Chapter 7
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Is this system invertible?

" y[n]=x[2n] (homework 1)

y[n] M x[n] for all signal x[n]
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/.0 Introduction

Under certain conditions, a continuous-time signal
can be completely represented by and recoverable
form knowledge of its values, or samples, at points
equally spaced in time. This somewhat surprising
property follows from a basic result that 1s referred to

as the sampling theorem.

Much of the importance of the sampling theorem also
lies 1n 1ts role as a bridge between continuous-time

signals and discrete-time signals.



In many contexts, processing discrete-time signals is
ore flexible and is often preferable. This 1s due to
the dramatic development of digital technology over
the past few decades, resulting 1n inexpensive,
lightweight, programmable, easily reproducible

discrete-time system.



7.1 Representation of A Continuous-Time Signal
by ITS Samples: The Sampling Theorem

In general, in the absence of any additional conditions
or information, we would not expect that a signal
could be uniquely specified by a sequence of equally

spaced samples.

For example, x,(t), X,(t), and x4(t) all have the same

samples

x,(kT) = x,(kT) = x, (kT).



7.1 Representation of A Continuous-Time Signal
by ITS Samples: The Sampling Theorem

x,(kT) =x,(kT) = x,(kT).

x3(t) X (t) Xo(t)

e 1 b =4 3 -3T 0 T 2T 2T t

Figure 7.1 Three continuous-time signals with identical values at integer
multiples of T.



7.1.1 Impulse-Train Sampling X4[n]=x(Tn)

The periodic impulse train
p(t) is referred to as the ot

sampling function, the period y Té} -

T as the sampling period,
and the fundamental
frequency of p(t), o, =27/T ,
as the sampling frequency.
In the time domain, |

x,(t)=x(t)p(t), 1) b A |

where °

p(t) = i5 (t—nT). 1‘1 T ¥



p(t) = §:5(t—nT).

7.1.1 Impulse-Train Sampling

the impulses equal to the samples of x(?) at intervals
spaced by T; that 1s,

x, ()= f:x(nT)5(t_nT). (7.3)

From the multiplication property (Section 4.5), we
know that

X, (jo) === [ "X (oP(i@-0pe. (7

|

x, (1) =x() p(2),



The FT of p)= 3 8(t—nT).

n=—o

« FSof pt)= 3 8(t-nT).

n=—0

1TJ/2 T ) ]
a, =— t)e " = — jzé'te_ja’st:
k T p(?) T (2)

-T/2 -T/2 T
* In Example 4.6 we know

Y a.e’ o ) 2ra,0(j(0—ko,))

k:—OO k:—oo

= Theretfore,
27

P(j@)==" 2, 8(j(@—ko))(7.5)

k=—0o0



P(jo)="2 Y 8(0-ko,)
k=—00
X, (jo) =~ X(jo)* P(jo)

z% > X(jo)*8(j(o-ka,))

k=—00

Since convolution with an impulse simply shifts a signal

X(joy*5(j(o-w,))=X(j(o-,))
It follows that



X (jo) = — X(jo)* P(jo)

27T /\

R i — " dpy w
—ZX( (0~ ka,)), |
P(jw
k——oo z_wj
.
In Figure 7.3 (¢), Y T * T Y T
~2us Wy 0 W 205 3w,
®,, < (a)s — a)M) or 6

equivalently, o, >2w,,
and thus there 1s no

Xpljw)

shifted replicas of
X(jw), whereas 1n
Figure 7.3(d),

with @, <2m,, there

gverla;::) between the /\ /\ /T\ /\ /\ /\
{ws

1s overlap.
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7.1 The Sampling Theorem

Sampling Theorem:

Let x(¢) be a band-limited signal with X(jw)
=0 for|®|>®y . Then x(#) is uniquely
determined by its samples x(nT), n =0, 1,
12,...,1f

0 >20,,

where 27T
a = ——.

T



Given these samples, we can reconstruct x(?) by
generating a periodic impulse train in which
successive impulses have amplitudes that are
successive sample values. This impulse train 1s

then processed through an 1deal lowpass filter with
gain T and cutoff frequency greater than @,, and

less than @, —w,, . The resulting output signal will
exactly equal x(7).

x[n]=x(nT) 4“ PR %p(t)

-

x(t)




+

Sampling o) = 3 8¢t — nT) Reconstruct
x(t) —p®iﬁ}—> H(jw) > x, (1)
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7.1 Representation of A Continuous-Time Signal
by ITS Samples: The Sampling Theorem

The frequency 2®,, , which, under the sampling
theorem, must be exceeded by the sampling
frequency, 1s commonly referred to as Nyquist rate.

