever x(t) is a linear combination of real or 
complex exponentials. To specify, X(s) up to a 
scale factor, we just need the roots in N(s) and 
D(s).
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9.1  The Laplace Transform

Example 9.4, with the 
location of each root 
of the denominator 
polynomial in eq. 
(9.30) indicated with 
“×” and the location of 
the root of the 
numberator 
polynomial in eq. 
(9.30) indicated with 
“o.”
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9.1  The Laplace Transform
For rational Laplace transforms, the roots of the 
numerator polynomial are commonly referred to 
as the zeros of X(s), since, for those values of s, 
X(s) = 0. The roots of the denominator are 
referred to as the poles of X(s), since 
X(s)=infinite for those values of s. The plot on 
the s-plane is referred to as the pole-zero plot of 
X(s).
Note that the pole-zero plot and the ROC will 
specify the time domain signal up to a scale 
factor.
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9.1  The Laplace Transform
Zeros and Poles at infinite:
In general, if the order of the denominator 
exceeds the order of the numerator by k, X(s)
will have k zeros at infinity.  Similarly, if the order 
of the numerator exceeds the order of the 
denominator by k, X(s) will have k poles at 
infinity.
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Example 9.5
Let

(9.32)
The Laplace transform of the second and third terms 
on the right-hand side of eq. (9.32) can be evaluated 
from Example 9.1.  The Laplace transform of the unit 
impulse can be evaluated directly as 

(9.33)
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Example 9.5
Which is valid for any value of s.  That is, the 
ROC of L{δ(t)} is the entire s-plane.  Using this 
result, together with the Laplace transforms of 
the other two terms in eq. (9.32), we obtain

(9.34)
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Example 9.5
where the ROC is the set of 
values of s for which the 
Laplace transforms of all 
three terms in x(t)
converge.  The pole-zero 
plot for this example is 
shown in Figure 9.3, 
together with the ROC.  
Also, since the degrees of 
the numerator and 
denominator of X(s) are 
equal, X(s) has neither 
poles nor zeros at infinity.
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9.1  The Laplace Transform
However, if the ROC 
of the Laplace 
transform does not 
include the jω-axis, 
(i.e., if               ), 
then the Fourier 
transform does not 
converge.
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9.2  The Region of Convergence For Laplace 
Transforms
 Preperty 1: The ROC of X(s) consists of strips 

parallel to the jω-axis in the s-plane.
性質1：X(s)的ROC是由s平面上平行於jω的帶
狀區域所組成。

That is, the ROC of the Laplace transform of x(t)
consists of those values of s for which             is 
absolutely integrable:

(9.36)
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9.2  The Region of Convergence For Laplace 
Transforms
 Property 2:  For rational Laplace transforms, 

the ROC does not contain any poles.

 Property 3:  If x(t) is of finite duration and is 
absolutely integrable, then the ROC is the entire 
s-plane.
性質3：若x(t)為有限時間訊號且絕對可積分，則
ROC為整個s平面。
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9.2  The Region of Convergence For Laplace 
Transforms

663



9.2  The Region of Convergence For Laplace 
Transforms

A more formal verification of Property 3 is as follows:  
Suppose that x(t) is absolutely integrable, so that 

(9.37)

For s = σ + jω to be in the ROC, we require that
be absolutely integrable, i.e.,

(9.38)
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9.2  The Region of Convergence For Laplace 
Transforms

Eq. (9.37) verifies that s is in the ROC when
.  For σ > 0, the maximum value

of        over the interval on which x(t) is nonzero 
is        ,and thus we can write
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9.2  The Region of Convergence For Laplace 
Transforms

Since the right-hand side of eq.(9.39) is 
bounded, so is the left-hand side; therefore, the 
s-plane for                 must also be in the ROC.  
By a similar argument, if σ < 0, then

(9.40)
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Example  9.6
Let

(9.41)

Then 

(9.42)

It seems s=-a has a pole.
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Example  9.6
In fact, however, in the algebraic expression in 
eq. (9.42), both numerator and denominator are 
zero at s = -a, and thus, to determine X(s) at s = 
-a, we can use                   rule to obtain

so that
(9.43) 
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9.2  The Region of Convergence For Laplace 
Transforms
 Property 4:  If x(t) is right sided, and if the line

is in the ROC, then all values of s for 
which                  will also be in the ROC.

x(t)=0 for t<T1
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9.2  The Region of Convergence For Laplace 
Transforms

It is possible that such signal has no value of 
s for LT to converge.   
One example is the signal                   .  
However, suppose that the Laplace transform 
converges for some value of σ, which we 
denote by      .  Then

(9.44)

or equivalently, since x(t) is right sided,

(9.45)
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Then if               , it must also be true that                  is 
absolutely integrable, since              decays faster than

as                , as illustrated in Figure 9.7.  
Formally, we can say that with                 ,

(9.46)
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9.2  The Region of Convergence For Laplace 
Transforms
 Property 5:  If x(t) is left sided, and if the line

is in the ROC, then all values of s
for which                     will also be in the ROC.

x(t)=0 for t>T2

0}{ Â se
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9.2  The Region of Convergence For Laplace 
Transforms
 Property 6:  If x(t) is two sided, and if the line

is in the ROC, then the ROC will 
consist of a strip in the s-plane that includes the 
line                    .

