Chapter 9
The Laplace Transform

Min Sun



9.0 Introduction

As we will see, the Laplace and z-transforms have
many of the properties that make Fourier analysis so
useful. Especially for investigating the stability or
instability of a (feedback) system, which cannot be
done for FT.



3.2 The Response of LTI Systems to
Complex Exponentials

* The importance of complex exponentials stems from
the fact that the response of an LTI system to a
complex exponential input is the same complex
exponential with only a change 1n amplitude; that 1s,

continuous time: e — H(s)e™ , (3.1)
discrete time: z" — H(z)z", (3.2)

where the complex amplitude factor H(s) or H(z) will in
general be a function of the complex variable s or z.

= We use to set S=j(!), z=el®



9.1 The Laplace Transform

response of a linear time-invariant system with
Impulse response h(t) to a complex exponential
input of the form ¢% s

y(t)=H(s)e", (9:1)
H(s)={ ht)edr. (92

where

H(s) is the Laplace transform of the impulse
response h(t)



9.1 The Laplace Transform

The Laplace transform of a general signal x(t) 1s
defined as

A +00
X(s)= Lo x(Oe'dt, oo
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9.1 The Laplace Transform

For convenience, we will sometimes denote the
Laplace transform 1n operator form as L{x(?)} and
denote the transform relationship between x(z) and

X(s) as
VI ) s X(s).
When s = jw, €q. (9.3) becomes

X(jo)=["xwe " d, o

(9.4)

which is FT. X ()

i = FRX(0)}. (9.6)



9.1 The Laplace Transform
A +00
X(s)= | 7 x(t)e " d(9.3)

Another straightforward relationship to TF:
consider X(s) as specified in eq. (9.3) with s
expressed as x = 0 + jw, so that

X(g + ]a)) = jjoox(t)e—(aﬂa))tdt, (97)

or X(o+jw)= roo [x(t)e_m] e/ dt
- (9.8)
=F{x(t)e”"}

Note that a can be positive or negative.



Example 9.1

EESCE SERE NN St T

Let the signal x(¢) =e ™ u(¢) . From Example 4.1, the
Fourier transform X(jw) converges for a>0 and is
given by

X(ja))=rwe‘“’u(t)e‘f“’tdt= Iwe_“te_j”tdt: . L s (9.9)
— 0 jo+a

From eq. (9.3), the Laplace transform is

X(s)= j_ooe_“tu(t)e_“dt — jo e T (9.10)



] 0 -at —jot 3, _ (° —at_—jor 3, _ 1
Example 9.1 XUo)=[, e ue ™ di=[ ee?"di=——",  a>0.

or, with s = 0 + jw,

X(o+jo)=[ e e dr (9.11)

By comparison with eq. (9.9) we recognize eq.
(9.11) as the Fourier transform of ¢ “*"y(¢), and
thus,

1

X(o+ jo)= ., o+a>0, (9.12)
(c+a)+ jw




1
(c+a)+ jw

Example 9.1 X(o+jo)= , o+a>0,

Or equivalently, since s = 0 + jw and g =‘Re{s} .
1

X(s)=—, Re{s}>—-a. (9.13)
s+a
That is 1
e “"u(t)< N : Re{s}>—-a. (9.14)
S+a

For example, for a = 0, x(t) is the unit step with
Laplace transform X(s) = 1/s,Re{s} > 0 .

Rel{s} >—a specifies the s that LT converges



9.1 The Laplace Transform

If a is positive, then X(s) can be evaluated at 0 = 0 to
obtain 1

X0+ jow)=— . (9.15)
jo+a

when a<0 > e “u(?) has valid LT but not FT.



A +00
Example 9.2 X(§)= I ~ x(t)e"dr(9.3)

For comparison with Example 9.1, let us consider as a
second example the signal

X(t) _ _e—atu(_t). (9.16)
Then

X(s)=- fooe_at e 'u(—t)dt 017

0 00
— _J‘ e—(s+a)tdt _ _J‘ e(s—lra)rdz_

0
T=-



Example 9.2 X(s)=—| e""dr

0

or

X(s)= : . (9.18)
s+a

For convergence 1n this example, we require that
Re{s+a} <0 ,or Re{s} <—a ; that is,

—at, o L 1 .
—e “u(—t)«< )S-I-Cl, Ref{s} < —a. 9.19)
e “u(t) -+t 1 | Re{s} >—al (9.14)
St+d.




9.1 Region of Convergence (ROC)
Re{s} >—a. (9.14)
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Rel{s} <—a. (9.19)



9.1 The Laplace Transform

We will have more to say about the ROC as we
develop some 1nsight into the properties of the
Laplace transform.
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Example 9.4

In this example, we consider a signal that is
the sum of a real and a complex exponential:

x(t)=eu(t)+e” (cos3tyu(t). (9.24)

Using Euler’s relation, we can write

x(2) = [ezt + %e(”j Lt % e ) }u(t),



Example 9.4

and the Laplace transform of x(t) then can be

expressed as
X(s)=[ e 'u(t)edt

1 e ~(1-3 )t st
+5 L}e u(t)e ' dt

1 e —(143 )t —st
+5 j_ooe u(t)e " dt.

(9.25)



Example 9.4

Each of the integrals in eq. (9.25) represents
a Laplace transform of the type encountered
iIn Example 9.1. It follows that

(9.26)

e u(t) «—— : : Rels} > -2,

s+2

1
s+(1-3/)

1
s+(1+3))

] () Rt

ER@{S} > _19 (927)

e "yt Re{s}>—1.

(9.28)



Example 9.4
Re{s} > -2, Re{s} >—1, Re{s} >—1.

For all three Laplace transforms to converge
simultaneously, we must have .
consequently, the Laplace transform of x(f) is

1 1( 1 j+1[ 1 j Refst >, (9.29)

_I__
s+2 2\s+(0-3j)) 2{s+{+3))

or, with terms combined over a common
denominator,

(9.30)

2
25 +5s+12 Rels) > 1.

(s +25+10)(s +2)°

e u(t)+e ' (cos3t)u(t) «+—



9.1 The Laplace Transform

In each of the four preceding examples, the
Laplace transform is rational, i.e., it is a ratio of
polynomials in the complex variable s, so that

X(s)= gg

As suggested by examples, X(s) will be rational
whenever Xx(t) is a linear combination of real or
complex exponentials. To specify, X(s) up to a

scale factor, we just need the roots in N(s) and
D(s).

(9.31)



9.1 The Laplace Transform

257 +55+12  (s—(=5+ 1)/ 4)(s—(=5-j/T1)/4)
(s2+2s+10)(s+2)_ (s+(1-=-37)(s++3)))(s+2)

Example 9.4, with the
location of each root
of the denominator
polynomial in eq. 0
(9.30) indicated with |
“x” and the location of _y |

9m

Re{s} >-1.

s-plane

the root of the = '1E
numberator ol
polynomial in eq. <

|

(9.30) indicated with
“O_”

Re



9.1 The Laplace Transform

For rational Laplace transforms, the roots of the
numerator polynomial are commonly referred to
as the zeros of X(s), since, for those values of s,
X(s) = 0. The roots of the denominator are
referred to as the poles of X(s), since
X(s)=infinite for those values of s. The plot on
the s-plane is referred to as the pole-zero plot of
X(s).

Note that the pole-zero plot and the ROC will
specify the time domain signal up to a scale

factor.



9.1 The Laplace Transform

Zeros and Poles at infinite:

In general, if the order of the denominator
exceeds the order of the numerator by k, X(s)
will have k zeros at infinity. Similarly, if the order
of the numerator exceeds the order of the

denominator by k, X(s) will have k poles at
infinity.



Example 9.5

Let 4 - 1 21
x(t)=0(t) 3 e u(t)+ 3 e u(t). 9.32)
The Laplace transform of the second and third terms
on the right-hand side of eq. (9.32) can be evaluated
from Example 9.1. The Laplace transform of the unit

impulse can be evaluated directly as

Lo} =[ s@edt=1, (13



Example 9.5

Which is valid for any value of s. That s, the
ROC of L{3(t)} is the entire s-plane. Using this
result, together with the Laplace transforms of
the other two terms in eq. (9.32), we obtain

X(s)=1-2-1 1 1 Rd (s} > 2,

3s+1 3s5-2° (9.34)

or

(s
X(s)= GiDs_2) Re{s} > 2, (9.39)




Example 9.5

where the ROC is the set of
values of s for which the
Laplace transforms of all
three terms in x(t)
converge. The pole-zero
plot for this example is
shown in Figure 9.3,
together with the ROC.
Also, since the degrees of
the numerator and
denominator of X(s) are
equal, X(s) has neither
poles nor zeros at infinity.