Note that 1deal filter will be approximated by a
nonideal filter in practice. Obviously, any such
approximation in the lowpass filtering stage will

lead to some discrepancy between x(?) and x,(#) in
Figure 7.4 or, equivalently, between X(jw) and X (jw)
. We will 1gnore this in some of our discussion

later.



7.1.2 Sampling with a Zero-order Hold

In practice, narrow & large-amplitude pulses, which
approximate impulses, are hard to generate and
transmit. It 1s much easier to generate “zero-order
hold” signals as shown below.

X(t) Zero-order | Xo ()

hold

Figure 7.5 Sampling utilizing a zero-order hold.



The reconstruction of x(?) from the output of a zero-
order hold can again be carried out by lowpass
filtering. However, the lowpass filter no longer
requires a constant gain in the passband.

/-\/\ x(t) XO (t) g

Zero-order

hold

hg (1) =T
Xpt) < Nig




ho (1) A )
231n(wT/2) (7.7)

0 Tt — @ =

p(t) :
|
I
|
t) hr 1
) —— (Y2 : %l W O
: — H, (jw)
:
|
|

this requires that

eja)T/2H(jw)
2sin(w1'/2) (7.8)
Q)

H,(jo)=




7.1 Representation of A Continuous-Time Signal
by ITS Samples: The Sampling Theorem

| H; (jo) |

-,

e]a)T/ZH(ja))

H.U0)=5g1ar2)

Q

Figure 7.8 Magnitude and phase
for the reconstruction filter for a zero-
order hold.



7.1 Representation of A Continuous-Time Signal
by ITS Samples: The Sampling Theorem

In fact, zero-order hold 1s an adequate approximation
of the original signal by itself, without any additional
lowpass filter. It can be consider as a very coarse
interpolation between sample values. Next, we will
discuss other forms of interpolations.




7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation

Linear interpolation




7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation
x, ()= Zx(nT)5(t—nT).

Sampling as interpolation.

The interpretation of the reconstruction of x(?) as a
process of interpolation becomes evident when we
consider the effect in the time domain of the
lowpass filter in Figure 7.4. In particular, the output

5 O=x,0*h0)

or, with x,(¢) given by eq. (7.3),

v ()= Y x(nThe—nT) (70,



For the 1deal lowpass filter H(jw) in Figure 7.4,

ht) = . T sin(w,t)
- Tt ’ (7.10)

so that

Y (f) = ix(nT)a)Tsin(a)c(t—nT)).

: 7.11
7T a)c(t—nT) D

this 1s referred to band-limited interpolation.




7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation

2sin(oT /2)

H,(jo)=e """ (7.7)

-€«— |deal interpolating
filter

Zero-order ——»,
hold




7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation
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7.2 Reconstruction of A Signal From ITS

Samples Using Interpolation

Figure 7.12 (a) The original pictures of Figures 6.2(a) and {g) with impulse sam-
pling; (b) zero-order hold applied to the pictures in {a). The visual system naturally
introduces lowpass filtering with a cutoff frequency that decreases with distance.
Thus, when viewed at a distance, the discontinuities in the mosaic in Figure 7.12{(h)
are smoothed; (c) result of applying a zero-order hold after impulse sampling with
one-fourth the horizontal and vertical spacing used in (a) and (b).

A% 15 & 3t A K
TREEMEN
A EW 1448
HE= -



7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation

If the crude interpolation provided by the zero-order
hold 1s insufficient, we can use a variety of smoother
interpolation strategies, some of which are known
collectively as higher order holds. In particular, the
zero-order hold produces an output signal, as in
Figure 7.5, that 1s discontinuous.




7.2 Reconstruction of A Signal From ITS

Samples Using Interpolation

H(jw) =

sin(wT/2)

T

1st-order hold = linear interpolation.

The impulse response of a linear interpolation
IS a triangular function

w/2

(7.12)




/.2 Reconstruction e

of A Signal From ITS  xo —@=2{ 3,

Samples Using
Interpolation

1t-order hold = linear
interpolation. rd 1 T1 “"{ ] T ‘
The impulse (b) '
response of a linear n(y
interpolation is a A
triangular function - -
h(t). "”

1 [sin(@T/2)
T, w/2 |

H(jw)=

(d)



7.2 Reconstruction of A Signal From ITS
Samples Using Interpolation

x,(t)

H(jw)=

First-order
hold
o |

Ideal interpolating
filter

N

(d)

Hijw)

T
g 0 g
2 2

w, W

1 [sin(@wT /2)
Il ow/2 |

Figure 7.13 Continved (d) first-
order hold applied to the sampled sig-
nal; (e) comparison of transfer function
of ideal interpolating filter and first-
order hold.
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7.3 The Effect of Undersampling: Aliasing

When o, <2e, , X(jw), the spectrum of x(1), is
no longer replicated in X,(jw) and thus is no
longer recoverable by lowpass filtering.