0}{ Â se
0}{ Â se

666



9.2  The Region of Convergence For Laplace 
Transforms

667

x(t)  xL (t) xR (t), split at T0



9.2  The Region of Convergence For Laplace 
Transforms

667
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Example  9.7
Let
(9.47)
as illustrated in Figure 9.11 for 
both b > 0 and b < 0.  Since 
this is a two-sided signal, let us 
divide it into the sum of a 
right-sided and left-sided signal; 
that is,

(9.48)
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Example  9.7
From Example 9.1,

(9.49)

and from Example 9.2,

(9.50)
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Example  9.7
Although the Laplace transforms of each of the 
individual terms in eq.  (9.48) have a region of 
convergence, there is no common region of 
convergence if b ≦ 0, and thus, for those values 
of b, x(t) has no Laplace transform.  If b > 0, the 
Laplace transform of x(t) is

(9.51)

The corresponding pole-zero plot is shown in Figure 
9.12, with the shading indicating the ROC.
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Example  9.7
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9.2  The Region of Convergence For Laplace 
Transforms
 Property 7: If the Laplace transform X(s) of x(t) is 

rational, then its ROC is bounded by poles or extends 
to infinity.  In addition, no piles of X(s) are contained 
in the ROC.

性質7：若x(t)的拉氏轉換X(s)為有理式，則其ROC
必受極點限制範圍或延伸至無窮遠。此外，X(s)
在ROC內沒有極點。
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9.2  The Region of Convergence For Laplace 
Transforms
Due to Properties 4, 5, 7:
 Property 8: If the Laplace transform X(s) of x(t) is 

rational, then if x(t) is right sided, the ROC is the 
region in the s-plane to the right of the rightmost 
pole.  If x(t) is left sided, the ROC is the region in the 
s-plane to the left of the leftmost pole.
性質8：若x(t)的拉氏轉換X(s)為有理式，則若x(t)
為右邊訊號，其ROC為s平面上到最右的極點為止
的區域。若x(t)為左邊訊號，其ROC為s平面上到
最左的極點為止的區域。
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Example  9.8
Let 

(9.52)

with the associated pole-zero pattern in Figure 
9.13(a).  As indicated in Figures 9.13(b)-(d), 
there are three possible ROCs that can be 
associated with this algebraic expression, 
corresponding to three distinct signals.  The 
signal associated with the pole-zero pattern in 
Figure 9.13(b) is right sided.
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Example  9.8
670



Example  9.8
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Example  9.8

For Figure 9.13(b), since the ROC includes the jω-
axis, the Fourier transform of this signal 
converges.  Figure 9.13(c) corresponds to a left-
sided signal and Figure 9.13(d) to a two-sided 
signal.  Neither of these two signals have Fourier 
transforms, since their ROCs do not include the 
jω-axis.

669



9.3  The Inverse Laplace Transform
with s expressed as s = σ + jω, the Laplace 
transform of a signal x(t) is 

(9.53)

for values of s = σ + jω in the ROC.  We can 
invert this relationship using the inverse Fourier 
transform as given in eq. (4.9).  We have

(9.54)
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or, multiplying both sides by        , we obtain

(9.55)

(9.56)

反拉式轉換定義
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The contour of integration in eq.  (9.56) is the straight
line in the s-plane corresponding to all points s 
satisfying                    .  This line is parallel to the jω-
axis.  Furthermore, we can choose any such line 
in the ROC
(9.56)式中是沿著s平面上的 直線積分

，此一直線可選自ROC內的任意直線。
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9.3  The Inverse Laplace Transform
assuming no multiple-order poles, and 
assuming that the order of the denominator 
polynomial is greater than the order of the 
numerator polynomial, we can expand X(s) in 
the form

(9.57)  m

i i
i
as

AsX
1

)(
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Example  9.9
Let 

(9.58)

To obtain the inverse Laplace transform, we first 
perform a partial-fraction expansion to obtain

(9.59)

X(s)  1
(s1)(s 2), Âe{s } 1.

671

.21)2)(1(
1)(  s

B
s

A
sssX



Example  9.9
As discussed in the appendix, we can evaluate 
the coefficients A and B by multiplying both sides 
of eq. (9.59) by (s + 1) or (s + 2) and then 
equating coefficients of equal powers of s on both 
sides.  Alternatively, we can use the relation

(9.60)
(9.61)

Thus, the partial-fraction expansion for X(s) is
(9.62)

 
  .1)()2(
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s
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sXsB
sXsA

.2
1

1
1)(  sssX
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Example  9.9

From Examples 9.1 and 9.2, we know that there are two possible inverse transforms for a transform of the form 1/(s + a), depending on whether the ROC is to the left or the right of the pole.  Consequently, we need to determine which ROC to associate with each of the individual first-order terms in eq. (9.62).  This is done by reference to the properties of the ROC developed in Section 9.2.

672
X(s)  1

s1
1

s2. Âe{s } 1.



Example  9.9

Since the ROC for X(s) is                   , the ROC for the 
individual terms in the partial-fraction expansion of eq.  
(9.62) includes                    .  The ROC for each term 
can then be extended to the left or right (or both) to be 
bounded by a pole or infinity.  This is illustrated in 
Figure 9.14.  Figure 9.14(a) shows the pole-zero plot 
and ROC for X(s), as specified in eq. (9.58). 