Im
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9.1 The Laplace Transform

I9m |
However, 1f the ROC i s-plane
of the Laplace I
transform does not |
include the jw-axis, i
(i.e., if me{S}ZO), % X
~1 +1 +2 Re

then the Fourier
transform does not
converge.

x(1)=0(1) —ge_tu(t) + %e”u(t).



9.2 The Region of Convergence For Laplace
Transforms

" Preperty 1: The ROC of X(s) consists of strips

parall
EE

el to the jw-axis In the s-plane.
+ X(s)HJROCEH s -E_EFTHYwhH

iR nnﬂiﬁﬁiﬁﬂz

That i
consi

s, the ROC of the Laplace transform of x(t)
sts of those values of s for which x(t)e™ is

absolutely integrable:

J 400
—00

x(t)e™”

di=| “x@)edi <. 000




9.2 The Region of Convergence For Laplace
Transforms

= Property 2: For rational Laplace transforms,
the ROC does not contain any poles.

X(s)= | “x0ede< | ey ar

X(s)=o for poles

= Property 3: If x(t) is of finite duration and is
absolutely integrable, then the ROC is the entire
s—plane
&3 - Ex( t)ﬁ'ﬂ% PREFFE EH S Hag S nlfE sy - Al
ROC/%%Z{IS‘ H]




9.2 The Region of Convergence For Laplace
Transforms

T . - o
1 T2 ' Figure 9.4 Finite-duration signal.

\ / Decaying exponential

%

te)

Figure 9.5 (a) Finite-duration signal of Figure 9.4 muttiplied by a decaying exponen-
tial: (b} finite-duration signal of Figure 9.4 muitiplied by a growing exponential.



9.2 The Region of Convergence For Laplace
Transforms

A more formal verification of Property 3 1s as follows:
Suppose that x(?) 1s absolutely integrable, so that

[ le(lde < . o

For s = 0 + jw to be in the ROC, we require that
x(t)e™™ be absolutely integrable, i.e.,

[ [e(o)e dr <o (9:38)



9.2 The Region of Convergence For Laplace
Transforms

Eq. (9.37) verifies that s is in the ROC when
Rel{s}=c=0. For o> 0, the maximum value

of ¢~ over the interval on which x(t) is nonzero
IS ¢ °I and thus we can write

jTT x(t)e "dt <e ™ jTT r(Ofdt. (939



9.2 The Region of Convergence For Laplace
Transforms

Since the right-hand side of €q.(9.39) is
bounded, so is the left-hand side; therefore, the
s-plane for Re{s} >0 must also be in the ROC.
By a similar argument, if 0 <0, then

Ljf ‘x(t)‘e_‘”dt <e " sz ‘x(t)‘dt, (9.40)



Example 9.6

Let

e 0<t<T

x(t) =+

0, otherwise

.

Then

X(s) = J;)T e “edt = [1 — e_(”")T]

S+a

It seems s=-a has a pole.

(9.41)

(9.42)



Example 9.6

In fact, however, in the algebraic expression in
eq. (9.42), both numerator and denominator are
zero at s = -a, and thus, to determine X(s) at s =
-a, we can use L'hopital's rule to obtain

i(l_e—(sﬂz)T)
limX()=lim| %
s——a s——a —(S+a)
L ds
so that
X(—a)=T.

=]1mZe

S—>—a

—al —sT
e ,

(9.43)



9.2 The Region of Convergence For Laplace
Transforms X(s)i j_*:x(t)e-“dt(9.3)

= Property 4: If x(1) is right sided, and if the line

Re{s} =0, Is in the ROC, then all values of s for
which Re{s} > o, will also be in the ROC.

x(t)

(\/\\/\\J

i, Y Figure 9.6 Right-sided signal.

X(t)=0 for t<T,



9.2 The Region of Convergence For Laplace

ransforms

It is possible that such signal has no value of
s for LT to converge.

One example is the signal x(£) =¢" u(?) .
However, suppose that the Laplace transform

converges for some value of g, which we
denote by o,. Then

j x(t)|e 7' dt < 0, (9.:44)

or equivalently, since x(t) is right sided,

400
ITI

x(l‘)‘e_aotdt < oo, (9.45)



Then if 0, > 0, , it must also be true that x(¢)e " is
absolutely integrable, since o %" decays faster than

e °% as t = 400, as illustrated in Figure 9.7.
Formally, we can say that with &, > &, ,

J, X @le ™ de = | x@le e ar

< el j:‘x(t)‘e_aotdt.
1

\ e ¢

Y

N
e—U'Dt / \\ \\

NN
\.\\
\\\"\
A Figure 9.7 If x(t) is right sided
Pl T and x(t)e “o! is absolutely integrable,
— then x(t)e="1!, oy > oy, will also be

T, t absolutely integrable.



9.2 The Region of Convergence For Laplace
Transforms

= Property 5: If x(t) is left sided, and if the line

Re{s} =c, is in the ROC, then all values of s
for which Re{s} < o, will also be in the ROC.

x(t)

A Vatihd

P t  Figure 9.8 Left-sided signal.

X(t)=0 for t>T,



9.2 The Region of Convergence For Laplace
Transforms

= Property 6: If x(t) is two sided, and if the line

Reist =0, isin the ROC, then the ROC will

consist of a strip in the s-plane that includes the
ine Nei{s} =0, .

X(t)

\T/JF\~

To t
@)




9.2 The Region of Convergence For Laplace
Transforms

x(t)=x,(t)+x,(¢), split at 1T,

x(t)
\_—T_/T—’\_/
Ty t
(@)
xg(t) X, (1)
\/#_’—\ e
T t To

(b) ()

Figure 9.9 Two-sided signal divided into the sum of a right-sided and left-sided si
nal: (a) two-sided signal x(t); (b) the right-sided signal equal to x(¢) for t > T and
equal to 0 for t < Tp; (c) the left-sided signal equal to x(f) for t < T, and equal to 0 °
[ > To.



x(t)
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9.2 The Region of Convergence For Laplace

Transforms
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Example 9.7

e_biti

Let
_ bl

x(t)=e ", b0
(9.47) /\

as 1llustrated in Figure 9.11 for
bothb>0and b <0. Since e bt

this 1s a two-sided signal, let us \/
divide 1t into the sum of a b<0

right-sided and left-sided signal;

that 1s,
x(t)=e "u(t)+e " u(-1).

(9.48)



Example 9.7

From Example 9.1,

e "u(t)«—+— : ,  Rels}>-b, (9.49)
s+b

and from Example 9.2,

—1
s—>b

eu(-1)¢«——>——, Re{s}<+b. (9.50)



Example 9.7

Although the Laplace transforms of each of the
individual terms in eq. (9.48) have a region of
convergence, there is no common region of
convergence if b £ 0, and thus, for those values
of b, x(t) has no Laplace transform. If b > 0, the
Laplace transform of x(f) is

Sl o ] 1 ~2b (9.51)

—> — = , —b<®R < +b.
s+b s—b s*-b’ eis)

The corresponding pole-zero plot is shown in Figure
9.12, with the shading indicating the ROC.



Example 9.7
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Figure 9.12 Pole-zero plot and ROC for Example 9.7.



9.2 The Region of Convergence For Laplace
Transforms

" Property 7: If the Laplace transform X(s) of x(?) is
rational, then 1ts ROC 1s bounded by poles or extends

to infinity. In addition, no piles of X(s) are contained
in the ROC.

MET xR X () R = AIIEROC
M\xﬂﬁﬁﬁﬁéﬁ%ﬂ%ﬁ BCUE R RS 2% o [EhYD 0 X(s)
FROCH; S H finEh o




9.2 The Region of Convergence For Laplace
Transforms

Due to Properties 4, 5, 7:

" Property 8: If the Laplace transform X{(s) of x(2) is
rational, then 1f x(?) is right sided, the ROC 1s the
region 1n the s-plane to the right of the rightmost
pole. If x(?) 1s left sided, the ROC 1s the region in the
S-plane to the left of the leftmost pole.

