Chapter 6
Time and Frequency
Characterization of Signals
and Systems
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6.0 Introduction

The frequency-domain characterization of an LTI
system 1n terms of its frequency response represents
an alternative to the time-domain characterization
through convolution. In analyzing LTI systems, it 1s
often particularly convenient to utilize the Frequency
domain because differential and difference
equations and convolution operations in the time
domain become algebraic operations in the
frequency domain.



6.0 Introduction

Moreover, concept such as frequency-selective
filter are readily understood in frequency
domain.

However, when designing a system, analyzing
both time and frequency domain is typically
required.
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6.1 The Magnitude-Phase Representation of
The Fourier Transform

The magnitude-phase representation of the
continuous-time Fourier transformXx( o) 1S

X(jo)=[X(jo)e' " o
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Similarly the magnitude-phase representation of the
discrete-time Fourier transform x(e”) 1s

X(e’?) = ‘X(ejw)‘eji)((ejw).
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(6.2)




6.1 The Magnitude-Phase Representation of
The Fourier Transform

we can think of X(jw) as providing us with a
decomposition of the signal x(?) into a “sum” of
complex exponentials at different frequencies.
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X(jw)= j j:x(t)e"ja’tdt(4.9) X(e’) = Z.o x[nle”’”".(5.9)
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6.1 The Magnitude-Phase Representation of
The Fourier Transform

The magnitude |X(®) describes the basic frequency
content of a signal—i.e., |[x(jw) provides us with the
information about the relative magnitudes of the
complex exponentials that make up x(7).

Parseval’s Relation
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Energy-density spectrum
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6.1 The Magnitude-Phase Representation of
The Fourier Transform

The phase angle @ X(j®), on the other hand, does

not affect the amplitudes of the individual
frequency components, but instead provides us
with information concerning the relative phases

of these exponentials.
However, note that even magnitudes haven't

changed, due to change in phase angle, the
signal in time-domain will change.



6.1 The Magnitude-Phase Representation of
The Fourier Transform

x(t)=1+ l(:08(2722‘ +@,)+cos(4mt+¢,) + 2 cos(67 + ¢, ).
3
(6.3)
In general, changes in the phase function of X(jw) lead
to changes 1n the time-domain characteristics of the
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6.1 The Magnitude-Phase Representation of
The Fourier Transform

x(t)=1+ % cos(2nt + ¢, )+ cos(4nt + ¢, ) + % cos(67 + ¢, ).
¢, =6
L 0,=0.93
@, =12
p,=4.1
@, =-7.02




6.1 The Magnitude-Phase Representation of
The Fourier Transform

In some instances phase distortion may be
important, whereas 1n others it 1s not.

Example, time reverse signal:

The corresponding effect in the frequency domain 1s
to replace the Fourier transform phase by 1ts
negative:

Fix(-1)}= X (- jo) =|X (jw)e ' .



6.2 The Magnitude-Phase Representation of
The Frequency Response of LTI Systems

The transform Y(jw) of the output of an LTI system 1s
related to the transform X(jw) of the input to the
system by the equation

Y(jo)=H(jo)X(jo),
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6.2 The Magnitude-Phase Representation of
The Frequency Response of LTI Systems

The Fourier transforms of the input X(e’*)and output

Y(e’””) of an LTI system with frequency responsef(e/*)
are related by

Y(e’)=H(e'")X (). (6.4)

The effect that an LTI system has on the input
IS to change the complex amplitude of each of
the frequency components of the signal.



6.2 The

Magnitude-Phase Representation of

The Frequency Response of LTI Systems

The nature of the effect in more detail. Specifically,
In continuous time,
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zY(jo)=z H(jo)+ ¢ X(jw), (6.6)
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6.2 The Magnitude-Phase Representation of
The Frequency Response of LTI Systems

For this reason, |H(jw)| (or H(e™)) is commonly
referred to as the gain of the system.