1}{ Â se
1}{ Â se

672
X(s)  1

s1
1

s2. Âe{s } 1.



Example  9.9

(9.63)
(9.64)

We thus obtain
(9.65)

.2}{,2
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,1}{,1
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2 Â
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Lt

Lt

  .1}{,)2)(1(
1)(2 Â  sesstuee Ltt
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9.3  The Inverse Laplace Transform
As discussed in the appendix, when X(s) has multiple-
order poles, or when the denominator is not of higher 
degree than the numerator, the partial-fraction 
expansion of X(s) will include other terms in addition 
to the first-order terms considered in Examples 9.9-
9.11.
若X(s)具有重極點，或分母次數不大於分子次數
，則X(s)的部分分式展開將含有其他型式的項（
見附錄）。
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9.4  Geometric Evaluation of the Fourier 
Transform From the Pole-Zero plot

674

X(s)  s a.
A zero when s=a



9.4  Geometric Evaluation of the Fourier 
Transform From the Pole-Zero plot

674

X̂(s) 1/ (s a).
A pole at s=a

X(s)  s a.

| X̂(s) || X(s) |
ÐX̂(s)  ÐX(s)



9.4  Geometric Evaluation of the Fourier 
Transform From the Pole-Zero plot

A more general rational Laplace transform consists of 
a product of pole and zero terms of the form 
discussed in the preceding paragraph; that is, it can be 
factored into the form

(9.70)
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9.4  Geometric Evaluation of the Fourier 
Transform From the Pole-Zero plot

To evaluate X(s) at               , each term in the product 
is represented by a vector from the zero or pole to the 
point      .  The magnitude of           is then the 
magnitude of the scale factor M, times the product of 
the lengths of the zero vectors (i.e., the vectors from 
the zeros to    ), divided by the product of the lengths 
of the pole vectors (i.e., the vectors from the pole to    
). The angle is the sum of the angles of zero vectors 
minus the sum of the angles of pole vectors.
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Example  9.12
Let

(9.71)

The Fourier transform is                 .  For this example, 
then, the Fourier transform is

(9.72)
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Example  9.12
The pole-zero plot for X(s) is 
shown in Figure 9.16.  To 
determine the Fourier transform 
graphically, we construct the pole 
vector as indicated.  The 
magnitude of the Fourier 
transform at frequency ω is the 
reciprocal of the length of the 
vector from the pole to the point 
jω on the imaginary axis.  The 
phase of the Fourier transform is 
the negative of the angle of the 
vector.  Geometrically, from 
Figure 9.16, we can write

675

.2tan)(

)2/1(
1)(

1

22
2







jX

jX



9.4.1  First-Order Systems

The impulse response for such a system is

(9.75)

ant its Laplace transform is

(9.76)
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9.4.1  First-Order Systems
676

20 log21/2  10 log2 » 10 *0.3 3
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9.4.1  First-Order Systems
676

),(1)( / tueth t  
Pole moves to the left corresponds to a decrease in time 
constant, resulting in a faster decay of impulse response, 
and a faster rise time in step response



9.4.2  Second-Order Systems
The impulse response and frequency response for the 
system, originally given in eqs. (6.37) and (6.33), 
respectively, are

(9.77)
where
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9.4.2  Second-Order Systems
and

(9.78)

The Laplace transform of the impulse response is

(9.79)
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680H (s)  n
2

(s c1)(s c2 ). c1  n n  2 1,
c2  n n  2 1,

ξ>1, c1 and c2 are real numbers





680H (s)  n
2

(s c1)(s c2 ). c1  n n  2 1,
c2  n n  2 1,

1>ξ>0, c1 and c2 are complex numbers

,2
1
Q

B  2V relative bandwidth
Quality measure

n  2 1n  n  2 1n



9.4.2  Second-Order Systems
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680H (s)  n
2

(s c1)(s c2 ). c1  n n  2 1,
c2  n n  2 1,

1>ξ>0, c1 and c2 are complex numbers

n  2 1n  n  2 1n



9.4.2  Second-Order Systems
680



9.4.3  All-Pass Systems
As a final illustration of the 
geometric evaluation of the 
frequency response, let us consider 
a system for which the Laplace 
transform of the impulse response 
has the pole-zero plot shown in 
Figure 9.21(a).  Form this figure, it 
is evident that for any point along 
the jω-axis, the pole and zero 
vectors have equal length, and 
consequently, the magnitude of 
the frequency response is 
constant and independent of 
frequency.
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The phase of the frequency response is                 , or, 
since

(9.80)

From Figure 9.21(a),                             , and thus,

(9.81)
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9.5.1  Linearity of the Laplace 
Transform

If
with a region of convergence that
will be denoted as R1

And 
with a region of convergence that
will be denoted as R2

Then 
with ROC      (9.82)
containing

)()( 11 sXtx L

)()( 22 sXtx L

),()()()( 2121 sbXsaXtbxtax L 
.21 RR 

線性性質(重疊原理)
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Example  9.13
In this example, we illustrate the fact that the 
ROC for the Laplace transform of a linear 
combination of signals can sometimes extend 
beyond the intersection of the ROCs for 
individual terms.  Consider

(9.83)),()()( 21 txtxtx 

683



Example  9.13
Where the Laplace transforms of          and     
are, respectively,

(9.84)

and

(9.85)

,1}{,1
1)(1 Â sessX

.1}{,)2)(1(
1)(2 Â sesssX

)(1 tX )(2 tX
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Example  9.13
The pole-zero plot, including the ROCs for           and

, is shown in Figures 9.22(a) and (b).  From eq. 
(9.82),

(9.86)
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Thus, in the linear combination of          and        , the 
pole at s = -1 is canceled by a zero at s = -1.  The 
pole-zero plot for                             is shown in Figure 
9.22(c).  The intersection of the ROCs for         and           
is                   .  However, since the ROC is always 
bounded by a pole or infinity, for this example the 
ROC for X(s) can be extended to the left to be 
bounded by the pole at s = -2, as a result of the pole-
zero cancellation at s = -1.