&S X(f)EI’JﬁZEEﬁJ‘iX(S)F%ﬁ FEEC > AllEx()
7%752_3%)@ HROC Fys -1 - E ] s GRS o 1F
I - “Ex(1) /ot » HROC Rys V- L2
T EE’JTI%E%EEI’J 35, -







Im

Example 9.8 s-plane
Let : A Re
X(s)= :
(9.52) (s+1D(s+2)

(@)
with the associated pole-zero pattern in Figure
9.13(a). As indicated in Figures 9.13(b)-(d),
there are three possible ROCs that can be
associated with this algebraic expression,
corresponding to three distinct signals. The

signal associated with the pole-zero pattern in
Figure 9.13(b) 1s right sided.



Example 9.8

Im

—X-X

s-plane
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Re
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D . G T
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Re



Example 9.8

s-plane s-plane

Re Re

Figure 9.13 (a) Pole-zero pattern for Example 9.8; (b) ROC corresponding
to a right-sided sequence; (c) ROC corresponding to a left-sided sequence;
(d) ROC corresponding to a two-sided sequence.
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Re

(b)

For Figure 9.13(b), since the ROC includes the jw-

N
3

s-plane

_____>!<_____
X

(©)

Re

R — x_..__.__

)

NERDErE

axis, the Fourier transform of this signal
converges. Figure 9.13(c) corresponds to a left-

sided signal and Figure 9.13(d) to a two-sided

s-plane

(d)

Re

signal. Neither of these two signals have Fourier
transforms, since their ROCs do not include the

Jw-axis.



9.3 The Inverse Laplace Transform

with s expressed as s = 0 + jw, the Laplace
transform of a signal x(f) is

X(o+ jo) = Fixne ™ }= [ “xwe e ™dr - (9-53)

for values of s = o + jw in the ROC. We can
invert this relationship using the inverse Fourier
transform as given in eq. (4.9). We have

x(D)e ™ = F X (o + jow) = ["X(o+ jore™do,
T 9—®

2 (9.54)



x(e” =F ' {X(c+jo)}= 21” "X(o+ jw)e™do,

or, multiplying both sides by % , we obtain

x(t) = 2L Tx (0+ jow)e " dw.
(9.55)

x(t) = — L . "X (s)e"ds. (9.56)

AL P ATE 22



L

*(1)= 27j

_[ ﬁ_jooX (s)e*ds(9.56)
O-_]OO

The contour of integration in eq. (9.56) 1s the straight
line in the s-plane corresponding to all points s
satistying Re{s} = o . This line 1s parallel to the jw-
axis. Furthermore, we can choose any such line
in the ROC

(9-96):\ i mE s F-H LAY Rels) =g HGTHTT
BB T ROCH Y (L8 45 -




9.3 The Inverse Laplace Transform

assuming no multiple-order poles, and
assuming that the order of the denominator
polynomial is greater than the order of the
numerator polynomial, we can expand X(s) in

the form mo A
X(s)= l
D=2 s




Example 9.9

Let

X(s)= 1

(s+1)(s+2)

Rel{s }>-1. (9.58)

To obtain the inverse Laplace transform, we first
perform a partial-fraction expansion to obtain

1 4 B (9.59)

X(s)= = :
(s+1)(s+2) s+1 s+2




Example 9.9

As discussed in the appendix, we can evaluate
the coefficients A and B by multiplying both sides
of eq. (9.59) by (s + 1) or (s + 2) and then
equating coefficients of equal powers of s on both
sides. Alternatively, we can use the relation

A=|(s+DX(s)] _ =1, (9.60)
B=|(s+2)X(s)],_, =-1. (9.61)

Thus, the partial-fraction expansion for X(s) is
X(s) 1 1 (9.62)

s+1 s+42°



Example 9.9 x(s)= Lot Rel{s }>—1.
s+1 s+2
Im Im Im
| I |
: s-plane : s-plane : : s-plane
| ! L
XX = TOTTm O
| | B
| | =
! | [
(b) () (d)

From Examples 9.1 and 9.2, we know that there are
two possible inverse transforms for a transform of the
form 1/(s + a), depending on whether the ROC is to
the left or the right of the pole. Consequently, we
need to determine which ROC to associate with each of
the individual first-order terms in eq. (9.62). This is
done by reference to the properties of the ROC
developed in Section 9.2.



X(s)= — . Re{s }>-1.

Im s

s-plane

TR L eea———

I

I

I

I

I
X
4

I

I

I

|

Since the ROC for X(s)is Re{s} > —1 the ROC for the
individual terms in the partial-fraction expansion of eq.
(9.62) includes ‘Re{s} > —1 The ROC for each term
can then be extended to the left or right (or both) to be
bounded by a pole or infinity. This is illustrated in
Figure 9.14. Figure 9.14(a) shows the pole-zero plot
and ROC for X(s), as specified in eq. (9.58).



Example 9.9

» 1 _
e u(t)<—>S+1, Re{s} > —1, (9.63)
e ()t Relst> 2. (9.64)
s+ 2
We thus obtain
(9.65)
e — e Ju(r) Refst > —1.

(s+1)( +2)



9.3 The Inverse Laplace Transform

As discussed 1n the appendix, when X(s) has multiple-
order poles, or when the denominator 1s not of higher
degree than the numerator, the partial-fraction
expansion of X(s) will include other terms 1n addition

to the first-order terms considered in Examples 9.9-
9.11.

HX(s) BB - B REREA RIR 07RE
» RILX(s)HTHER 77 o7 2t = 8 HA AL ZCHY IR (
FMFek) -




9.4 Geometric Evaluation of the Fourier
Transform From the Pole-Zero plot

T s-plane X (S ) =5 —d.

S;—a
A zero when s=a
—a a MRe

Figure 9.15 Complex plane rep-
resentation of the vectors s;, a, and
$; — a representing the complex num-
bers s;, a, and s; — a, respectively.




9.4 Geometric Evaluation of the Fourier
Transform From the Pole-Zero plot

o | X(s)=s—a.
s-plane A

s oo . X(s)=1/(s—a).
/AS1 A pole at s=a

) XGs)
/X(s)=—2/X(s)




9.4 Geometric Evaluation of the Fourier
Transform From the Pole-Zero plot

A more general rational Laplace transform consists of
a product of pole and zero terms of the form
discussed 1n the preceding paragraph; that 1s, it can be
factored into the form

L 6-8)
X(s)—MHjZ(S_aj). (9.70)




9.4 Geometric Evaluation of the Fourier
Transform From the Pole-Zero plot

X(S)ZM H;-)I(S_ﬂi) .
Hj:l(S_aj)

To evaluate X(s) at § = S, - each term 1in the product
is represented by a vector from the zero or pole to the
point.S; . The magnitude of X(s,) is then the
magnitude of the scale factor M, times the product of
the lengths of the zero vectors (1.€., the vectors from
the zeros to 31), divided by the product of the lengths
of the pole vectors (1.e., the vectors from the pole to S
). The angle 1s the sum of the angles of zero vectors
minus the sum of the angles of pole vectors.




Example 9.12

Let

X(S):%, fRe{S}>—%. (9.71)
s+

The Fourier transform 1s X(s)
then, the Fourier transform 1s

1
jo+1/2 (9.72)

For this example,

s=jw °

X(jo)=



Example 9.12

The pole-zero plot for X(s) 1s :
shown in Figure 9.16. To jw +-%-
determine the Fourier transform

Im

s-plane

graphically, we construct the pole
vector as indicated. The ==
magnitude of the Fourier

transform at frequency w 1s the

nN—=

reciprocal of the length of the
vector from the pole to the point 5
jo on the imaginary axis. The ‘X (j 60)‘ =
phase of the Fourier transform 1s

the negative of the angle of the

vector. Geometrically, from

1

Re

o’ +(1/2)°

Figure 9.16, we can write L X(]a)) =—tan_ 2.