L \HGO) S H(e®)) HTH B 24000 i,

and ¢ H(jw) 1s typically referred to as the phase shift
of the system.
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6.2.1 Linear and Nonlinear Phase

Consider the continuous-time LTI system with
frequency response

++~/ z{@ . . — Tt
TR L fE H(]a))_e J 0, (6.7)

so that the system has unit gain and linear phase—
1.€.,

H(jo)l|=1, «H(jo)=-aot,. (68
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6.2.1 Linear and Nonlinear Phase

The system with this frequency response
characteristic produces an output that is simply a time
shift of the input—i.e.,

y(t)=x(t—t,). 6.9)
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6.2.1 Linear and Nonlinear Phase

display the output when the signal 1s applied to a
system with unity gain and nonlinear phase
function—i.e.,

H2 (]w) _ ejcsz(jw) (6.10)

(a)

x(t) y(t)



6.2.1 Linear and Nonlinear Phase
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6.2.1 Linear and Nonlinear Phase
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6.2.1 Linear and Nonlinear Phase
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Figure 6.4 (a) Discrete-time signal
that is applied as input to several sys-
tems for which the frequency response
has unity magnitude; (b) response for
a system with linear phase with slope
of —5; (c) response for a system with
nonlinear phase; and (d) response for
a system whose phase characteristic
is that of part (c¢) plus a linear phase
term with integer slope.



6.2.2 Group Delay

A system with linear phase shift has the simple time-
shift interpretation.

‘H(ja))‘ =1, ¢ H(jo)=-wt,
\ 4

V(t)=x(t=1,).

Time-shift of —,
or delay of t,



6.2.2 Group Delay

By taking the band to be very small, we can accurately
approximate the phase of this system in the band with
the linear approximation

z H(jo)=—-¢-owa, (6.12)

so that

Y(jw) = X(ja))‘H(ja))‘e—Me—ja)a. (6.13)



6.2.2 Group Delay

The group delay at each frequency equals the
negative of the slope of the phase at that
frequency; i.e., the group delay is defined as

r(w)z—%{cz H(jo)} (6.14)



Example 6.1

Consider the impulse response of an all-pass
system with a group delay that varies with
frequency. The frequency response H(jw) for

our example is the product of three factors;
l.e.,

H(jw) :HHi(ja))a



Example 6.1

Where
1+(jo/o) -2j¢(0/ o)

U= Goray+2jc(@a) (615

@, =315rad /sec  and{, =0.066,
@, =943rad /sec  and{, =0.033,
w, =1888rad /sec  andl, =0.058.



Example 6.1

It is often useful to express the frequencies @;
measured in radians per second in terms of
frequencies f, measured in Hertz, where

W, =271f..

In this case,

f, =50Hz
f, =150Hz
f; =300Hz.



Example 6.1

Since the numerator of each of the factors #,;(j®) is
the complex conjugate of the corresponding
denominator, it follows that|H,(jw)|=1.
Consequently, we may also conclude that

‘H(ja))‘:l.



Example 6.1

The phase for each H;(j®) can be determined from eq.
(6.15):

2 (0/e,)
1-(0/ )

< H,(jw) =—-2arctan

and 3
¢ H(jw)=),z H,(jo),
=1



Example 6.1

If the values of « H(jw) are restricted to lie between
—r and 7, we obtain the principal-phase function
(1.e., the phase modulo 27), as shown in figure
6.5(a) where we have plotted the phase versus
frequency measured in Hertz. Note that this
function contains discontinuities of size 2r at
various frequencies, making the phase function non-
differentiable at those points.




However, the addition or subtraction of any integer
multiple of 27 to the value of the phase at any
frequency leaves the original frequency response
unchanged. Thus, by appropriately adding or
subtracting such integer multiples of 2z from
various portions of the principal phase, we obtain
the unwrapped phase in Figure 6.5(b).