This effect, in which the individual terms
overlap, is referred to as aliasing.

Xp(iw)




7.3 The Effect of Undersampling: Aliasing

Clearly, 1f the system of Figure 7.4 1s applied to a
signal with o, <2w®,, | the reconstructed signalx, (¢)
will no longer be equal to x(7).

However, as explored in Problem 7.25,

x,,(nT)z x(nT), n=0=x1%2.... (7.13)

for any choice of o,.



7.3 The Effect of Undersampling: Aliasing

Some 1nsight into the relationship between x(t) and

x, (t)when o, <2w,, 1s provided by considering in
more detail the comparatively simple case of a
sinusoidal signal. Thus, let

x(t) = coswyt, (7,14



The lowpass filtered output x_(¢) 1s e 2
. (a)
given as follows: i)
o W
I B |
a a):&; x (t)=cosw,t = x(t +T : H L T
0 6 r 0 — () Wy W M) w
, b 2 (lecw
b w, = a)s; x. (t)=cosw,t=x(t X oljo)
0 6 r 0
| o 20,
4 R I ° 6
() w, = g)s; X, (t)=cos(m,—m,)t H $id : $ i |
-l iy Ea*"a Wy w
(c) 2 (05— wg)
#= x(1) » . i
lasing | ____ wg="- 7
5 A K r . A
(d) ®, = ﬂ X X, (l‘) — COS(COS —a)o)t : T - L t }im L U:JL
6 fo,, :%]Tgﬁ )
(d)
= x(1) X, jo)
Aliasing R e o=
AR E i EEREE









7.3 The Effect of Undersampling: Aliasing

As a variation on the preceding examples,
consider the signal

x(t) = cos(a,t + ). (7.15)

Kljw)

_I_I_e_jq) _I_I_ejq) Aliasing R |'___", m0:4‘é’s

v il S

: il
_mﬂ l'.l.'|-|'_'| [iT) = f_w_i " 5

(a) fin, — ty) 2

Phase reverse: x,(t) = cos((w, —w,)t - ).



7.3 The Effect of Undersampling: Aliasing

It 1s important to note that the sampling theorem
explicity requires that the sampling frequency be
greater than twice the highest frequency in the signal,
rather than greater than or equal to twice the

highest frequency.




Example 7.1

Consider the sinusoidal signal

x(t)=cos| —t+@ |=—(e +e -~ o &+ e
) ( 2 ng 2( ) 2 o

and suppose that this signal 1s sampled, using impulse
sampling, at exactly twice the frequency of the sinusoid,
1.e., at sampling frequency &, . As shown in Problem
7.39, 1f this impulse-sampled signal 1s applied as the
input to an 1deal lowpass filter with cutoff frequency

ow,/2 ,the resulting output 1s

s,

.
J St

2 )

)cr(t)z(ef¢+e‘j¢)(e2 +e2 )oc(cosgo)cos(%tj.




Example 7.1

As a consequence, we see that perfect reconstruction
of x(t) occurs only 1n the case in which the phase @ 1s
zero (or an integer multiple of 27). Otherwise, the
signalx, (£)does not equal x(2).

As an extreme example, consider the case in which @
= -7t/2, so that

. [ o,
x(t) = sm( 5 j




AWAWAWAWAWAW
VARVARVARVARVARVARV/

Figure 7.17 Sinusoidal signal for Example 7.1.

This signal 1s sketched in Figure 7.17. We observe
t]

hat the values of the signal at integer multiples of

t]

he sampling period2z/m, are zero. Consequently,

sampling at this rate produces a signal that 1s
identically zero, and when this zero input is applied
to the 1deal lowpass filter, the resulting output x, (£)1s
also 1dentically zero.

x (t)oc (cos 7w/ 2) cos(% tj =0



7.3 The Effect of Undersampling: Aliasing

Rotating disc

Strobe Figure 7.18 Strobe effect.