9.4.1 First-Order Systems

DO | )= x(t), H(jw)=——
t jot+1

T

The 1impulse response for such a system 1s

h(t) = le_”fu(t), (9.75)
T

ant its Laplace transform 1s

H(s) = : : iRe{S}>—l.
sT+1 T

(9.76)
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Im

s-plane
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9.4.1 First-Order Systems

Im h(t)

s-plane

Re

h(t) = le‘”fu(t),

r

Pole moves to the left corresponds to a decrease in time
constant, resulting in a faster decay of impulse response,
and a faster rise time in step response



9.4.2 Second-Order Systems

The impulse response and frequency response for the
system, originally given in egs. (6.37) and (6.33),
respectively, are

h(t) = Me® — e lu(t), 9.77)

where
c,=—Cw, +wm -1,
c,=—Cw, —w 1,
w

M=—=2
2. -1




9.4.2 Second-Order Systems

and

2
4

MO = o 20 Gayrar (978)

The Laplace transform of the impulse response is

2 2
Q Q

H(s)= s’ +2§a’)1ns+a),f i (S—Cl)(nS—Cz).
(9.79)




H(s)= @, o aq=—(o,to N -1,
(s—¢)(s—¢;) ¢, = —® 1?1,

§>1, c, and c, are real numbers
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H(s)= @, o aq=—(o,to N -1,
(s—¢)(s—¢;) ¢, =W — 1?1,

1>¢>0, c, and c, are complex numbers

Quality measure




9.4.2 Second-Order Systems

||

| H(jw) |




H(s)= @, o aq=—(o,to N -1,
(s—¢)(s—¢;) ¢, =0 —® 1?1,

1>¢>0, c, and c, are complex numbers




9.4.2 Second-Order Systems

- B

(b)

Figure 9.20 (a) Magnitude and (b) phase of the frequency response for a
second-order system with 0 < ¢ < 1.



9.4.3 All-Pass Systems

As a final 1llustration of the
geometric evaluation of the
frequency response, let us consider
a system for which the Laplace
transform of the impulse response
has the pole-zero plot shown 1n
Figure 9.21(a). Form this figure, 1t
1s evident that for any point along
the jw-axis, the pole and zero
vectors have equal length, and
consequently, the magnitude of
the frequency response is
constant and independent of

frequency.



s-plane - L
2
() -a E

0 |°
x/{\{g\1 ﬁxg

= a Re

The phase of the frequency response is 6, — 8, , or,
since 6, =7-0,

¢ H(jw)=r-20, ©-80)

From Figure 9.21(a), @, =tan"(w/a) , and thus,

CZH(ja)):ﬂ—Ztanl(Qj. (9.81)
a






9.5.1 Linearity of the Laplace
Transform

If
Ly with a region of convergence that
4(0) /() will be denoted as R1
And
. with a region of convergence that
X, (1) «——> X, (s) :
will be denoted as Rz
Then
ax, (¢) +bx, (1)« aX,(s)+bX,(s), with ROC  (9.82)

45 ) containing R (1R,.



Example 9.13

In this example, we illustrate the fact that the
ROC for the Laplace transform of a linear
combination of signals can sometimes extend
beyond the intersection of the ROCs for
individual terms. Consider

x(1) = x,(t) — x,(2), (9.83)



Example 9.13

Where the Laplace transforms of X,(¥) and X,(?)
are, respectively,

X(5)=——, Setsi>-1,
s+1
and
1
X,(s) = i1 Re{s} > —1.

(9.85)



Example 9.13

The pole-zero plot, including the ROCs for X,(s) and

X,(s) , is shown in Figures 9.22(a) and (b). From eq.
(9.82).

1 1 s+1 1

) = T T D612 (iDG12) s:2

(9.86)



Im Im Im

s-plane - s-plane

H Re

RN | M

=

&

|

>

-

=

&
_____M_——_——

(@ (b) (©
Thus, in the linear combination of X,(r) andX,(®) , the
pole at s = -1 is canceled by a zero at s =-1. The
pole-zero plot for X(s)=X,(s)-X,(s) is shown in Figure
9.22(c). The intersection of the ROCs for X,(s) andX,(s)
is Re{s} >—1. However, since the ROC is always
bounded by a pole or infinity, for this example the
ROC for X(s) can be extended to the left to be
bounded by the pole at s = -2, as a result of the pole-
zero cancellation at s = -1.



9.5.2 Time Shifting

If
x(t)<+—>X(s), with ROC =R,

then

x(t—t)«——>e " X(s), with ROC=R.
(9.87)

SR L EA AR



9.5.3 Shifting in the s-Domain

If
x(t)<+> X (s), with ROC =R,

Then
' x(t)«—>X(s—s,), with ROC=R+Rels,}. (9.88)
So=J®y
In this case, eq. (9.88) becomes
Ja)ofx(t) (—)X(S ]C()O) with ROC =R. (989)



9.5.4 Time Scaling

If

ROC =R,

with

x(t) <> X (),

ROC R, =aR.

Im

j, with
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9.5.4 Time Scaling

1 [
x(at)«+—>—X ij, with  ROC R =akR.
a\ \a
Thus, time reversal of x(?) results 1n a reversal of the

ROC. That 1s,
x(—t)«+t—> X(-s), with ROC=-R.

(9.91)
e R (R ) i A



9.5.5 Conjugation

! x(t)(L)X(S), with ROC = R, (9.92)
Then
x ()«+t>X'(s), withROC=R. (9.93)
HipE
Therefore,
X(s)=X"(s") when x(t) is real.
(9.94)

ax(t) A EERTE 0 T X (s)= X7 (s7)



_ | X(s)=X"(s")
9.5.5 Conjugation

Consequently, if x(t) is real x(t)=e"u(t)
and if X(s) has a pole or

zeroat s=s, (i.e., if X(s)

IS unbounded or zero ats =S

), then X(s) also has a pole

+e ' (cos3t)u(t).

I9m

or zero at the complex ol s-plan
conjugate point s=s, . |

For example, the transform i

X(s) for the real signal x(t)70 » e

Example 9.4 has poles at s
=1 * 3j and zeros at o
s=(=5% jA[71)/2 ,:i

I
|
l




9.5.6 Convolution Property

If
x, ()« X,(s), withROC=R,,
and

x, () <=>X,(s), withROC=R,,

Then
x, (1) * x, (1) «——> X, (s) X, (s), with ROC
containing R NR,.

(9.95)
P E R E



9.5.6 Convolution Property

In @ manner similar to the linearity property set
forth in Section 9.5.1, the ROC of X;(s)X,(s)
includes the intersection of the ROCs of X, (s)
and X,(s) and may be larger if pole-zero
cancellation occurs in the product. For

example, if |
X/(s)=——, Refs}>-2, (99
and S+2
2
X, (s) = il ,  Re{s}>-—I, (9.97)

s+1



9.5.7 Differentiation in the Time
Domain

If
x(t) <> X(s), withROC =R,
then

ax(t)
dt

>sX(s), withROC containing R.

(9.98)
I AN =}



9.5.7 Differentiation in the Time

Domain dax@)

dt
This property follows by differentiating both sides

of the inverse Laplace transform as expressed in
equation (9. 56) Specifically, let

x(6) = —— [ X (5)e" ds.
27 Yo

2t 55X(s), withROC containing R.

Then

axt) _ L o v s)evds. (9.99)
dt 27 o




9.5.8 Differentiation in the s-Domain

Differentiating both sides of the Laplace
transform equation (9.3), i.e.,

X(s)=[ x(t)e™dt,

we obtain

dX(s) st
== j_w(—t)x(t)e dt.




9.5.8 Differentiation in the s-Domain

Consequently, if

x(t)«—=—>X(s), withROC =R,

then
dX(s)

—tx(1) <>
(?) e

,  withROC =R.

(9.100)
siidorMEE (BERHBG M E B RS )



Example 9.14
dX(s)

—tx(t) <= . WithROC=R.

ds
Let us find the Laplace transform of

x(t) =te “"u(t).
Since

_ 1
e “u(t) - ,  Refs}>-a,
s+a

it follows from eq.(9.100) that

te “u(t)«~=—>— d [ : } : Rels} > —a.

ds| s+a _(S+a)2 ’

(9.101)

(9.102)



Example 9.14

In fact, by repeated application of eq. (9.100), we
obtain

2
t—e“”u(t)< CHEN 1 -, Refs}>-a, (9-103)
(s+a)
and, more generally,

e “u(t) - -,
(n—1)! (s+a)

Re{s} > —a.