The gro delay as a function of frequency may
now be computed as

o) =z [H (o))

0,
where @ H(jo) represents the unwrapped-phase
function corresponding to H(jw). A plot of 7(w) 1s
shown 1n Figure 6.5(c).




Example 6.1

Observe that frequencies in the close vicinity of
50 Hz experience greater delay then frequencies
in the vicinity of 150 Hz or 300 Hz. The effect of
such nonconstant group delay can also be

qualitatively observed in the impulse response
(see Figure 6.5(d)) of the LTI system.




Example 6.1

Recall that F{o(t)} = 1. The frequency components of the
impulse are all aligned in time in such a way that they
combine to form the impulse, which 1s, of course, highly
localized in time. Since the all-pass system has
nonconstant group delay, different frequencies in the
input are delayed by different amounts. This
phenomenon 1s referred to as dispersion. In the current
example, the group delay 1s highest at 50 Hz.
Consequently, we would expect the latter parts of the
impulse response to oscillate at lower frequencies near
50Hz. This clearly evident in Figure 6.5(d).




Example 6.2

Nonconstant group delay 1s among the factors
considered important for assessing the transmission
performance of switched telecommunications
networks. In a survey involving locations all across
the continental United States, AT&T/Bell System
reported group delay characteristics for various
categories of toll calls.



Example 6.2

Figure 6.6 displays
some of the results
of this study for two
such classes. In
particular, what 1s
plotted 1n each
curve 1n Figure
6.6(a) 1s the
nonconstant
portion of the
group delay for a
specific category of
toll calls.
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The group delay as a function of frequency 1s seen to be
lowest at 1,700 Hz and increases monotonically as we
move away from that figure 1n either direction.

When the group delay characteristics 1llustrated in Figure
6.6(a) are combined with the characteristics of the
magnitude of the frequency response in figure 6.6(b), we
obtain impulse reponses of the type shown 1n Figure 6.7.
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Example 6.2
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(a)
The impulse response in Figure 6.7(a) corresponds to
the short-distance category. The very low- and very
high-frequency components of the response occur
later than the components 1n the mid-frequency range.
This 1s compatible with the corresponding group
delay characteristics in Figure 6.6(a).



6.2.3 Log-Magnitude and Phase Plots

In graphically displaying continuous-time or discrete-
time Fourier transforms and system frequency
responses 1n polar form, it 1s often convenient to use a
logarithmic scale for the magnitude of the Fourier
transform.
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6.2.3 Log-Magnitude and Phase Plots
Y(jo)=|H(jo)\|X(jo)| ¢Y(jo)=¢ H(jo)+z X(jo),

from egs. (6.5) and (6.6), which relate the magnitude
and phase of the output of an LTI system to those of
the mput and frequency response. Note that the
phase relationship 1s additive, while the magnitude
relationship involves the product of |H(j®)| and |X(j®)
. Thus, 1f the magnitudes of the Fourier transform
are displayed on a logarithmic amplitude scale, eq.
(6.5) takes the form of an additive relationship,
namely,

>

log‘Y(ja))‘ = log‘H(ja))‘ + log‘X(ja))




6.2.3 Log-Magnitude and Phase Plots

For example, on a linear scale, the detailed magnitude
characteristics 1n the stop band of a frequency-
selective filter with high attenuation are typically not
evident, whereas they are on a logarithmic scale.

The typical log amplitude scale used 1s 1n units of
20log,,, referred to as decibels (dB).

0dB =
20dB = ) —20dB-=

6dB ~



6.2.3 Log-Magnitude and Phase Plots

Bode plot

If h(?) 1s real, then |H(je) 1s an even function of @
and ¢ H(jw) 1s an odd function of . Because of
this , the plots for negative w are superfluous and
can be obtained immediately from the plots for
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20 logq [Hijw)|

6.2.3 Log-Magnitude and Phase Plots
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The use of a logarithmic frequency scale offers a
number of advantages in continuous time. For
example, 1t often allows a much wider range of
frequencies to be displayed than does a linear
frequency scale. In addition, on a logarithmic
frequency scale, the shape of a particular response
curve doesn’t change 1f the frequency 1s scaled.
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6.2.3 Log-Magnitude and Phase Plots

Furthermore for continuous-time LTI systems
described by differential equations, an approximate
sketch of the log magnitude vs. log frequency can
often be easily obtained through the use of
asymptotes.



