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Is this system invertible?
 y[n]=x[2n] (homework 1)

 xd[n]=xc(Tn)

Invert
System?y[n] x[n] for all signal x[n]



7.0 Introduction
Under certain conditions, a continuous-time signal 
can be completely represented by and recoverable 
form knowledge of its values, or samples, at points 
equally spaced in time.  This somewhat surprising 
property follows from a basic result that is referred to 
as the sampling theorem.
Much of the importance of the sampling theorem also 
lies in its role as a bridge between continuous-time 
signals and discrete-time signals.
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In many contexts, processing discrete-time signals is 
ore flexible and is often preferable. This is due to 
the dramatic development of digital technology over 
the past few decades, resulting in inexpensive, 
lightweight, programmable, easily reproducible 
discrete-time system.



7.1  Representation of A Continuous-Time Signal 
by ITS Samples:  The Sampling Theorem

In general, in the absence of any additional conditions 
or information, we would not expect that a signal 
could be uniquely specified by a sequence of equally 
spaced samples.
For example, x1(t), x2(t), and x3(t) all have the same 
samples
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7.1  Representation of A Continuous-Time Signal 
by ITS Samples:  The Sampling Theorem
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7.1.1  Impulse-Train Sampling
The periodic impulse train p(t) is referred to as the sampling function, the period T as the sampling period, and the fundamental frequency of p(t), , as the sampling frequency.  In the time domain,

(7.1)
where

(7.2)
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7.1.1  Impulse-Train Sampling
the impulses equal to the samples of x(t) at intervals 
spaced by T; that is,

(7.3)

From the multiplication property (Section 4.5), we 
know that

(7.4)
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The FT of 
 FS of

 In Example 4.6 we know

 Therefore, 
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Since convolution with an impulse simply shifts a signal 

It follows that
(7.6)
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In Figure 7.3 (c),

or 
equivalently,
, and thus there is no 
overlap between the 
shifted replicas of 
X(jω), whereas in 
Figure 7.3(d), 
with                 , there 
is overlap.
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How to
Recover?





7.1  The Sampling Theorem

Sampling Theorem:
Let x(t) be a band-limited signal with X(jω)= 0 for           .  Then x(t) is uniquely determined by its samples x(nT), n = 0, ±1, 
±2,…, if

where
s  2M ,
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Given these samples, we can reconstruct x(t) by 
generating a periodic impulse train in which 
successive impulses have amplitudes that are 
successive sample values.  This impulse train is 
then processed through an ideal lowpass filter with 
gain T and cutoff frequency greater than        and 
less than              .  The resulting output signal will 
exactly equal x(t).

M
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7.1  Representation of A Continuous-Time Signal 
by ITS Samples:  The Sampling Theorem

The frequency        , which, under the sampling 
theorem, must be exceeded by the sampling 
frequency, is commonly referred to as Nyquist rate.

Note that ideal filter will be approximated by a 
nonideal filter in practice. Obviously, any such 
approximation in the lowpass filtering stage will 
lead to some discrepancy between x(t) and          in 
Figure 7.4 or, equivalently, between X(jω) and               
. We will ignore this in some of our discussion 
later.
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In practice, narrow & large-amplitude pulses, which 
approximate impulses, are hard to generate and 
transmit. It is much easier to generate “zero-order 
hold” signals as shown below.

7.1.2  Sampling with a Zero-order Hold



The reconstruction of x(t) from the output of a zero-
order hold can again be carried out by lowpass 
filtering. However, the lowpass filter no longer 
requires a constant gain in the passband.
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this requires that

(7.8)Hr ( j)  e jT /2H ( j)
2sin(T / 2)


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7.1  Representation of A Continuous-Time Signal 
by ITS Samples:  The Sampling Theorem
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7.1  Representation of A Continuous-Time Signal 
by ITS Samples:  The Sampling Theorem

In fact, zero-order hold is an adequate approximation 
of the original signal by itself, without any additional 
lowpass filter. It can be consider as a very coarse 
interpolation between sample values. Next, we will 
discuss other forms of interpolations.
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation

Linear interpolation
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation

Sampling as interpolation.  
The interpretation of the reconstruction of x(t) as a process of interpolation becomes evident when we consider the effect in the time domain of the lowpass filter in Figure 7.4.  In particular, the output is

or, with           given by eq. (7.3),
(7.9)
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For the ideal lowpass filter H(jω) in Figure 7.4,

(7.10)
so that   

(7.11)

this is referred to band-limited interpolation.
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation

If the crude interpolation provided by the zero-order 
hold is insufficient, we can use a variety of smoother 
interpolation strategies, some of which are known 
collectively as higher order holds.  In particular, the 
zero-order hold produces an output signal, as in 
Figure 7.5, that is discontinuous.
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation

(7.12)

1st-order hold = linear interpolation.
The impulse response of a linear interpolation 
is a triangular function  
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7.2  Reconstruction 
of A Signal From ITS 
Samples Using 
Interpolation
1st-order hold = linear 

interpolation.
The impulse 
response of a linear 
interpolation is a 
triangular function 
h(t).  
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7.2  Reconstruction of A Signal From ITS 
Samples Using Interpolation
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7.3  The Effect of Undersampling: Aliasing
When               , X(jω), the spectrum of x(t), is 
no longer replicated in              and thus is no 
longer recoverable by lowpass filtering.
This effect, in which the individual terms 
overlap, is referred to as aliasing.
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7.3  The Effect of Undersampling: Aliasing
Clearly, if the system of Figure 7.4 is applied to a 
signal with               , the reconstructed signal           
will no longer be equal to x(t).
However, as explored in Problem 7.25,

(7.13)
for any choice of ωs.
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7.3  The Effect of Undersampling: Aliasing
Some insight into the relationship between x(t) and

when                  is provided by considering in 
more detail the comparatively simple case of a 
sinusoidal signal.  Thus, let

(7.14)
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The lowpass filtered output          is 
given as follows:

(a) 0  s
6 ; xr (t) cos0t  x(t)

(b) 0  2s
6 ; xr (t) cos0t  x(t)

(c) 0  4s
6 ; xr (t)  cos s 0  t

¹ x(t)
(d) 0  5s

6 ; xr (t) cos s 0  t
¹ x(t)
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7.3  The Effect of Undersampling: Aliasing
As a variation on the preceding examples, 
consider the signal

(7.15) .cos)( 0   ttx
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πejΦπe-jΦ

xr (t)  cos (s 0 )t j .Phase reverse:



7.3  The Effect of Undersampling: Aliasing
It is important to note that the sampling theorem 
explicity requires that the sampling frequency be 
greater than twice the highest frequency in the signal, 
rather than greater than or equal to twice the 
highest frequency.
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Example  7.1
Consider the sinusoidal signal 

and suppose that this signal is sampled, using impulse 
sampling, at exactly twice the frequency of the sinusoid, 
i.e., at sampling frequency      .  As shown in Problem 
7.39, if this impulse-sampled signal is applied as the 
input to an ideal lowpass filter with cutoff frequency

, the resulting output is

x(t)  cos s
2 t jæ
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ö
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1
2 (e j s

2 tjæ
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èç

ö
ø÷)  e jj

2 e js
2 t  e jj

2 e  js
2 t
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Example  7.1
As a consequence, we see that perfect reconstruction 
of x(t) occurs only in the case in which the phase Φ is 
zero (or an integer multiple of 2π).  Otherwise, the 
signal        does not equal x(t).
As an extreme example, consider the case in which Φ
= -π/2, so that
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This signal is sketched in Figure 7.17.  We observe 
that the values of the signal at integer multiples of 
the sampling period           are zero.  Consequently, 
sampling at this rate produces a signal that is 
identically zero, and when this zero input is applied 
to the ideal lowpass filter, the resulting output       is 
also identically zero.
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7.3  The Effect of Undersampling: Aliasing
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7.4 Discrete-Time Processing of 
Continuous-Time Signals

The continuous-time signal          is exactly 
represented by a sequence of instantaneous sample 
values          ; that is, the discrete-time sequence           
is related to           by

(7.16)

 nTxc
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The transformation of         to         corresponding to 
the first system in Figure 7.19 will be referred to as 
continuous-to-discrete-time conversion and will be 
abbreviated C/D.  The reverse operation 
corresponding to the third system in Figure 7.19 will 
be abbreviated D/C, representing discrete-time to 
continuous-time conversion.
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7.4 Discrete-Time Processing of 
Continuous-Time Signals

In systems such as digital computers and digital 
systems for which the discrete-time signal is 
represented in digital form, the device commonly 
used to implement the C/D conversion is referred to 
as an analog-to-digital (A-to-D) converter, and the 
device used to implement the D/C conversion is 
referred to as a digital-to-analog (D-to-A) converter.
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7.4 Discrete-Time Processing of 
Continuous-Time Signals
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7.4 Discrete-Time Processing of 
Continuous-Time Signals
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7.4 Relating Xp(jω) and Xd(ejΩ)
To begin let us express              , the continuous-time 
Fourier transform of           , in terms of the sample 
values of         by applying the Fourier transform to eq. 
(7.3).  Since