)(2 tX)(1 tX
)()()( 21 sXsXsX 

)(1 sX )(2 sX
1}{ Â se
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9.5.2  Time Shifting
If 

then

(9.87)
時間軸移位性質
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,),()( RROCwithsXtx L 

.),()( 00 RROCwithsXettx stL  



9.5.3  Shifting in the s-Domain

If 

Then
(9.88)

S0=jω0
In this case, eq. (9.88) becomes

(9.89)
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9.5.4  Time Scaling
If 

then

(9.90)
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.,1)( 1 aRRROCwitha
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9.5.4  Time Scaling

Thus, time reversal of x(t) results in a reversal of the 
ROC.  That is,

(9.91)
時間倒轉的拉式轉換

687
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9.5.5  Conjugation
If 

(9.92)
Then 

(9.93)
共軛性質

Therefore,
when x(t) is real.

(9.94)
若x(t)為實值訊號，則

,),()( RROCwithsXtx L 

.),()( *** RROCwithsXtx L 

)()( ** sXsX 
)()( ** sXsX 
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9.5.5  Conjugation
Consequently, if x(t) is real 
and if X(s) has a pole or 
zero at              (i.e., if X(s)
is unbounded or zero at              
), then X(s) also has a pole 
or zero at the complex 
conjugate point             .  
For example, the transform 
X(s) for the real signal x(t) in 
Example 9.4 has poles at s
= 1 ± 3j and zeros at                            
.

0ss 

687
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x(t)  e2 tu(t)
et (cos3t)u(t).
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9.5.6  Convolution Property
If 

and 

Then
with ROC 

containing
(9.95)

迴旋運算性質

,),()(
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111

RROCwithsXtx
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9.5.6  Convolution Property
In a manner similar to the linearity property set forth in Section 9.5.1, the ROC of           includes the intersection of the ROCs of          and          and may be larger if pole-zero cancellation occurs in the product.  For example, if

(9.96)
and

(9.97)

)(1 sX)(2 sX
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9.5.7  Differentiation in the Time 
Domain
If

then

(9.98)
時域微分性質

,),()( RROCwithsXtx L 

.),()( RcontainingROCwithssXdt
tdx L
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9.5.7  Differentiation in the Time 
Domain

This property follows by differentiating both sides 
of the inverse Laplace transform as expressed in 
equation (9.56).  Specifically, let

Then

(9.99)
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1)( dsesXjtx j

j
st 
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9.5.8  Differentiation in the s-Domain
Differentiating both sides of the Laplace 
transform equation (9.3), i.e.,

we obtain
,)()( dtetxsX st 

.)()()( dtetxtds
sdX st 
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9.5.8  Differentiation in the s-Domain
Consequently, if

then

(9.100)
s域微分性質（與時域微分性質互為對偶）

,),()( RROCwithsXtx L 

.,)()( RROCwithds
sdXttx L 
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Example  9.14
Let us find the Laplace transform of

(9.101)
Since

it follows from eq.(9.100) that

(9.102)

).()( tutetx at
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Example  9.14
In fact, by repeated application of eq. (9.100), we 
obtain

(9.103)

and, more generally,
(9.104)
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9.5.9  Integration in the Time Domain
If

Then

with ROC containing

(9.106)
時域積分性質

,),()( RROCwithsXtx L 

),(1)( sXsdxt L  
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9.5.9  Integration in the Time Domain

This property is the inverse of the differentiation 
property set forth in Section 9.5.7.  It can be derived 
using the convolution property presented in Section 
9.5.6.  Specifically, 

(9.107)

此性質為時域微分性質的逆向性質。

690

x( )d  u(t)* x(t).
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),(1)( sXsdxt L  



9.5.9  Integration in the Time Domain
From Example 9.1, with a = 0,

(9.108)

and thus, from the convolution property,

(9.109)
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9.5.10  The Initial- and Final-Value Theorems
If x(t)=0 for t<0 and  x(t) contains no impulses or 
higher order singularities at the origin,
the initial value          —i.e., x(t) as t approaches zero 
from positive values of t.  Specifically the initial-
value theorem states that

(9.110)

初值定理（利用s域函數求時域的初值）

690

)0( x
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9.5.10  The Initial- and Final-Value Theorems
Also, it x(t) = 0 for t < 0 and, in addition, x(t) has a 
finite limit as t → ∞, then the final-value theorem
says that

(9.111)

See Problem 9.53
終值定理（利用s域函數求時域的終值）
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Example 9.16
The initial- and final-value theorems can be in 
checking the correctness of the Laplace 
transform calculations for a signal.  For example, 
consider the signal x(t) in Example 9.4.  From 
eq. (9.24), we see that               .  Also, using eq. 
(9.29), we find that

which is consistent with the initial-value theorem 
in eq. (9.110).