9.5.9 Integration in the Time Domain

If
x(t)<£t—> X (s), withROC =R,
Then

|
jt x(t)dr <~t—>— X(s), with ROC containing
o s

_ RO {9Rels)> 0}
(9.106)

R



9.5.9 Integration in the Time Domain
[OO x(r)drt <—L—>§X (s),

This property 1s the inverse of the differentiation
property set forth in Section 9.5.7. It can be derived
using the convolution property presented in Section
9.5.6. Specifically,

j _tooX(f)d T =u(t)*x(1). (9.107)

IR R R R = 4



9.5.9 Integration in the Time Domain

e “u(t) > : ,  Refs}>-a,

From Example 9.1, with a =0, s+d

u(t) Lot Relsts> 0, (9.108)

A)

and thus, from the convolution property,

N L l ROC including 9109
() * x(0) > X (s), ROl 0) ( )



9.5.10 The Initial- and Final-Value Theorems

If x(t)=0 for t<0 and x(t) contains no impulses or
higher order singularities at the origin,

the 1nitial value x(0")—i.e., x(?) as t approaches zero
from positive values of z. Specifically the initial-
value theorem states that

x(07)=limsX(s), (9.110)

tIEEHE (]

§—>00

JSIBRR BRI R )



9.5.10 The Initial- and Final-Value Theorems

Also, 1t x(z) = 0 for ¢t < 0 and, 1n addition, x(z?) has a
finite limit as ¢ — «, then the final-value theorem

says that
lim x(%) = ling sX(s). (9.111)
[—>00 S—>

See Problem 9.53

BAEEHE (F

ISR BRI Y SHE )



08 +5s+12  X(1)= e u(t)
(s* +25+10)(s +2) +e' (cos3t)u(t).

The initial- and final-value theorems can be in
checking the correctness of the Laplace
transform calculations for a signal. For example,
consider the signal x(t) in Example 9.4. From
eq. (9.24), we see that x(0")=2 . Also, using eq.
(9.29), we find that

3 2
limsX (s) = lim =25 ¥125 5
§ o s=0 g7 + 457 +145+ 20

Example 9.16

which is consistent with the initial-value theorem
in eq. (9.110).



9.5.11 Table of Properties

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM % 9.1 # a4z R4 d
Laplace
Section Property Signal Transform ROC
x(1) X(s) R
x (1) Xi(s) R,
x5(1) X5(s) R,
9.5.1 Linearity ax|(t) + bx, (1) | aX,(s) + bX,(s) | Atleast R, N R,
9.52 Time shifting x(t — ty) e v X(s) R
95.3 Shifting in the s-Domain e x(1) X(s — 59) Shifted version of R (i.e., s is
in the ROC if s — 54 1s in R)
954 Time scaling x(at) i—le(f) Scaled ROC (i.e., s is in the
= ROC if s/a is in R)
9.5.5 Conjugation x*(1) X'(s") R
9.5.6 Convolution x1(2) * x5(1) X, (5)X5(s) At least R, N R,
9.5.7 Differentiation in the g—x(t) sX(s) At least R
Time Domain e
958 Differentiation in the —tx(t) ;X(s) R
s-Domain 3
t
95.9 Integration in the Time [ x(7)d(T) lX(s) At least R N {Re{s} > 0}
Domain —% .
.......................................... L o i B = e mmmm =
Initial- and Final-Value Theorems
9.5.10 If x(r) = 0 for 1 < 0 and x(#) contains no impulses or higher-order singularities at r = 0, then

x(0%) = lim sX(s5)

s—>oo

If x(¢) = O for t < 0 and x(¢) has a finite limit as t — >, then

;l-igi x(1) = !LIT((I) sX(s)




92 EAARR[EAHRER
TABLE 9.2 LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

9.6 Some Laplace Transform Pa

Transform
pair Signal Transform ROC
1 () 1 All s
2 u(t) % Refs} >0
3 —u(—1t) % Rels} <0
4 7w 2 Refs} > 0
G—=D1" 5"
n—1 l
5 T u(—r) = Refs} <0
5 1 _
6 e " u(t) = Rels} > —a
o 1 s
7 —e u(—1) TR Re{s} < —«a
8 I ) . Rels} > —a
e Gtay
!rkl B 1 3
9 - me u(—r) Ciar Refs} < —a
10 §(r—T) e~ All's
11 [cos worlu(r) =T Refs} > 0
sT 4+ w}
2 wy
12 [Slnw()f]u(f) m @e{s} >0
o s+a B
13 [e ' cos wyi]u(t) Gral 1ot e Rels} > —a
—at o @o _
14 [e™" sin wgt |u(r) Grario Rels} > —a
_ d"8(r) .
15 u,(ty = I s All s
16 u () = u(r)=--*u(r) iJ Refs} >0
—_— s

n times

IS



9.7 Analysis And Characterization of LTI
Systems Using The Laplace Transform

Specifically, the Laplace transforms of the input and
output of an LTI system are related through
multiplication by the Laplace transform of the
impulse response of the system. Thus,

LTIZ S e A ~ B~ FEZEFE Y7 LR HA R (R

Y(s)=H(s)X(s). (9.112)



1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

If the input to the LTI system 1s x(t)=e*, with s 1n the
ROC of H(s), then the output will be H(s)e".

et 1s the eigenfunction of the system with eigenvalue
equal to the Laplace transform of the impulse
response h(t).

H(s) 1s also referred to as “system function” or
“transfer function”.

If s=jo 1s included 1n the ROC, H(jo) 1s the
frequency response of the LTI system.



9.7.1 Causality

For a causal LTI system, the
impulse response h(t) 1s zero for
t<0, and thus 1s right-sided.

From Sec. 9.2, the ROC associated
with the system function for a
causal system 1s a right-half
plane to the right of the rightmost
pole.

The converse statement 1s not
always true. It 1s only true for a
system with rational H(s) “system
function”.

—X

Im

~ s-plane

2

il W . : d . i 45
] R N S s Y X
LT 7 . . =1
o L w1 04 b r g ;
’ i . .
‘ - gl 1 - -



Example 9.17

Consider a system with impulse response
h(t)=e 'u(t). (9.113)

Since A(t) # 0 for ¢ <0, this system 1s causal. Also,

the system function can be obtained from Example
9.1:

H(S):ﬁ, Refs}> 1. 9.114)



Example 9.17

In this case, the system function 1s rational and the
ROC 1n eq. (9.114) 1s to the right of the rightmost
pole, consistent with our statement that causality for
systems with rational system functions is equivalent
to the ROC being to the right of the rightmost pole.



9.7.1 Causality

Im
In an exactly analogous
manner, we can deal Wlth the s-plane
concept of anticausality. A
system 1s anticausal 1f its
. |
impulse response A(t) = 0 for X-X

t > 0. Since in that case A(?) Re
would be left sided, we
know from Section 9.2 that
the ROC of the system
function H(s) would have to (c)
be a left-half plane to the left

most pole




9.7.2 Stability

The ROC of H(s) can also be related to the stability
of a system. As mentioned in Section 2.3.7, the
stability of an LTI system 1s equivalent to its impulse
response being absolutely integrable, in which case
(Section 4.4) the Fourier transform of the impulse
response converges.

An LTI system is stable if and only if the ROC of
its system function H(s) includes the entire jw-
axis [i.e., Rels}=01.



Example 9.20

Let us consider an LTI system with system function

H(s)=— "1 (9.119)
(s+1)(s=2)

Since the ROC has not been specified, we know from
our discussion 1n Section 9.2 that there are several
different ROCs and, consequently, several different
system 1mpulse responses that can be associated with
the algebraic expression for H(s) given in eq. (9.119).