(7.17)

and since the transform of δ(t-nT) is          , it follows 
that

(7.18)
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7.4 Discrete-Time Processing of 
Continuous-Time Signals

Now consider the discrete-time Fourier transform of 
, that is,

(7.19)
or, using eq. (7.16),

(7.20)

Xd e jW   xd
n

 n e jWn,

Xd e jW   xc
n

 nT e jWn.
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Comparing eqs. (7.18) and (7.20), we see that
and          are related through

(7.21)
Also, recall that, as developed in eq. (7.6) and 
illustrated in Figure 7.3,

(7.22)
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7.4 Discrete-Time Processing of 
Continuous-Time Signals
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7.4 Discrete-Time Processing of 
Continuous-Time Signals

In comparing Figures 7.25(a) and (f), we see that
(7.24)

equivalent to a continuous-time LTI system with 
frequency response            which is related to the 
discrete-time frequency response              through

(7.25)
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7.4.1  Digital Differentiator
Consider the discrete-time implementation of a 
continuous-time band-limited differentiating filter.

(7.26)
連續時間微分濾波器的頻率響應

and that of a band-limited differentiator with cutoff 
frequency      is

(7.27)

截止頻率為 的有限頻帶微分器
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7.4.1  Digital Differentiator

As sketched in Figure 7.27.  Using eq. (7.25) with a 
sampling frequency               , we see that the 
corresponding discrete-time transfer function is

(7.28)
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7.4.1  Digital Differentiator
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7.4.1  Digital Differentiator
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Example  7.2
By considering the output of the digital 
differentiator for a continuous-time sinc input, we 
may conveniently determine the impulse response

of the discrete-time filter in the 
implementation of the digital differentiator.  With 
reference to Figure 7.24, let

(7.29)
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Example  7.2
where T is the sampling period.  Then

which is sufficiently band limited to ensure that 
sampling         at frequency                  does not give 
rise to any aliasing.  It follows that the output of the 
digital differentiator is

(7.30)
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Example  7.2
For        as given by eq. (7.29), the 
corresponding signal           in Figure 7.24 may 
be expressed as

(7.31)

That is, for n ≠ 0,                , while 

][nxd
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Example  7.2
which can be verified by                   rule,  We can similarly evaluate          in Figure 7.24 corresponding to          in eq. (7.30).  Specifically

(7.32)
which can be verified for n ≠ 0 by direct substitution into eq. (7.30) and for n = 0 by application of                   rule.
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Thus when the input to the discrete-time filter 
given by eq. (7.28)is the scaled unit impulse in 
eq. (7.31), the resulting output is given by eq. 
(7.32).  We then conclude that the impulse 
response of this filter is given by
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7.4.2  Half-Sample Delay
We require that the input and output of the 
overall system be related by

(7.33)

From the time-shifting property derived in 
Section 4.3.2
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7.4.2  Half-Sample Delay
From eq. (7.25), the equivalent continuous-time 
system to be implemented must be band 
limited.  Therefore, we take

(7.34)

有限頻寬連續時間延遲系統的頻率響應
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With the sampling frequency       taken as  
, the corresponding discrete-time 

frequency response is

(7.35)

半取樣延遲系統的頻率響應
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7.4.2  Half-Sample Delay
圖7.29(b)為

之下
的離散時間
半取樣延遲
系統。
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For Δ/T an integer, the sequence          is a 
delayed replica of          ; that is,

(7.36)

What if Δ/T is not an integer?
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Example 7.3
The approach in Example 7.2 is also applicable 
to determining the impulse response         of the 
discrete-time filter in the half-sample delay 
system.  With reference to Figure 7.24, let

(7.37)
It follows form Example 7.2 that
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Example 7.3
Also, since there is no aliasing for the band-limited 
input in eq. (7.37), the output of the half-sample delay 
system is

and the sequence         in Figure 7.24 is

We conclude that
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7.4.2  Half-Sample Delay
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7.5 Sampling of Discrete-time Signals
545

 y[n]=x[2n] (homework 1)
Invert

System?y[n] x[n] for all signal x[n]



7.5.1  Impulse-Train Sampling
546



7.5.1  Impulse-Train Sampling
The new sequence         resulting from the 
sampling process is equal to the original 
sequence x[n] at integer multiples of the 
sampling period N and is zero at the 
intermediate samples;

if n = an integer multiple of N
otherwise                          (7.38)