,220144
1252lim)(lim 23
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et (cos3t)u(t).



9.5.11 Table of Properties
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9.6  Some Laplace Transform Pairs
692



9.7  Analysis And Characterization of LTI 
Systems Using The Laplace Transform

Specifically, the Laplace transforms of the input and 
output of an LTI system are related through 
multiplication by the Laplace transform of the 
impulse response of the system.  Thus,
LTI系統的輸入、輸出、脈衝響應的拉氏轉換關係
為：

(9.112)
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

If the input to the LTI system is x(t)=est, with s in the 
ROC of H(s), then the output will be H(s)est.
est is the eigenfunction of the system with eigenvalue 
equal to the Laplace transform of the impulse 
response h(t).
H(s) is also referred to as “system function” or 
“transfer function”.
If s=jω is included in the ROC, H(jω) is the 
frequency response of the LTI system.

693



9.7.1  Causality
For a causal LTI system, the 
impulse response h(t) is zero for 
t<0, and thus is right-sided.
From Sec. 9.2, the ROC associated 
with the system function for a 
causal system is a right-half 
plane to the right of the rightmost 
pole.
The converse statement is not 
always true. It is only true for a 
system with rational H(s) “system 
function”.
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Example  9.17
Consider a system with impulse response 

(9.113)

Since h(t) ≠ 0 for t < 0, this system is causal.  Also, 
the system function can be obtained from Example 
9.1:

(9.114)
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Example 9.17
In this case, the system function is rational and the 
ROC in eq. (9.114) is to the right of the rightmost 
pole, consistent with our statement that causality for 
systems with rational system functions is equivalent 
to the ROC being to the right of the rightmost pole.
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9.7.1  Causality
In an exactly analogous 
manner, we can deal with the 
concept of anticausality.  A 
system is anticausal if its 
impulse response  h(t) = 0 for 
t > 0.  Since in that case h(t)
would be left sided, we 
know from Section 9.2 that 
the ROC of the system 
function H(s) would have to 
be a left-half plane to the left 
most pole
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9.7.2  Stability
The ROC of H(s) can also be related to the stability
of a system.  As mentioned in Section 2.3.7, the 
stability of an LTI system is equivalent to its impulse 
response being absolutely integrable, in which case 
(Section 4.4) the Fourier transform of the impulse 
response converges.

An LTI system is stable if and only if the ROC of 
its system function H(s) includes the entire jω-
axis [i.e.,                 ].
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Example  9.20
Let us consider an LTI system with system function

(9.119)

Since the ROC has not been specified, we know from 
our discussion in Section 9.2 that there are several 
different ROCs and, consequently, several different 
system impulse responses that can be associated with 
the algebraic expression for H(s) given in eq. (9.119).
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H (s)  s1
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If, however, we have information about the causality
or stability of the system, the appropriate ROC can 
be identified.  For example, if the system is known to 
be causal, the ROC will be that indicated in Figure 
9.25(a), with impulse response 

(9.120)
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Note that this particular choice of 
ROC does not include the jω-
axis, and consequently, the 
corresponding system is 
unstable (as can be checked by 
observing that h(t) is not 
absolutely integrable ).  On the 
other hand, if the system is 
known to be stable, the ROC is 
that given in Figure 9.25(b), and 
the corresponding impulse 
response is

which is absolutely integrable.
),(3

1)(3
2)( 2 tuetueth tt  

696

H (s)  s1
(s1)(s 2).



Example  9.20
Finally, for the ROC in Figure 9.25(c), the 
system is anticausal and unstable, with

).(3
1

3
2)( 2 tueeth tt 


  
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9.7.2  Stability
A causal system with rational system function H(s) is 
stable if and only if all of the poles of H(s) lie in the 
left-half of the s-plane—i.e., all of the poles have 
negative real parts.

—具有有理式系統函數H(s)的因果系統，若且唯
若H(s)的所有極點均位於s平面的左半平面。
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Example  9.21

Consider again the causal system in Example 9.17.  The impulse 
response in eq. (9.113) is absolutely integrable, ad thus the 
system is stable.  Consistent with this, we see that the pole of 
H(s) in eq. (9.114) is at s = -1, which is in the left-half of the s-
plane.  In contrast, the causal system with impulse response 

is unstable, since h(t) is not absolutely integrable.  Also, in this 
case

so the system has a pole at s = 2 in the right half of the s-plane.
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 FT can be applied to obtain the frequency response of 
an LTI system characterized by a linear constant-
coefficient differential equation.

 LT can be applied in a similar way

9.7.3  LTI Systems Characterized by Linear 
Constant-Coefficient



Consider an LTI system for which the input x(t) and 
output y(t) satisfy the linear constant-coefficient 
differential equation

(9.126)
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Example   9.23

Applying the Laplace transform to both sides of eq. 
(9.126), and using the linearity and differentiation
properties set forth in Sections 9.5.1 and 9.5.7, 
respectively [(eqs. (9.82) and (9.98)], we obtain the 
algebraic equation

(9.127)
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).()(3)( txtydt
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dx(t)
dt

L  sX(s),
with ROC containing R.