7.4 Discrete-Time Processing of
Continuous-Time Signals

The continuous-time signal x,(¢) is exactly
represented by a sequence of instantaneous sample
values x,.(nT): that is, the discrete-time sequence

is related to x [n] by x.(¢)

x,[n]=x, (nT) (7.16)



X (t) =—p| CoONVersion to L.

discrete time

Discrete-time 5| Conversion to
system continous time

The transformation of x,(¢) to x,[n] corresponding to
the first system in Figure 7.19 will be referred to as
continuous-to-discrete-time conversion and will be
abbreviated C/D. The reverse operation
corresponding to the third system in Figure 7.19 will
be abbreviated D/C, representing discrete-time to

continuous-time conversion.

X, n]= xc(nT).

vyln]=y.(nT)



7.4 Discrete-Time Processing of
Continuous-Time Signals

In systems such as digital computers and digital
systems for which the discrete-time signal 1s
represented 1n digital form, the device commonly
used to implement the C/D conversion 1s referred to
as an analog-to-digital (A-to-D) converter, and the
device used to implement the D/C conversion 1s
referred to as a digital-to-analog (D-to-A) converter.

C/D

X, (1) m— .
conversion

Xg[n] = X (nT)

T

-

g Discrete -Time

System

Ya[n] = ¥ (T)

D/C
conversion

Ye (1)
p——

T

T



7.4 Discrete-Time Processing of
Continuous-Time Signals

C/D conversion

________________

! |

1 Pt :

] |

: ® Conversion of |

CA Xp impulse train ' B
% B | to discrete-time : > Xg[n] = Xc(nt)

! sequence |

i

e :

(@)
b Xp
== T =2,
[IITII_‘TT ‘ 1 AH_H.T

0 T 2T t 0 T oT 1




7.4 Discrete-Time Processing of
Continuous-Time Sianals

Xp (t) Xp ()
T:TT T_-2T1
e o - i T ,--"'f /"ff “H\h _— f;
‘ t I ‘ 1 J“.h’F f
0O T 2T t 0 T 2T t
(b)

X4(n] Xd[n] > i

[l gl

-4-3-2-10 1 2 34 n -4-3F2-1 0 1




7.4 Relating X (jw) and X4(e®)

To begin let us express X (jw), the continuous-time
Fourier transform of x (¢) , in terms of the sample

values of x_(¢) by applying the Fourier transform to eq.
(7.3). Since

x, ()= x (nT)5(t—nT), (7.17)

and since the transform of §(+-n7T) is e’ it follows
that

X (jo)= ixc (nT)e™"" (7.18)

Nn=—0a0



7.4 Discrete-Time Processing of

Continuous-Time Signals
X, (jo)= ZX (nT)e™ "

Nn=—00

Now consider the discrete-time Fourier transform of
x,[n], that is,

X, (ejQ)z ixd[n]e_’g”, (7.19)

or, using eq. (7.16),
X, (ejQ) = Z x,(nT) e ", (7.20)

x,[n]=x_(nT)(7.16)



X (jo)= Zx (nT)e_]“’”T(7 18)X,(¢™) = 3. x, (nT)e ™ (7.20)

n=—ao

X (jo)=— Z X(j(0—ke,))(7.6)

k_—oo
Comparing eqgs. (7.18) and (7.20), we see that

X,(e) and X,Go are related through
Xd(e’Q) X, (/Q/T).wo=Q/T (7.21)
Also, recall that, as developed 1n eq. (7.6) and
illustrated in Figure 7.3,

¥, ()= S X (j(o-ko,) e

Consequently,
Xd(ejg):% S X (j(@-27)/T). (7.23)
k=—0



X (jo) X, (jo)

X (jo)
1 T -_— T1
ANIPA
“2n 0 o w
T T1
Ay {ejﬂ}
1
ANAY
| |
— 2 D 2

Figure 7.22 Relationship between X.(jw), X,(jo), and Xy(e"!) for two dif-
ferent sampling rates.



7.4 Discrete-Time Processing of
Continuous-Time Signals

0/C conversion

|

|

i |

i | Conversion of = |

[n] — | discrete-time y_”{tL I Ly v
Yd ! sequence to = : 2
¥ ¢ {':'S it} | .

| lIpUSAE = = | Figure 7.23  Conversion of a

! ! discrete-time sequence to a continuous-

------------------------------- ! time signal.