為x[n]以取樣週期N取值，而取樣點之間的
訊號值均為0所得的序列。
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7.5.1  Impulse-Train Sampling
Using the multiplication 
property developed in 
Section 5.5.  Thus, with
(7.39)

We have, in the frequency 
domain,
(7.40)
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As  in Example 5.6, the Fourier transform of the 
sampling sequence p[n] is

(7.41)

where       , the sampling frequency, equals 2π/N.  
Combining eqs. (7.40) and (7.41), we have

(7.42)
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7.5.1  Impulse-Train Sampling
If the overall system of Figure 7.33(a) is applied to a 
sequence for which             , to that aliasing results,

will no longer be equal to x[n]. However, as 
with continuous-time sampling, the two sequences 
will be equal at multiples of the sampling period; that 
is, corresponding to eq. (7.13), we have 

(7.43)

若 ，則 無法還原成x[n]，但在取樣點
處是相等的。
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7.5.1  Recover 548
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Example 7.4
Consider a sequence x[n] whose Fourier transform

has the property that

To determine the lowest rate at which x[n] may be 
sampled without the possibility of aliasing, we must 
find the largest N such that

We conclude that             , and the corresponding 
sampling frequency is 2π/4 = π/2.
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With h[n] denoting the impulse response of the 
lowpass filter, we have 

(7.44)

The reconstructed sequence is then
(7.45)

or equivalently,

(7.46)

(7.47)
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7.5.2  Discrete-Time Decimation and 
Interpolation

The sampled sequence is 
typically replaced by a 
new sequence         , which 
is simply every Nth value 
of           ;that is,
let

(7.48)
Also, equivalently,

(7.49)
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7.5.2  Discrete-Time Decimation and 
Interpolation

To determine the effect in the frequency domain of 
decimation, we wish to determine the relationship 
between             —the Fourier transform of          —
and             .  To this end, we note that 

(7.50)
or, using eq. (7.48),

(7.51)
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If we let n = kN, or equivalently k = n/N, we can 
write

and since              when n is not an integer 
multiple of N, we can also write

(7.52)
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Furthermore, we recognize the right-hand side of 
eq.(7.52) as the Fourier transform of         ; that is,

(7.53)

Thus, from eqs. (7.52) and (7.53), we conclude that
(7.54)

抽離訊號與離散時間取樣訊號的傅立葉轉換關係式
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7.5.2  Discrete-Time Decimation and 
Interpolation
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7.5.2  Decimation (downsampling)
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7.5.2 Interpolation (upsampling)
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Example 7.5
In this example, we illustrate how a combination of 
interpolation and decimation may be used to further 
downsample a sequence without incurring 
aliasing.  It should be noted that maximum possible 
downsampling is achieved once the non-zero portion 
of one period of the discrete-time spectrum has 
expanded to fill the entire band from –π to π.
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Example 7.5 downsample 554
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Example 7.5
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Consider the sequence x[n] whose Fourier transform
is illustrated in Figure 7.38(a).  As discussed in 

Example 7.4, the lowest rate at which impulse-train 
sampling may be used on this sequence without incurring 
aliasing is 2π/4.  This corresponds to sampling every 4th 
value of x[n]. If the result of such sampling is decimated 
by a factor of 4, we obtain a sequence          whose 
spectrum is shown in Figure 7.38(b).  Clearly, there is 
still no aliasing of the original spectrum.  However, this 
spectrum is zero for                      , which suggests there is 
room for further downsampling.
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Specifically, examining Figure 7.38(a) we see that if 
we could scale frequency by a factor of 9/2, the 
resulting spectrum would have nonzero values over 
the entire frequency interval from –π to π.  However, 
since 9/2 is not an integer, we can’t achieve this 
purely by downsampling.  Rather we must first 
upsample x[n] by factor of 2 and then downsampled
by a factor of 9, the spectrum of the signal       
obtained when x[n] is upsampled by a factor of 2, is 
displayed in Figure 7.38(c).
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when         is then downsampled by a factor of 9, the 
spectrum of the resulting sequence           is as shown 
in Figure 7.38(d).  This combined result effectively 
corresponds to downsampling x[n] by a noninteger 
amount, 9/2.  Assuming that x[n] represents 
unaliased samples of a continuous-time signal         , 
our interpolated and decimated sequence represents 
the maximum possible (aliasing-free) downsampling 
of         .
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7.6  Summary
 Sampling using Impulse-Train
 Sampling Theorem
 Reconstruction as Interpolation (zero-order, 1st-

order, etc.)
 Aliasing
 Discrete-time system approximate Continuous-

time system
 Discrete-time Sampling
 Decimation (Downsampling) and Interpolation 

(Upsampling)
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