Example   9.23
Since, from eq. (9.112), the system function is

we obtain, for this system, 

(9.128)
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Example   9.23
This, then, provides the algebraic expression for the system function, but not the region of convergence.  In fact, as we discussed in Section 2.4, the differential equation itself is not a complete specification of the LTI system, and there are, in general, different impulse responses, all consistent with the differential equation.  If, in addition to the differential equation, we know that the system is causal, then the ROC can be inferred to be to the right of the rightmost pole, which in this case corresponds to .  3Â se
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Example   9.23
If the system were known to be anticausal, then 
the ROC associated with H(s) would be                 
.  The corresponding impulse response in the 
causal case is

(9.129)

whereas in the anticausal case it is

(9.130)
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9.7.3  LTI Systems Characterized by Linear 
Constant-Coefficient

Consider a general linear constant-coefficient 
differential equation of the form

(9.131)

N階線性常係數微分方程
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9.7.3  LTI Systems Characterized by Linear 
Constant-Coefficient

Applying the Laplace transform to both sides and 
using the linearity and differentiation properties 
repeatedly, we obtain

(9.132)

or

(9.133)

N階LTI系統的轉移函數與微分方程係數的關係
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9.7.3  LTI Systems Characterized by Linear 
Constant-Coefficient
Thus, the system function for a system specified by a 
differential equation is always rational, with zeros at 
the solutions of

(9.134)

系統的零點滿足(9.134)式(即H(s)的分子令為0)。
and poles at the solutions of 

(9.135)

系統的極點滿足(9.135)式(即H(s)的分母令為0)。
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Example  9.24
An RLC circuit whose capacitor voltage and inductor 
current are initially zero (causual) constitutes an LTI 
system describable by a linear constant-coefficient 
differential equation.  Consider the series RLC circuit 
in Figure 9.27.  Let the voltage across the voltage 
source be the input signal x(t), and let the voltage 
measured across the capacitor be the output signal 
y(t).

700



Example  9.24
Equating the sum of the voltages across the resistor, 
inductor, and capacitor with the source voltage, we 
obtain

(9.136)

Applying eq. (9.133), we obtain

(9.137)
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As shown in Problem 9.64, if the values of R, L, and 
C are all positive, the poles of this system function 
will have negative real parts, and consequently, the 
system will be stable.

700H (s) 1/ LC
s2  (R / L)s (1 / LC)

 1/ LC
(s c1)(s c2 ) ;c1,2  (R / L) (R / L)2  4 / LC



Example  9.25
Suppose we know that if the input to an LTI 
system is

then the output is

由已知輸入及輸出，推導LTI系統的系統函數及
微分方程的範例。

已知x(t)及y(t)

),()( 3 tuetx t
  ).()( 2 tueety tt  



Example  9.25
As we now show, from this knowledge we can 
determine the system function for this system and 
from this can immediately deduce a number of other 
properties of the system.
Taking Laplace transforms of x(t) and y(t), we get

and

求得拉氏轉換X(s)及Y(s)。

701

  ,3,3
1)( Â sessX

  .1,)2)(1(
1)( Â sesssY



Example  9.25
From eq. (9.112), we can then conclude that

代入定義得系統函數H(s)。
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H (s)  Y (s)
X(s) 

s3
(s1)(s2) 

s3
s2 3s 2.
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Example  9.25
Furthermore, we can also determine the ROC for this system.  In particular, we know from the convolution property set forth in Section 9.5.6 that the ROC of Y(s) must include at least the intersections for the ROCs of X(s) and H(s).Examining the three possible choices for the ROC of H(s) (i.e., to the left of the pole at s = -2, between the poles at -2 and -1, and to the right of the pole at s = -1), we see that the only choice that is consistent with the ROCs of X(s)and Y(s) is                      .  1Â se
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Example  9.25
Since this is to the right of the rightmost pole of H(s), we conclude that H(s) is causal, and since both poles of H(s) have negative real parts, it follows that the system is stable.  Moreover, from the relationship between eqs. (9.131) and (9.133), we can specify the differential equation that, together with the condition of initial rest, characterizes the system:

由H(s)分子與分母係數及s的次數可寫出微分方程。
).(3)()(2)(3)(

2
2 txdt

tdxtydt
tdy

dt
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9.7.5   Butterworth Filters
An Nth-order lowpass Butterworth 
filter has a frequency response the 
square of whose magnitude is given 
by

(9.140)

N階低通巴特沃斯濾波器的頻率響
應B(jω)滿足（9.140）式。
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9.7.5   Butterworth Filters
where N is the order of the filter.  From eq. (9.140), 
we would like to determine the system function B(s)
that gives rise to                .  We first note that, by 
definition,

(9.141)
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9.7.5   Butterworth Filters
If we restrict the impulse response of the 
Butterworth filter to be real, then from the property 
of conjugate symmetry for Fourier transforms,

(9.142)
so that

(9.143)
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9.7.5   Butterworth Filters
Next, we note that                          , and consequently, 
from eq. (9.143),

(9.144)

The roots of the denominator polynomial 
corresponding to the combined poles of                   
are at 

(9.145)
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9.7.5   Butterworth Filters
Equation (9.145) is satisfied for any value                
for which

(9.146)
and 

k an integer;         (9.147)

that is, 
(9.148)