6.2.3 Log-Magnitude and Phase Plots

In discrete time, the
magnitudes of Fourier
transforms and
frequency responses
are often displayed 1s
dB for the same
reasons that they are in
continuous time.
However, log scale 1n
frequency 1s not often
used since they are
periodic with period 2n
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Figure 6.9 Typical graphical representations of the magnitude and phase of
4 discrefe-lime frequency response Hig™ ).



6.3 Time-Domain Properties of Ideal
Frequency-Selective Filters

As introduced 1in Chapter 3, a continuous-time 1deal
lowpass filter has a frequency response of the form

: ol{w 6.17
H(]a))z{; of(o, (6.17)

This 1s illustrated in Figure 6.10(a). Similarly, a
discrete-time 1deal lowpass filter has a frequency
response

H(eja)) _ {1 ‘a)‘ﬁa)c (6.18)

0 a)c(‘a)‘ﬁﬂ




6.3 Time-Domain Properties of |deal
Frequency-Selective Filters
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Figure 6.10 (a) The frequency response of a continuous-time ideal low-
pass filter; (b) the frequency response of a discrete-time ideal lowpass filter.

Note zero phase




6.3 Time-Domain Properties of Ideal

Frequency-Selective Filters

An 1deal filter with
linear phase over the
passband, as 1llustrated
in Figure 6.11,
introduces only a
simple time shift
relative to the response
of the 1deal lowpass
filter with zero phase
characteristic.

[H(jw)|

4 Hijw)= —aw




6.3 Time-Domain Properties of Ideal
Frequency-Selective Filters

In particular, the impulse response corresponding to
the filter in eq. (6.17) 1s

ht) = smma) t (6.19)

SIS ] PR SR AR RN s R (BT 2R e

Similarly, the impulse response of the discrete-time
ideal filter in eq. (6.18) 1s

Hin] = sin @, n | (6.20)

7in
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6.3 Time-Domain Properties of Ideal
Frequency-Selective Filters

Inverse relation:

Note that in both contiunous and discrete time, the
width of the filter passband 1s proportional to

@. -while the width of the main lobe of the impulse
1s proportional to Vo,

H(jw)

(@)
(a)



6.3 Time-Domain Properties of |deal
Frequency-Selective Filters
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4 Hijw)= —aw

Figure 6.13 Impulse response of an ideal lowpass filter with magnitude
and phase shown in Figure 6.11.
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The step responses s(?) of the 1deal lowpass filters 1n
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hity

s=]" h(r)dr

The step responses s(?) of the 1deal l{i)wpass filters 1n

continuous time Ringing, oscillatory behavior
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1.09
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Figure 6.14 (a) Step response of a continuous-time ideal lowpass filter;
(b) step response of a discrete-time ideal lowpass filter,



6.4 Time-Domain and Frequency-Domain
Aspects of Nonideal Filters

The characteristics of 1deal filter are not always
desirable 1n practice. For example, in case where the
spectra of two signal overlap slightly. A filter with
gradual transition from passband to stopband 1s

preferable.
X{jw)
X5 (jw)

X1 (jw)
Figure 6.15 Two spectra that are

w  slightly overlapping.




6.4 Time-Domain and Frequency-Domain
Aspects of Nonideal Filters

Moreover, even 1n cases where the 1deal frequency-
selective characteristics are desirable, they may not
be attainable. For example, 1dea filter is noncausal
which 1s not attainable for real-time system.

hit)
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Moreover, 1t costs more to implement a more precise
filter.