If, however, we have information about the causality
or stability of the system, the appropriate ROC can
be 1dentified. For example, if the system is known to
be causal, the ROC will be that indicated in Figure
9.25(a), with impulse response

h(t) = (—e +;eztju(t) (9.120)

Im

s-plane

E : B s—1
SRE e H(S)_(sﬂ)(s—z)'




Note that this particular choice of
ROC does not include the jw-
axis, and consequently, the
corresponding system is
unstable (as can be checked by

Re

observing that h(t) is not
absolutely integrable ). On the
other hand, if the system is
known to be stable, the ROC is
that given in Figure 9.25(b), and s—1

the corresponding impulse (s+1)(s—2)
response is

h(t) = %etu(t) - % e’'u(—t),

which is absolutely integrable.

x____.__
.-*q) iR
—————— X —————

————




Example 9.20

Finally, for the ROC in Figure 9.25(c), the

system is anticausal an

d unstable, with

2 1
h(t)=— Ze " +—e” |u(-1).
(t) (3 3 j (=)
Im

|

[ s-plane

:

|

X—1—O-X




9.7.2 Stability

A causal system with rational system function H(s) 1s
stable 1f and only 1if all of the poles of H(s) lic in the

left-half of the s-plane—i.¢., all of the poles have
negative real parts.

_E'ﬂﬁ ﬁﬁ 185k SLSBcH(s)enF) % kS F P e
FH(s)i 3 sz itsT g iz LT g o






Example 9.21
e 'u(1)(9.113) H(S)Iﬁ, Rels} >-1(9.114)

Consider again the causal system in Example 9.17. The impulse
response 1n eq. (9.113) is absolutely integrable, ad thus the
system 1s stable. Consistent with this, we see that the pole of
H(s) ineq. (9.114) 1s at s = -1, which 1s in the left-half of the s-
plane. In contrast, the causal system with impulse response

h(t) =e”'u(t)

1s unstable, since /(%) 1s not absolutely integrable. Also, in this
case
1

H(S):S_—Z, ERQ{S}>2,

so the system has a pole at s = 2 in the right half of the s-plane.



9.7.3 LTI Systems Characterized by Linear
Constant-Coefficient

» FT can be applied to obtain the frequency response of
an LTI system characterized by a linear constant-
coefficient differential equation.

* LT can be applied 1n a similar way



Example 9.23

Consider an LTI system for which the input x(z) and
output y(z) satisty the linear constant-coefficient
differential equation

dy(?)
dt

+3y(t) = x(2). (9.126)



Example 9.23 o

dy(t) _ “
" +3y(t)-)€(t). with ROC containing R.

>5X(5s),

Applying the Laplace transform to both sides of eq.
(9.126), and using the linearity and differentiation
properties set forth in Sections 9.5.1 and 9.5.7,
respectively [(egs. (9.82) and (9.98)], we obtain the

algebraic equation

sY(s)+3Y(s)=X(s). (9.127)



Example 9.23 Y(s)=H(s)X(s).

Since, from eq. (9.112), the system function is

Y(s)

H(S):X(s)’

we obtain, for this system,

1
s+3

sY(s)+3Y(s)=X(s).

H(s)=

(9.128)



Example 9.23

This, then, provides the algebraic expression for the
system function, but not the region of
convergence. In fact, as we discussed in Section
2.4, the differential equation itself is not a complete
specification of the LTI system, and there are, in
general, different impulse responses, all consistent
with the differential equation. If, in addition to the
differential equation, we know that the system 1s
causal, then the ROC can be inferred to be to the
right of the rightmost pole, which 1n this case
corresponds to ERe{S} >3 .



1
s+3

Example 9.23  H(s)=

If the system were known to be anticausal, then
the ROC associated with H(s) would be ®e{s}< -3
. The corresponding impulse response in the
causal case Is

h(t) =e'u(t), (9.129)

whereas In the anticausal case it is

h(t) =—e'u(—t). (9.130)



9.7.3 LTI Systems Characterized by Linear
Constant-Coefficient

Consider a general linear constant-coefficient

differential equation of the form

Noodfy@) & dix()
=>b :
kZ:(;ak ik kZZ(; Tk (9.131)

NFE & M % (R Bcpc s = 42



9.7.3 LTI Systems Characterized by Linear
Constant-Coefficient

Applying the Laplace transform to both sides and
using the linearity and differentiation properties
repeatedly, we obtain

(ﬁ: aksk]Y(S) = (i kaij(S), (9.132)
or (M )
3 Zbksk >
H(s)=+—"—F
(5) [$ 0| (9.133)
k=0 '

NFEL T Z e HYRSAL LAEER G T R AR B (7



9.7.3 LTI Systems Characterized by Linear
Constant-Coefficient

Thus, the system function for a system specified by a
differential equation 1s always rational, with zeros at
the solutions of

M
Zkak -0 (9.134)
k=0

IV E R e (9.134) = W(BIH (s)1Y 73T /%0) -

and poles at the solutions of

N
Zaksk _ O (9135)
k=0

S e (9. 135) =B H(s) 173 8E F50) -




Example 9.24

An RLC circuit whose capacitor voltage and inductor
current are initially zero (causual) constitutes an LTI
system describable by a linear constant-coefficient
differential equation. Consider the series RLC circuit
in Figure 9.27. Let the voltage across the voltage
source be the input signal x(t), and let the voltage
measured across the capacitor be the output signal

y(t).




<Zbksk\>
Example 9.24 H#®&)=17—
<Zaksk>

Equating the sum of the voltages across the resistor,
inductor, and capacitor with the source voltage, we
obtain

RCYW L1 d2y2(¢) O =xn). 10
dt dt
Applying eq. (9.133), we obtain
1/LC
H(s)=—
S“+(R/L)s+({/LC) (9.137)
1/LC

(S ¢, )(s— Cz) __(R/L)+\/(R/L) -4 /LC



1/LC
s’+(R/L)s+(1/LC)
1/LC
— ¢, =—(R/L)£(R/L) —4/LC
(s—c)(s—¢,)
As shown 1n Problem 9.64, if the values of R, L, and
C are all positive, the poles of this system function
will have negative real parts, and consequently, the

system will be stable.
R L

T —
+ +
x(t) C == ¥

Figure 9.27 A series RLC circuit.

H(s)=




Example 9.25

Suppose we know that if the input to an LTI
system is

x(t) =e”u(t),

then the output is

Y6 =le" = ().
JEL T A B - ST 2GR A
B TR Rl -
EAIX() By ()




Example 9.25

As we now show, from this knowledge we can
determine the system function for this system and
from this can immediately deduce a number of other
properties of the system.

Taking Laplace transforms of x(?) and y(?), we get

X(s)= ﬁ, Rels}> -3,

and

1
s+ (s+2)

SKIFALRESIAX (s) J2 Y (s) -

Y (s)

Rels}> 1.



Example 9.25 Y(s)=H(s)X(s).

From eq. (9.112), we can then conclude that

Y(S) s+3  s+3
X(S) (S+1)(S+2) s*+3s+2

H(s)=

RACBEGRTNELH(s) -



Example 9.25

Furthermore, we can also determine the ROC
for this system. In particular, we know from the
convolution property set forth in Section 9.5.6
that the ROC of Y(s) must include at least the
intersections for the ROCs of X(s) and H(s).
Examining the three possible choices for the
ROC of H(s) (i.e., to the left of the pole at s = -2,
between the poles at -2 and -1, and to the right
of the pole at s =-1), we see that the only
choice that is consistent with the ROCs of X{(s)

and Y(s) is fRe{S}> 1.




+3
s2+3s+2

Example 9.25 H@s)=-

Since this is to the right of the rightmost pole of
H(s), we conclude that H(s) is causal, and since
both poles of H(s) have negative real parts, it
follows that the system is stable. Moreover,
from the relationship between egs. (9.131) and
(9.133), we can specify the differential equation
that, together with the condition of initial rest,
characterizes the system:

d’y(@) 3 D) _ dx(?)
2 . +2y(t) = . +3x(1).