Hg (ju)
O T R e e |
I |
I |
p o plt) |
I l |
| |
| |
| x, (t) [Conversion of | x [n] Yo [n] [Conversion of| v, () i |
to sequence impulse train ; %5: m_g..s -

X (t) =i impulse train e H,(e"}) [=~——>|sequence to f——u 11 /. (1)
|
|
|
|
|
|
|

Figure 7.24 Overall system for filtering a continuous-time signal using a discrete-
time filter.
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7.4 Discrete-Time Processing of
Continuous-Time Signals

In comparing Figures 7.25(a) and (f), we see that
Y.(jo)=X,(jo)H (") Q=0T """

equivalent to a continuous-time LTI system with
frequency responseH,(jw) which is related to the
discrete-time frequency response H, (ejQ) through

er(eja’T), <o, /2

H (jw)= :
L=, o> w, 12

(7.25)

\



H, (jo)=-

Hy (e!)

1

[~

-0, 0 Q

Hc (jow)

1]

27

9]

-Q 0,
T T

(1

‘a)‘<a)s/2

‘a)‘>a)s/2.

Figure 7.26 Discrete-time fre-
quency response and the equivalent
continuous-time frequency response
for the system of Figure 7.24.



7.4.1 Digital Differentiator

Consider the discrete-time implementation of a

continuous-time band-limited differentiating filter.
H.(jo)=jo, (7.26)

EAENF ]I TN e i PR 2

and that of a band-limited differentiator with cutoff

frequency @,1s )

j @, ‘a)‘ <,

Hc (]a)) = ) (7.27)

0, ‘a)‘ >,

\

BUETERE O ARSI T &



7.4.1 Digital Differentiator O=wT

j, ‘a)‘ <,

b

H (jo)=-

0, ‘a)‘ >,

.

As sketched 1in Figure 7.27. Using eq. (7.25) with a
sampling frequency @; = 2@, | we see that the
corresponding discrete-time transfer function 1s

Hd(efg)zj(%j, % <a)c,—>\Q\<T%

Hd(ejﬂ) :j(%j’ Q <, .



7.4.1 Digital Differentiator

| He (jo)| jo, ‘a)‘ <,
H,(jo)=

-
M 0, ‘a)‘ >,

b

—wg We o
<L H; (jw)

™

2
Bl 7.27 & (7.27) N o3 R R o

% ®  Figure 7.27 Frequency response
D of a continuous-time ideal band-limited

differentiator H.(jw) = jo, |w| < w,.



7.4.1 Digital Differentiator

0 K9
| Hd(ef )=] — |, ‘Q‘ < 7T,
| HEe!®) | T
We |
M
— 21T - o 2w (1
£ HEe'™)
5 B 7.28 & (7.28) N 494 B HE -
Figure 7.28 Frequency response
2 of discrete-time filter used to imple-
1—12! ment a continuous-time band-limited
differentiator.




Example 7.2 Hd(ej9)=j(%j, Q <7,

By considering the output of the digital
differentiator for a continuous-time sinc input, we
may conveniently determine the impulse response

h,[n] of the discrete-time filter in the
implementation of the digital differentiator. With
reference to Figure 7.24, let

sSin (m‘ /T )
x. (1) = , (7.29)
He (jw)
e T T T T T T e T e e e e e I
I |
. P i
I
I |
I L I
| %, () |Conversion of| x4 [n] ¥4 [n] |Conversion of| v, (t) I |
X () =t = impulse train L-l- Hy (™) -d—l— seqguence to liie 11 — (1)
I to sequence impulse train s
: P 2
I
|



Example 7.2

where T is the sampling period. Then

. 1, ‘a)‘<7z/T
X (jo)=

0, otherwise

which 1s sufficiently band limited to ensure that

sampling x.(¢) at frequency @, =27 /T does not give

rise to any aliasing. It follows that the output of the

digital differentiator 1s

cos(/T) sin(m/T) (7.30)
Tt om

r(0=5x.(0) =



sin(m/T)

Example 7.2 x@-= (7.29)

Forx_(Z) as given by eq. (7.29), the
corresponding signal x,[n] In Figure 7.24 may
be expressed as

1

xd[n]:xc(nT)=?5[”]- (7.31)

Thatis, forn# 0x,(nT)=0, while
|

x,[0]=x,(0) = ?



Example 79 yc(t)zCOS(M/T)—Sin(mz/T)(7.3O)

7Tt

which can be verified by 1'Hopital's rule, We
can similarly evaluate y,[»] in Figure 7.24
corresponding to y _(¢) in eq. (7.30).

Specifically ’ ;
(=1 n+0
Vanl=y (nT)=< nT* "~ ©(7.32)
kO n=>0

which can be verified for n # 0 by direct
substitution into eq. (7.30) and for n = 0 by
application of 1'Hopital's rule.