6.4 Time-Domain and Frequency-Domain
Aspects of Nonideal Filters

For all of these reasons, nonideal filters are of
considerable practical importance, and the
characteristics of such filters are frequently specified
or quantified in terms of several parameters in both

the frequency and time domain.  , : passband edge

w,: stopband edge
|Hijw)|
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I Figure 6.16 Tolerances for the

| Stopband magnitude characteristic of a lowpass

: filter. The allowable passband ripple
s is &; and stopband ripple is &,. The

s dashed curve illustrates one possible

' frequency response that stays within
the tolerable limits.
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6.4 Time-Domain and Frequency-Domain

Aspects of Nonideal Filters

In addition to the
specification of magnitude
characteristics 1n the
frequency domain, in
some cases the
specification of phase
characteristics 1s also
important. In particular, a
linear or nearly linear
phase characteristic over
the passband of the filter
1s desirable.

[H(jw)|

4 Hijw)= —aw

We

—We




6.4 Time-Domain Aspects of Nonideal Filters

Rise time t of t
function —1.e., t|

interval over wl

ne step
e

hich the

step response rises

toward 1ts final

value.

If ringing 1s present,
then there are three
other quantities that are

often used to

characterize the nature
of these oscillations:

s(t)

the overshoot /\ of the final value of the step response,
the ringing frequency @, ,and the settling time t—i.e., the
time required for the step response to settle to within a
specified tolerance o of its final value.



Trade-off & Example 6.3

There may be a trade-off between the width of the
transition band and the settling time of the step
response.

Let us consider two specific lowpass filter designed
to have a cutoff frequency of 500 Hz. Each filter
has a fifth-order rational frequency response and a
real-valued impulse response. The two filters are of
specific types, one referred to as Butterworth filters
and the other as elliptic filters. Both of these classes
of filters are frequently used in practice.



Example 6.3

The magnitudes of the
frequency responses of
the two filters are
plotted (versus
frequency measured 1n
Hertz) in Figure
6.18(a). We take the
transition band of each
filter as the region
around the cutoff
frequency (500 Hz)
where the frequency
response magnitude 1s
neither within .05 of
unity magnitude
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(the passband ripple) nor within .05
of zero magnitude (the stopband
ripple). From Figure 6.18(a), 1t can
be seen that the transition band of the
Butterworth filter is wider than the
transition band of the elliptic filter.



Example 6.3

The price paid for the
narrower transition
band of the elliptic
filter may be observed
in Figure 6.18(b), 1n
which the step
responses of both
filters are displayed.

We see that the ringing in the elliptic filter’s step response 1s
more prominent than for the Butterworth step response. In
particular, the settling time for the step response 1s longer 1n the
case of the elliptic filter.



6.5 First-Order and Second-Order
Continuous-Time Systems

Higher-order system is typically implemented by
combining first-order and second-order systems
In cascade or parallel arrangements. Hence, we
need to understand the time and frequency
domain properties of them.



6.5.1 First-Order Continuous-Time
Systems

The differential equation for a first-order system 1s
often expressed in the form

dy(?)
dt

(6.21)

r +y(8) = x(1),

The corresponding frequency response for the first-
order system 1s

1 (6.22)

jor+1

H(jw) =

T is the time constant of the system



6.5.1 First-Order Continuous-Time

Systems H(jw)=—
jor+1

and the impulse response 1s

(6.23) \\

h(t)= 1 e ""u(t), R
T

The step response of the system 4 f--—ooceeeeeeeeeo

s(0) = h(t)* u(t)

L SEEERET
1=z .

[ W] (6.24) ;
B - (b)
— 1 € u(t) * T is the time constant of the system



06.5.1 First-Order Continuous-Time

Systems H(jw)=—
jot +1

b

Specifically, from eq. (6.22), we obtain
201og,,|H (jw)| = -10log,,|(@7r)* +1]

From this we see that for wr<<1 ,the log magnitude is
approximately zero, while forwz >> 1 ,the log magnitude
is approximately a linear function of log,, (@) . That is,

(6.25)

20log, |H(jo)|=0  for w<<l/z, (6.26)
and

20log,,|H (jw)|~ —20log,,(@7)
=-20log,,(w)—20log,,(z) for w>>1/z.