HH(s) 7B RHAREU R SHI B AT R o7 771




9.7.5 Butterworth Filters

An Nth-order lowpass Butterworth
filter has a frequency response the
square of whose magnitude is given
by T

i1
l+(jo/ jo,) g:: 1
(9.140) B .
T e

NIRRT AR PR
fEB(w)ie (9.140) = -




9.7.5 Butterworth Filters

where N 1s the order of the filter. From eq. (9.140),

we would like to determme the system function B(s)
that gives rise to |B(J a))\ We first note that, by
definition,

B(jo)| =B(jo)B'(jo). 9.141)



9.7.5 Butterworth Filters

If we restrict the impulse response of the
Butterworth filter to be real, then from the property
of conjugate symmetry for Fourier transforms,

so that

1
1+(jo/! jo,)*"

B(jo)B(—jw) = (9.143)



9.7.5 Butterworth Filters

Next, we note that B(s)
from eq. (9.143),

wjo =B(j®), and consequently,

1 (9.144)

BB = T T o

The roots of the denominator polynomaial
corresponding to the combined poles of B(s)B(—s)
are at

s=(-)""(jo,). 9.145)



1

9.7.5 Butterworth Filters B(S)B(—S)=1+(S/jwc)m-

Equation (9.145) 1s satisfied for any value s = § »
for which

\Sp\ ~ @ (9.146)
and
Z s _z@ksD) 7 , k an integer; (9.147)
P 2N
that 1s
’ 2k +1
s, =0, exp(j{ﬂ(zj\;_ )+7Z/2D. (9.148)

T AR B R



9.7.5 Butterworth Filters

| T(2k+1)
Sp:a)cexp(][ N +7z/2D.

In general, the following observation can be made
about these poles:

1. There are 2N poles equally spaced in angle on a
circle of radius @, 1in the s-plane.

2. A pole never lies on the jw-axis and occurs on the
o-axis for N odd, but not for N even.

3. The angular spacing between the poles of B(s)B(-s)
1s /N radians.



Im

9.7.5 Butterworth Filters

Im

B(s)B(—s) =

Im

Figure 9.28 Position of the poles of B(s)B(—s) for N = 1,2,3, and 6.

1

1+(s/ jo, )™



9.7.5

Butterworth Filters

Im I9m
N=1 N=2
- jwc ’f" j(l)c
/’ 'X
/ /
X )
==z \ G{.e W ‘\ (Re
\\"h X -~
Im
N=3
x—-" j(ﬂc
/
/
X
el Re
\
\X-._n

Figure 9.29 Position of the poles of B(s) for N = 1, 2, and 3.




9.7.5 Butterworth Filters

In Figure 9.29 we show the poles associated with B(s)
for each of these values of N. The corresponding
transfer functions are:

N=1: B(s)=—2_. (9.149)

b

S+ @,

2
)

N=2: B(s)= C (9.150)

(s+awe’ ") s+we’'Y)

2
)

C

s> +20.5 + @’

>



9.7.5 Butterworth Filters

3
)]

N =73: B(s)= :

(s+m.)(s+ a)cej(”/3))(s + a)ce_j(”/3))

3
)]

C (9.151)

- 2 2
(s+w)(s +o,s+w))

0)3

C

s’ +2w.5° + 2w’ s + @



9.7.5 Butterworth Filters

Specifically, for the foregoing three values of &V, the
corresponding differential equations are:

N=1: d);l(tt) +w y(t) = @ x(1); (9.152)

N = 2: dzyz(t) +2, ) + @, y(t) = 0, x(t); (9.153)
dt dt

N — 3: d3y(t) +2wc dzy(t) +2C()02 dy(t) +C()3y(t) _ C()C?’)C(Z‘). (9154)

dt’ dt? dt



9.8 System Function Algebra and Block
Diagram Representations

The use of the Laplace transform allows us to replace
time-domain operations such as differentiation,

convolution, time shifting, and so on, with algebraic
operations.

RS A < R - BRI B
i R B o O] PR B+ LR LR LA R
AT -




9.8.1

System Functions for

Interconnections of LTI Systems

The impulse response of the overall system is

h(t) = h (£)+ h, (1), (9.155)

and from the linearity of the Laplace transform,

H(s)=H,(s)+ H,(s). (9.156)

EXSN

(% RIS A




9.8.1 System Functions for
Interconnections of LTI Systems

Simila

rly, the impulse response of the series

interconnection in Figure 9.30(b) is

h(t) = hy (1) * hy(2), o

and the associated system function is

H(s)=H (s)H,(s). (9.158)

EXR

25 > Il 2R & 2 -




9.8.1 System Functions for
Interconnections of LTI Systems

hq(t)
H(s)

I ho(t)
Ho(s)

hq(t ho(t
(0 = 1 (5) ] rots) > ¥

Figure 9.30 (a) Parallel intercon-
nection of two LTI systems; (b) series
(b) combination of two LTI systems.



+ t
x(t) i E‘I({ts}) + > y(1)
z(t) | hyt)
Hy(s)

While analysis of the system 1n the time domain 1s not
particularly simple, determining the overall system
function from input x(t) to output y(t) is a

straightforward algebraic manipulation. Specifically,
from Figure 9.31,

Y(s)=H,(s)E(s), (9.159)
E(s)=X(s)—Z(s), (9.160)

and

Z(s)=H,(s)Y(s), oon



9.8.1 System Functions for
Interconnections of LTI Systems

from which we obtain the relation

Y(s)=H ()| X()-H,(9)Y(s)},  (9.162)

YS) sy HO)

X(s) I+ H,(s)H,(s) (9-163)

BRI PE BT BE A 2R ET R L



Example 9.28

Consider the causal LTI system with system

function
1

His)= s+3

From Section 9.7.3, we know that this system
can also be described by the differential
equation

dy(t)
dt

F3y(t) = x(2),



> Y(t)

w|—=

_ W N
X

dfft’) £3(0) = x(1),

-3 |-

()
together with the condition of initial rest. In

Section 2.4.3 we constructed a block diagram
representation, shown in Figure 2.32, for a first-
order system such as this. An equivalent block
diagram (corresponding to Figure 2.32 with a = 3
and b = 1) is shown in Figure 9.32(a). Here, 1/s
Is the system function of a system with impulse
response u(t), i.e., it is the system function of an
integrator.



+ e(t)
A 211({)[3])
‘ 2(t) ho(t)

Ha(s)

> Y(1) ai] J-;@— L0 % —y > y(t)
(b)
> y(1)
H (s) 1/s ]

) 1+ H (s)H,(s) C14+3/s  s+3



Example 9.30

Consider next a causal second-order system
with system function
1 1

H(S):(s+1)(s+2):s2+3s+2' (9.165)

The input x(f) and output y(t) for this system
satisfy the differential equation

2
URIOINNCI0
dt dt

+2y(t) = x(2). (9.166)



w|—

L@ o 1 T L > y(t)

=i =g

£

By employing similar ideas to those used in the
preceding examples, we obtain the block
diagram representation for this system shown
iIn Figure 9.34(a). Specifically, since the input
to an integrator is the derivative of the output of
the integrator, the signals in the block diagram

2
are related by d )/(t) dy (t)+2y(t) x(2).

ro=212, i d
=e(t)+31(t)+2y(¢)
Jf d e(t) =—=3f(t)—2y(t)+x(¢)

df (t) _d”y()

e(t) =



Example 9.30

x(t) e(t)
— O

wn|—

SO NN

1 f(t)
S
-
+
(a)
& :
T —

=

y(t)



Example 9.30

___,®_, |
S
A
—1  |r—
x(t)
-1
~(—] 1 4
S
L

(c)

Figure 9.34 Block diagram representations for the system in Exam-
ple 9.30: (a) direct form; (b) cascade form; (c) parallel form.



x(t) () L

n|—=

,.( )__). 1 > y(t)

.y,
L o Lo
(b)
The block diagram in this figure is sometimes
referred to as a direct-form representation, since
the coefficients appearing in the diagram can be
directly identified with the coefficients appearing in
the system function or, equivalently, the differential
equation. Other block diagram representations of
practical importance also can be obtained after a
modest amount of system function algebra.
Specifically, H(s) in eq. (9.165) can be rewritten as

JARRB RN




%

—i{-t—]-—. Y“}

L——0O— ¢ f

L

(c)
Alternatively, by performing a partial-fraction

expansion of H(s), we obtain

1 1
H(S) — o ’
s+1 s+2
which leads to the parallel-form representation

depicted in Figure 9.34(c).




9.9 The unilateral Laplace Transform

Analyzing causal system by LCCDE with nonzero
initial conditions (not initial rest).