1 r(_l)n , n#0
x,[n]=x (nT)==38[n]. Yalnl=y.(nT) =1 nT’ :
! 0 n=0

Thus when the input to the discrete-time filter
given by eq. (7.28)is the scaled unit impulse Iin
eq. (7.31), the resulting output is given by eq.
(7.32). We then conclude that the impulse
response of this filter is given by

(-1)"
hd In]=< nT ’
0, n=>0

n+0

.



7.4.2 Half-Sample Delay

We require that the input and output of the
overall system be related by

ye(t) = x,(t=4) )

From the time-shifting property derived in
Section 4.3.2

Y.(jo)y=e'"X (jo).



7.4.2 Half-Sample Delay

From eq. (7.25), the equivalent continuous-time

system to be implemented must be band

limited. Therefore, we take

( — JwA
H(jo)={ o<,
C . b
0, otherwise
A (R AE T AR IRF [ IR 2SR A R 2R

(7.34)



( — JwA

Hc(ja)):<e - lef<e, Q=wT

9

0, otherwise

\

With the sampling frequency @, taken as

@, = 2w, , the corresponding discrete-time
frequency response is

H,(e®)=e7™7, |Q|<ur, (7.35)

LBt Bk Bl 5 A



7.4.2 Half-Sample Delay

& 7.29(b) Ky

0, =20, >R
R ]
USRI

| Heljw) | Hyle!™)
1 1
| | | |
—Wg Wg W —ar T (§)
& Hy(jo) L Hyle'™)
Slope A —
'r\"""‘ I \\Il\LL P\\
B - \c w ﬂ,ﬁ -N n

(a) (b)

Figure 7.29 (a) Magnitude and phase of the frequency response for a
continuous-time delay; (b) magnitude and phase of the frequency response
for the corresponding discrete-time delay.



H (ejQ)= e T ‘Q‘ <7,
5ln — np] | oo

For A/T an integer, the sequence y,[n] Is a
delayed replica of Xzl ; that is,

yalnl=x,|n-2| 7,36
-2 (736

What if A/T is not an integer?



Example 7.3

The approach in Example 7.2 is also applicable
to determining the impulse response #,[n] of the
discrete-time filter in the half-sample delay
system. With reference to Figure 7.24, let

n(zt/T
x () = S/ 1)
Jit (7.37)
It follows form Example 7.2 that

x,[n]=x(nT)= %5[11].




Example 7.3 y.(0)=x.(t=A)

Also, since there 1s no aliasing for the band-limited
input in eq. (7.37), the output of the half-sample delay

system 1s sin(z(¢—7/2)/T)
= -T/2)=

and the sequence y,[x] 1n Figure 7.24 1s

b

sin(ﬂ(n —%)) |
yalnl=y (nT) = T Nrl=xO)=—oln]
Trn(n —5)

We conclude that ( |
sin JZ'(I’l—)j
|

h[n]=




7.4.2 Half-Sample Delay

s . ‘,_/xcm

,I \W"f‘[ H\F;/ Xg [N] = % (nT)

o

T 2T t
(a)

Yo () = Xg {t_%}

i fﬁ[ I ks - ’f‘_‘I\ }fd[H]=},FEI:nT:]=KE[{n %]T]
T [ I T= Figure 7.30 (a) Sequence of sam-
0 T t

T 9 ples of a continuous-time signal x.({);
(b) sequence in (a) with a half-sample
(b) delay.



7.5 Sampling of Discrete-time Signals

" y[n]=x[2n] (homework 1)

y[n] M x[n] for all signal x[n]



7.5.1 Impulse-Train Sampling

al i




7.5.1 Impulse-Train Sampling

The new sequence x,[7] resulting from the
sampling process is equal to the original
sequence x/n] at integer multiples of the
sampling period N and is zero at the
Intermediate samples;

. [n]:{x[n], if n = an integer multiple of N
g 0, otherwise (7.38)

X, [n] Fox[n]DAEUER BB HHNEUE - i R Z [EAY
SRSRE S B ORI F41 -




7.5.1 Impulse-Train Sampling

Using the multiplication " ? -
property developed In
Section 5.5. Thus, with

(7.39) x”EZ]:x[n]p[n] IHHIHHHHHIH
= > x[kN1[n—kN1, :

}r o
pin]l = Z6[n — kN]
k= —=

We have. in the frequency 1. 1. 1.1 1. ] |”

domain, .

(7.40) U 0 0 U U DR
@ 1 0 (w—-0)

X (e7")=— P(e’ )X(e’ )d&’.