巴特沃斯濾波器的極點
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9.7.5   Butterworth Filters

In general, the following observation can be made 
about these poles:

1. There are 2N poles equally spaced in angle on a 
circle of radius         in the s-plane.

2. A pole never lies on the jω-axis and occurs on the 
σ-axis for N odd, but not for N even.

3. The angular spacing between the poles of B(s)B(-s)
is π/N radians.
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9.7.5   Butterworth Filters
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9.7.5   Butterworth Filters
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9.7.5   Butterworth Filters
In Figure 9.29 we show the poles associated with B(s)
for each of these values of N.  The corresponding 
transfer functions are:

N = 1:                                                         (9.149)

N = 2:                                                          (9.150)
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9.7.5   Butterworth Filters

N = 3:

(9.151)
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9.7.5   Butterworth Filters
Specifically, for the foregoing three values of N, the 
corresponding differential equations are:

N = 1:                                                                  (9.152)

N = 2:                                                                   (9.153)

N = 3:                                                                   (9.154)

706

);()()( txtydt
tdy

cc  

);()()(2)( 22
2

2 txtydt
tdy

dt
tyd

ccc  

).()()(2)(2)( 332
2

2
3

3 txtydt
tdy

dt
tyd

dt
tyd

cccc  



9.8  System Function Algebra and Block 
Diagram Representations

The use of the Laplace transform allows us to replace 
time-domain operations such as differentiation, 
convolution, time shifting, and so on, with algebraic 
operations.

時域的計算如微分、迴旋運算、時間移位……等
較為複雜，可改用拉氏轉換，只需以簡單的代數
運算即可。
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9.8.1  System Functions for 
Interconnections of LTI Systems

The impulse response of the overall system is

(9.155)

and from the linearity of the Laplace transform,

(9.156)

系統並接，則系統函數為各系統函數之和。

),()()( 21 ththth 

).()()( 21 sHsHsH 
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9.8.1  System Functions for 
Interconnections of LTI Systems

Similarly, the impulse response of the series interconnection in Figure 9.30(b) is
(9.157)

and the associated system function is
(9.158)

系統串接，則系統函數為各系統函數之積。
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9.8.1  System Functions for 
Interconnections of LTI Systems

707



While analysis of the system in the time domain is not 
particularly simple, determining the overall system 
function from input x(t) to output y(t) is a 
straightforward algebraic manipulation.  Specifically, 
from Figure 9.31,

(9.159)
(9.160)

and 
(9.161)
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9.8.1  System Functions for 
Interconnections of LTI Systems
from which we obtain the relation

(9.162)

or

(9.163)

單迴路系統的整體系統函數

 ,)()()()()( 21 sYsHsXsHsY 

.)()(1
)()()(

)(
21

1
sHsH

sHsHsX
sY



708



Example   9.28
Consider the causal LTI system with system 
function

From Section 9.7.3, we know that this system 
can also be described by the differential 
equation

.3
1)(  ssH
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together with the condition of initial rest.  In 
Section 2.4.3 we constructed a block diagram 
representation, shown in Figure 2.32, for a first-
order system such as this.  An equivalent block 
diagram (corresponding to Figure 2.32 with a = 3 
and b = 1) is shown in Figure 9.32(a).  Here, 1/s
is the system function of a system with impulse 
response u(t), i.e., it is the system function of an 
integrator.
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Example   9.30
Consider next a causal second-order system 
with system function

(9.165)

The input x(t) and output y(t) for this system 
satisfy the differential equation

(9.166)
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711

).()(2)(3)(
2

2 txtydt
tdy

dt
tyd 



By employing similar ideas to those used in the 
preceding examples, we obtain the block 
diagram representation for this system shown 
in Figure 9.34(a).  Specifically, since the input 
to an integrator is the derivative of the output of 
the integrator, the signals in the block diagram 
are related by
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Example   9.30
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Example   9.30
711



The block diagram in this figure is sometimes 
referred to as a direct-form representation, since 
the coefficients appearing in the diagram can be 
directly identified with the coefficients appearing in 
the system function or, equivalently, the differential 
equation.  Other block diagram representations of 
practical importance also can be obtained after a 
modest amount of system function algebra.  
Specifically, H(s) in eq. (9.165) can be rewritten as
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Alternatively, by performing a partial-fraction 
expansion of H(s), we obtain

which leads to the parallel-form representation 
depicted in Figure 9.34(c).
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9.9  The unilateral Laplace Transform
Analyzing causal system by LCCDE with nonzero 
initial conditions (not initial rest).