The unilateral Laplace transform of a continuous-
time signal x(t) is defined as

A e
X(s)=[ x(edt, (9170

ERAE 11T [ AL TE 5%



9.9 The unilateral Laplace Transform

where the lower limit of integration, 0™ ,

fHo MRA 07 -

Laplace transform:

x(t) «L— X(s) = UL{x(?)} (9.171)

HRFIE R B B LT PR B AL S T 0



Example 9.33

Consider next
X(t) _ e—a(t+1)u(t 4 1) (9174)

The bilateral transform X(s) for this example can
be obtained from Example 9.1 and the time-
shifting property (Section 9.5.2):

A)

X(s)=——, WRels}>-a.  (9.175)
S+d




Example 9.33

By contrast, the unilateral transform is

X(s) = _‘m e ““Dy(t+1)e " dt

= [ e ds (9.176)
1
=e " ‘R —a.
e o e{s} >—a
X(s)= ¢ , Re {S} > —q.

S+dad



Example 9.33

Thus, in this example, the unilateral and bilateral
Laplace transforms are clearly different. In fact,
we should recognize X(s) as the bilateral
transform not of x(t), but of x(t)u(t), consistent
with our earlier comment that the unilateral
transform is the bilateral transform of a signal
whose values for t < 0 have been set to zero.



Example 9.36

Consider the unilateral transform

s?—3

s+2

X(s) = (9.181)

Since the degree of the numerator of X(s) is not
strictly less than the degree of the denominator,
we expand X(s) as

C
s+2 (9.182)

X(s)=A+ Bs+



Example 9.36 X(s)= A+Bs+% X(s) =~ _3.

s+2

Equating egs. (9.181) and (9.182), and clearing
denominators, we obtain

s°=3=(A+Bs)(s+2)+C, (9.183)

and equating coefficients for each power of s
yields

1

X(s)=—2+s+ :
s+2 (9.184)




Example 9.36

with an ROC of iRe{s}> —2 . Taking inverse
transforms of each term results in

x(t) =28 +u,(t)+e'u(t) for t>0".

(9.185)



9.9.2 Properties of the Unilateral
Laplace Transform

Table 9.3 summarizes these properties. Note
that we have not included a column explicitly
identifying the ROC for the unilateral Laplace
transform for each signal, since the ROC of any
unilateral Laplace transform is always a right-
half plane.

R9.3MHEEN REMATIEE - NE TR
ROC.2 A5 - F i » i ROCHH&HES -

7




9.9.2 Properties of the Unilateral
Laplace Transform

TABLE 9.3 PROPERTIES OF THE UNILATERAL LAPLACE TRANSFORM

Property Signal Unilateral Laplace Transform
x(r) X(s)
A} o S N2 S xi(1) g(.ﬁ)
N — x:(1) 2(s)
JEEGREAEE. MR
\ }E E/\j L %U:lj:a Linearity ax, (1) + bx>(D) ad;(s) + bAs(s)
" E‘ j—\E Shifting in the s-domain e x(r) XL(s — 50)
A} MIZ /\
RNt <0 —
Time scaling x(at), a=>0 . ff(—)
_ a \a
x, (1) Fex, (1) =0
Conjugation x* (1) x *(5)
Convolution (assuming x1(1) * x2(0) A1) ()
that x;(r) and x,(?)
are identically zero for
t<0)
Differentiation in the time dix(r) sX(s) — x(07)
domain f
: i i ) d
Differentiation in the —1x(r) s X(s)
s-domain &
Integration in the time f x(T)dT lf)C(s)
domain h 2

Initial- and Final-Value Theorems
If x(r) contains no impulses or higher-order singularities at + = 0, then
x(0") = limsX(s)

}ing x(n = ]mg sX(s)




9.9.2 Properties of the Unilateral
Laplace Transform

The convolution property for unilateral
transforms also is quite similar to the
corresponding property for bilateral transforms.
This property states that if

x,)=x,(t)=0 forall (<0, (9.186)
then

X, () * x, (1) «—— X, ()X, (5). (9.187)



9.9.2 Properties of the Unilateral
Laplace Transform

An example of this is the integration property in
Table 9.3: If x(t) = 0 for t <0, then

| " X()dr = x(0) *u(t) <> X(5)U(5) = - X(s)
0 S

(9.188)



. ibksk S
Example 9.37 H®O=t7—7
1> ast
Suppose a causal LTI system is described by
the differential equation

d’y(t) ., dy() _
A7’ +3 Jr +2y(2) = x(2),

(9.189)

together with the condition of initial rest. Using
eq. (9.133), we find that the system function for
this system is

1

M= a2 (9.190)




Example 9.37

Let the input to this system be x(t) = au(t). In this
case, the unilateral (and bilateral) Laplace

transform of the output y(i) is

o
s(s+1)(s+2)
al2 o «al?

= — + :
s s+1 s+4+2

Applying Example 9.32 to each term of eq.
(9.191) yields

Y(0) = aB— evle }u(t). (9.192)

Y(s)=H(s)X(s) =
(9.191)




9.9.2 Properties of the Unilateral
Laplace Transform / i / (s - / i

Consider a signal x(t) with unilateral Laplace
transform X(s). Then, integrating by parts, we
find that the unilateral transform of dx(t)/dt is
given by

on ax(t) e 'dt = x(t)e™
0" dt

(())O— n S-"OOO x(t)e—stdt (9 1 93)
=s5X(s)—x(07).

(9.193) K2(9.194) = 1 > BREAT R EEHALE
BRSNS T B WAaERH -




9.9.2 Properties of the Unilateral
Laplace Transform

Similarly, a second application of this would
yield the unilateral Laplace transform of

d’x(t)/dt* | i.e.
s°X(s)=sx(07)=x'(07), (9.194)

L(x (£))=X (s)=sX(s)=x(0")
L(x (1)=sX(s)—x (07)=5"X(s)—sx(07)—x (07)



Example 9.38 3% +20=x00189)

B EER T B RR  — B SRIEEEHIWAG
{H NEVER TR AR T TR ©

Consider the system characterized by the
differential equation (9.189) with initial
conditions

yO)=pg, yO)=r. g,



Example 9.38 d;ytgt) +3 dil(;) +2(6) = x(1)(9.189)
L(x(2))=X(s)=sX(s)—x(07)

L(x (£)=s5"X(s)—sx(07")=x (07)

Let x(t) = au(t). Then, applying the unilateral
transform to both sides of eq. (9.189), we obtain

S2Y(s)— fis —y +3sY(s) =38 +2Y(s) = &,
S

(9.196)
or

Y(s) = S(s+3) n /4 + o ,
(s+D(s+2) (s+D(s+2) s(s+D(s+2) (9197)

where Y(s) is the unilateral Laplace transform of

y(t).



Y(s)= B(s+3) N ¥ o o

T 5+D(+2)  4D(5+2)  serl)s+2) Y(S)=H(S)X(S)=S(S D12)

_a/2_ a +a/2
S s+1 s+2°

Referring to Example9.37 and, in particular, to eq.
(9.191), we see that the last term on the right-hand
side of eq. (9.197) is precisely the unilateral Laplace
transform of the response of the system when the
initial conditions in eq. (9.195) are both zero (B =y
=0 ). Thatis, the last term represents the response
of the causal LTI system described by eq. (9.189)
and the condition of initial rest. This response is
often referred to as the zero-state response—i.€.,
the response when the initial state (the set of initial
conditions in eq. (9.1995)) is zero.



Y(s)= B(s+3) N ¥ o o

T 5+D(+2)  4D(5+2)  serl)s+2) Y(S)=H(S)X(S)=S(S D12)
al2 « +a/2

S s+1 s+2
An analogous interpretation applies to the first

two terms on the right-hand side of eq. (9.197).
These terms represent the unilateral transform
of the response of the system when the input is
zero (a =0). This response is commonly referred
to as the zero-input response. Note that the
zero-input response is a linear function of the
values of the initial conditions (e.g., doubling the
values of both 8 and y doubles the zero-input
response).




Example 9.38

For example, ifa =2, =3, and y = -5, then
performing a partial-fraction expansion for eq.
(9.197) we find that

vl L3 (9.198)
s s+1 s+2

Applying Example 9.32 to each term then yields

y(O) =[1—e" +3e X (@) fort>0.  (9.199)



9.10 Summary

» Laplace Transform and its relation with FT

= ROC and properties

* Geometric Evaluation of Frequency Response
" Properties of LT

= (Causality and Stability from ROC

* Solving LCCDE using LT

» Unilateral LT handling non initial rest condition