27 27



X (e’ “) = 1 P(ej ? )X(ej (@) )d@.

272' 27

As 1n Example 5.6, the Fourier transform of the
sampling sequence p/n/ 1s

P( ”) 25(w ko,), (7.41)

where .. the sampling frequency, equals 27/N.
Combining eqgs. (7.40) and (7.41), we have

LS y(erteton)

X, le)= 3 2

(7.42)
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Figure 7.32 Effect in the frequency domain of impulse-train sampling of a
discrete-time signal: (a) spectrum of original signal; (b) spectrum of sampling
sequence; (c) spectrum of sampled signal with ws; > 2wpy; (d) spectrum of
sampled signal with w; < 2wy. Note that aliasing occurs.



7.5.1 Impulse-Train Sampling

If the overall system of Figure 7.33(a) 1s applied to a
sequence for whicha, <2, | to that aliasing results,

x,[n] will no longer be equal to x/n/. However, as
with continuous-time sampling, the two sequences
will be equal at multiples of the sampling period; that
1s, corresponding to eq. (7.13), we have

x [kN]=x[kN], k=012, (7.43)

—1

.t,

= e <2, » Q%I EEE R /0] (BIEEUEEEE
i e FHERAY

P



P[n]

7.5.1 Recover l
X[ ] e : )-———»xp[n]
X(jw)

S NN

—2m — iy Wy 2 W

Xpljw)

H(jw) o
———— N —_—
--EITI W, 2T w
2

_2“ = lidua (thaa 2'11.'

R——— 1




Example 7.4

Consider a sequence x/n/ whose Fourier transform
X(e’”) has the property that
X(“)=0 for 277/9£|a)|£7z.

To determine the lowest rate at which x/n/ may be
sampled without the possibility of aliasing, we must
find the largest N such that

o 2—”>2(29”j:>Ns9/2.

"N
We conclude that V,,, =4, and the corresponding
sampling frequency is 2n/4 = n/2.



, 0=lwl =W

sim W W - Wn

' = = ginc |~— Xlw) =

T w (‘.I'F} 0, w.,::-_lwl.g.n-
D=W<=m

X(w) periodic with period 27
With //n] denoting the impulse response of the
lowpass filter, we have

Hin] = Nw, sin a)cn. (7.44)
T @n
The reconstructed sequence 1s then
x,[n] = x, [n]* h(n]. (7.45)
or equivalently,
¥ [n] = Z [N Nw, smw, (n—kN) |
Pt 7  w,(n—kN) (7.46)

x,[n]= Y x[kN1h,[n— kN (7.47)
fk=—o0



7.5.2 Discrete-Time Decimation and
Interpolation

The sampled sequence 1s x[n]
STl T

new sequence x,[n] , which
1s simply every Nth value

Xpln]
of x,[n] :that is, I | 1] l ‘ l
let x,[n]=x,[nN] e

n

n

(7.48)

Xp[N]
Also, equivalently, - ‘ ” H l .
x,[n]=x[nN] (7.49) i ’




7.5.2 Discrete-Time Decimation and
Interpolation

To determine the effect in the frequency domain of
decimation, we wish to determine the relationship
between X, (e’”) —the Fourier transform of x,[n] —
and X(e’”) . To this end, we note that

X, @)= S x,[kle ™,
k=z—oo (7.50)

or, using eq. (7.48),

jo~N __ < — jok
X, (e )—k;oxp[kN]e : (7.51)



X, (') = pr[kN]e_j”k.
k=—o0

If we let n = kN, or equivalently k = n/N, we can
write

X, (€)=Y, x,[nle

Multiple of N

and since x,[z]=0 when n is not an integer
multiple of N, we can also write

X (e]a)) _ Zx —]a)n/N (752)

N=—00



X, (') = pr[n]e_j”"/N.

N=—00

Furthermore, we recognize the right-hand side of
eq.(7.52) as the Fourier transform of[z] ; that 1s,

> x,lnfe ™ = x, (). (7.53)

Thus, from egs. (7.52) and (7.53), we conclude that
Joy _ jo!N 7.54
X, (€)= X (e’™). 159
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7.5.2 Discrete-Time Decimation and
' ) ‘w/ N
Interpolation X,(e'”) = Xp (e’”'™).

X(e')

Y Wy ™ 2t w
X (e’)
N
w,=2T11/N
X, (e)
\ NM

Figure 7.35 Frequency-domain illustration of the relationship between
sampling and decimation.