6.5.1 First-Order Continuous-Time

Systems
2010g10‘H(ja))‘z0 for w<<l/r,

20log,,|H(jw) = —20log,(w)—20log,(z) for  w@>>1/t.

For the first-order 20
system, the low- and e T —
high-frequency s, RDERITRIIG
asymptotes of the log
magnitude are straight
lines, where the
magnitude decrease | .
20dB for every 10

times @
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The point at which the slop; of the approximation

changes 1s precisely w = 1/7.
w = [/t referred to as break frequency
note that at @ = 1/ the two terms [(@7)” and 1] in the

argument of the logarithm 1n eq. (6.25) are equal.

201og,,|H(jo)| = —10log,,[(w7)* +1]

H( jlj =—10log,,(2) ~ —3dB. (6.28)

201og,,

referred to as 3-dB point.



6.5.1 First-Order Continuous-Time,
Systems H(jw) =

It 1s also possible to obtain a useful straight-line
approximation to

jor+1

¢ H(jo) = ~tan " (w7) (6.29)
0, w<0.1/7
z<—(7z/4)[10g10(a)1)—|—1], 0.1/t<w<10/7.
—7/2, w>10/1
/4
Asymptotic

= approximation

0.1/t 1/7 10/7 100/
w



6.5.1 First-Order Continuous-Time,
Systems H(jw) =

It 1s also possible to obtain a useful straight-line
approximation to

jor+1

¢ H(jo) = ~tan " (w7) (6.29)
0, w<0.1/7
z<—(7z/4)[10g10(a)1)—|—1], 0.1/t<w<10/7.
—7/2, w>10/1
/4
Asymptotic

= approximation

0.1/t 1/7 10/7 100/
w



6.5.1 First-Order Continuous-Time

20

Systems
. . . 3 0dB ----l'\\ﬁ_ﬂ,smptutm
Note that this approximation f NG wwosimator
decreases linearly (from O to —/2 § 2y
as a function of log,,(w) inthe ° ,|
range 0.1 10 | | | |
—<w<—, o 0.1 iz 0 1007
T T W
the approximation agrees with the "
Asymptotic

actual value of \ o

¢ H(jw) at the break frequency w i— B
= 1/z, at which point
oo (1) |
(630) (4 4 —3mi4 | I | |

0.1/t T 10/ 100/




6.5.1 First-Order Continuous-Time

Systems

As we make 7 smaller, we speed
up the time response of the
system [1.e., 4(?) becomes more

compressed toward the origin,
and the rise time of the step
response 1s reduced] and we a
simultaneously make the break
frequency large [1.€., H(jw)
becomes broader, since |H(jo) ~1
for a larger range of

frequencies]. 1
h(t)y=e""u(t), H(jo)=

=
(=1
m

20 logyg |H(jw)|

jor+1

2{] =

|
=
=

I

L=y Asymptotic

S Approximation

107

10047



6.5.2 Second-Order Continuous-Time

Systems

The linear constant-coefficient differential equation

for a second-order system 1s

AV | 5y DO

dt’

~“—Z+wy(t)=w:x(t) (6.31)

this type of equations arise in many physical

system su

Spring k

ch as

— - \/(t) (displacement)

— A

Mass

x(t) (applied force)

[

m

L
Dashpot b

OOUNONONNNNNN

[OXO)

Figure 6.21 Second-order system
consisting of a spring and dashpot
attached to a moveable mass and a
fixed support.



> y(t) (displacement)

24
/// Spring k

—AMW—— . i
/,; Mass x(t) (applied force) ~ Figure 6.21  Second-order system
7 I N consisting of a spring and dashpot
2 DaerEmt " m attached to a moveable mass and a

fixed support.