The unilateral Laplace transform of a continuous-
time signal x(t) is defined as

(9.170)

單邊拉氏轉換的定義
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9.9  The unilateral Laplace Transform
where the lower limit of integration,       ,
積分下限為 。

Laplace transform:

(9.171)

時域函數與其拉氏轉換的對應符號
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Example   9.33
Consider next

(9.174)

The bilateral transform X(s) for this example can 
be obtained from Example 9.1 and the time-
shifting property (Section 9.5.2):

(9.175)
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Example   9.33
By contrast, the unilateral transform is

(9.176)
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Example   9.33
Thus, in this example, the unilateral and bilateral 
Laplace transforms are clearly different.  In fact, 
we should recognize X(s) as the bilateral 
transform not of x(t), but of x(t)u(t), consistent 
with our earlier comment that the unilateral 
transform is the bilateral transform of a signal 
whose values for t <       have been set to zero.
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Example   9.36
Consider the unilateral transform

(9.181)

Since the degree of the numerator of X(s) is not 
strictly less than the degree of the denominator, 
we expand X(s) as

(9.182)
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Example   9.36
Equating eqs. (9.181) and (9.182), and clearing 
denominators, we obtain

(9.183)

and equating coefficients for each power of s
yields

(9.184)
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Example   9.36
with an ROC of                     .  Taking inverse 
transforms of each term results in

(9.185)

.0)()()(2)( 2
1

  tfortuetuttx t

  2Â se

716



9.9.2   Properties of the Unilateral 
Laplace Transform

Table 9.3 summarizes these properties.  Note 
that we have not included a column explicitly 
identifying the ROC for the unilateral Laplace 
transform for each signal, since the ROC of any 
unilateral Laplace transform is always a right-
half plane.

表9.3為單邊拉氏轉換的性質，因單邊拉式轉換的
ROC必為右半平面，故ROC欄省略。
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9.9.2   Properties of the Unilateral 
Laplace Transform
注意迴旋運算
定理的大前提
為對於t < 0，

0)()( 21 txtx 及
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9.9.2   Properties of the Unilateral 
Laplace Transform

The convolution property for unilateral 
transforms also is quite similar to the 
corresponding property for bilateral transforms.  
This property states that if

for all    t < 0,           (9.186)
then

(9.187)

0)()( 21  txtx
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9.9.2   Properties of the Unilateral 
Laplace Transform

An example of this is the integration property in 
Table 9.3:  If x(t) = 0 for t < 0, then

(9.188)
)(1)()()()()(0 sssUstutxdx ULt *  
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Example   9.37
Suppose a causal LTI system is described by 
the differential equation

(9.189)

together with the condition of initial rest.  Using 
eq. (9.133), we find that the system function for 
this system is

(9.190)
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Example   9.37
Let the input to this system be x(t) = αu(t). In this 
case, the unilateral (and bilateral) Laplace 
transform of the output y(t) is

(9.191)

Applying Example 9.32 to each term of eq. 
(9.191) yields

(9.192)
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9.9.2   Properties of the Unilateral 
Laplace Transform

Consider a signal x(t) with unilateral Laplace 
transform X(s). Then, integrating by parts, we 
find that the unilateral transform of dx(t)/dt is 
given by

(9.193)

(9.193)及(9.194)式微分性質中，單邊拉氏轉換比
雙邊拉氏轉換多了有關初始值的項。

719

).0()(
)()()(

000


  


  

xss
dtetxsetxdtedt

tdx ststst



9.9.2   Properties of the Unilateral 
Laplace Transform

Similarly, a second application of this would 
yield the unilateral Laplace transform of

, i.e.,

(9.194)

22 /)( dttxd

719

),0(')0()(2   xsxss
L(x ' (t))   ' (s)  s(s) x(0 )
L(x '' (t))  s ' (s) x ' (0 )  s2(s) sx(0 ) x ' (0 )



Example   9.38
單邊拉氏轉換主要用途之一為，求解已知初始條
件下的線性常係數分方程式。

Consider the system characterized by the 
differential equation (9.189) with initial 
conditions

(9.195).)0(',)0(    yy

719
d 2y(t)

dt 2 3 dy(t)
dt  2y(t)  x(t)(9.189)



Example   9.38

Let x(t) = αu(t). Then, applying the unilateral 
transform to both sides of eq. (9.189), we obtain

(9.196)
or

(9.197)
where Y(s) is the unilateral Laplace transform of 
y(t).
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719d 2y(t)
dt 2 3 dy(t)

dt  2y(t)  x(t)(9.189)
L(x ' (t))   ' (s)  s(s) x(0 )
L(x '' (t))  s2(s) sx(0 ) x ' (0 )



Referring to Example9.37 and, in particular, to eq. 
(9.191), we see that the last term on the right-hand 
side of eq. (9.197) is precisely the unilateral Laplace 
transform of the response of the system when the 
initial conditions in eq. (9.195) are both zero ( β = γ
=0 ).  That is, the last term represents the response 
of the causal LTI system described by eq. (9.189) 
and the condition of initial rest.  This response is 
often referred to as the zero-state response—i.e., 
the response when the initial state (the set of initial 
conditions in eq. (9.195)) is zero.
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An analogous interpretation applies to the first 
two terms on the right-hand side of eq. (9.197).  
These terms represent the unilateral transform 
of the response of the system when the input is 
zero (α =0).  This response is commonly referred 
to as the zero-input response.  Note that the 
zero-input response is a linear function of the 
values of the initial conditions (e.g., doubling the 
values of both β and γ doubles the zero-input 
response).
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Example   9.38
For example, if α = 2, β = 3, and γ = -5, then 
performing a partial-fraction expansion for eq. 
(9.197) we find that 

(9.198)

Applying Example 9.32 to each term then yields

for t > 0.      (9.199)  )(31)(
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9.10 Summary
 Laplace Transform and its relation with FT
 ROC and properties
 Geometric Evaluation of Frequency Response
 Properties of LT
 Causality and Stability from ROC
 Solving LCCDE using LT
 Unilateral LT handling non initial rest condition
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