7.5.2 Decimation (downsampling)

() R— Ll

CONVErsion

Discrete time
lowpass filter
Hd{el“—‘j

m——1 L1

27

2

E

Figure 7.36 Continuous-time sig-
nal that was originally sampled at the
Myquist rate. After discrete-time fil-
tering, the resulting sequence can be
further downsampled. Here X.(jw)

is the continuous-time Fourier trans-
form of x.(t), Xz(8*) and Y,(e*) are
the discrete-time Faurier transforms
of xz[#] and y4[n] respectively, and
Ha(e*™) is the frequency response of
the discrete-time lowpass filter de-
picted in the block diagram.



7.5.2 Interpolation (upsampling)

Caorvarsion of

w0 » | decimated sequence | .-dealﬁlz:pagg | = win]
H 1o sampled | it o
SECLBrCE | fan)
18]
‘ ‘ H 1 Xhileju]
l ‘ ‘ \1 /A\\ |/
f 2w . 2w
1 %] X (el
B
| "y | [
| I | !
1 i 1 i
n 2w ~ar z z ™ 2n w
2
x[r z:?’”:l
\ 1 m I / I
n —ir o 27w

Figure 7.37 Upsampling: {a) overall system; (b) associated sequences and spectra
for upsampling by a factor of 2.



Example 7.5

In this example, we 1llustrate how a combination of
interpolation and decimation may be used to further
downsample a sequence without incurring
aliasing. It should be noted that maximum possible
downsampling 1s achieved once the non-zero portion
of one period of the discrete-time spectrum has
expanded to fill the entire band from —x to .



Example 7.5 downsample
X,(e”) = X, (e’"™).

X(e’)
| |
| |
| |
| |

—2m 16m — 2w 0 2m ™ 167 27 w
9 9 9 9
(@)

Xp(e’)
| |
| |
| |
| . |
— 27 107 —1 8w 0 8t 10T 27 o.)




Example 7.5

X, (e")
I
I I
* ] I LN
I I
: i . !
-2 17w — R T 177 27
9 9 9 g
(c)
X ul;-(ejm}
| [
| |
- I I -
| |
! !
—21 —7 0 T 2m
{d)

Figure 7.38 Spectra associated with Example 7.5. (a) Spectrum of x[n];
(b) spectrum after downsampling by 4; (c) spectrum after upsampling x[n] by
a factor of 2; (d) spectrum after upsampling x[n] by 2 and then downsampling
by 9.



X b(ejw)

—2w 10w —m 8w 0 8w w10w 2m o
9 9 9 9

Consider the sequence x/n/ whose Fourier transform

X(e’”) is illustrated in Figure 7.38(a). As discussed in
Example 7.4, the lowest rate at which impulse-train
sampling may be used on this sequence without incurring
aliasing 1s 27/4. This corresponds to sampling every 4th
value of x/n/. If the result of such sampling is decimated
by a factor of 4, we obtain a sequence x,[n] whose
spectrum 1s shown 1n Figure 7.38(b). Clearly, there 1s
still no aliasing of the original spectrum. However, this
spectrum is zero for 87/9<|w|<x which suggests there is
room for further downsampling.



=29 ¥ =¥ 0 ki 17w 27w w
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Specifically, examining Figure 7.38(a) we see that if
we could scale frequency by a factor of 9/2, the
resulting spectrum would have nonzero values over
the entire frequency interval from —z to #. However,
since 9/2 1s not an integer, we can’t achieve this
purely by downsampling. Rather we must first
upsample x/n/ by factor of 2 and then downsampled
by a factor of 9, the spectrum of the signal x[«]
obtained when x/n/ 1s upsampled by a factor of 2, 1s
displayed in Figure 7.38(c).



X ub(ejm}

—2 - 0 v 2 w

when x [n]1s then downsampled by a factor of 9, the
spectrum of the resulting sequence x,,[#] is as shown
in Figure 7.38(d). This combined result effectively
corresponds to downsampling x/n/ by a noninteger
amount, 9/2. Assuming that x/n/ represents
unaliased samples of a continuous-time signal x_(¢) ,
our interpolated and decimated sequence represents
the maximum possible (aliasing-free) downsampling

of x,.() .



/.6 Summary

= Sampling using Impulse-Train
= Sampling Theorem

= Reconstruction as Interpolation (zero-order, 15t
order, etc.)

= Aliasing

» Discrete-time system approximate Continuous-
time system

= Discrete-time Sampling

= Decimation (Downsampling) and Interpolation
(Upsampling)