In the figure, the input 1s the applied torce x(7) and the
output 1s the displacement of the mass y(?) from

some equilibrium position at which the spring exerts
no restoring force.

k
d y(t) dy(t) W, =4
2 =x(t)—ky(t) -b——= ot m
or d? b \d
dyf”{ jy(” ( jy(t)——xa). b
t m) dt m = ,
: 2 km
4y (t)+2§a) A )+a) y(t)—

dt’ dt



EAO) DO
2
dt dt
The frequency response for the second-order system
of eq. (6.31) 1s ,
Q

H(iw)= " .
e) (Jo)’ +2¢w,(jo)+ .  (6.33)

The denominator of H(jw) can be factored to yield

2
4

Hie) = (ja)—Cl)(nja)—Cz) ,

c,=—Cw, +m,C 1,
c,=—Cw, —w -1, (6.34)

+w’y(t) = w’x(1)

where



C()z Cl:_é/a)n_l_a)n\/é’z_l?

)= (ja)—Cl)(nja)—Cz), Co :_é/wn_a)n\/ﬁ'

Foré’ #1, ¢, and ¢, areunequal, and we can
perform a partial-fraction expansion of the form

. M M
H(](())Z . . ’
Jo—¢ JO—C¢  (6.35)
where 5, @
2,/¢° -1 (6.36)

1

e “u(r), Relal = 0 ———

From eq. (6.35), the corresponding impulse
response for the system 1s

h(t) = M|e“" — e (). (6.37)



6.5.2 Second-Order Continuous-Time
Systems

If §=1,thencl=62=—a)n , and

H(jw)=— W’ . (6.38)
(Jo+o,)
From Table 4.2,
te “'u(t), Refa} > 0 @ +ljm)2
we find that in this case the impulse response 1s
(6.39)

h(t) = o te” " u(t).



h(t)=w:te”"u(t).(6.39)

") =@ te” " u(t)

Q

n

Note from egs. (6.37) and (6.39), that h(t)/ @, 1s a
function of @, 1.

h(f) = MLeCﬂ — e Ju(t).(6.37) ¢ =—Cw, +w,\¢* -1,
M) _ |:€Clt —eczt]u(t). c, =—(w, —a)n1/§2 —1.
o 2\/
0,

C; Damping ratio M — n

27 =1
@, Undamped natural frequency é, B



2
i c,=—C¢w, +m " —1,

g 2\/ [ e ¢, = (o, -0 -1

we see that for 0<(<1,

Ciand €, are complex, and we can rewrite the
impulse response 1n eq. (6.37) in the form

:_é/a)n +a)n.] 1_4/29
¢, =0, —0,j\1-¢".

hcf) ) zj% [exp| 0, 1= [-exp| 1 =E ) fucy

—Cw,t

L [sin(a)nﬁ )z}u(t).

-2

(6.40)

under-damped



1 ¢ :—g“a)n+a)n,\/§2—1,
h(t) _ [eclt_eczt]u(t).
"2y -1 c,=—Cw, —® 1.

we see that for ¢ > 1,

Ciand €, are real and negative, and we can rewrite
the impulse response 1n the form

MO L exp| (£ Dt |-exp| (-6 T Doy e

o, 2 -1

which 1s the difference between two decaying
exponentials.

over-damped



The case of ¢ =1, when ¢, = ¢, , 1s called the critically
damped case.

h() _ -0 toOn tu(t) ht) e

" o M[sin(a)n\/ 1-¢7 )z‘}u(z‘).

under-damped

h@) 1 {exp[(_g N \/ﬂa)nt}exp[(—é“— g’z—l)wntJ}u(t)

o, 2 -1

over-damped

hit)/ew, §=0.1
t=0.2
1+ r=04
t=0.7
t=1

t=15

£+
Els
-




6.5.2 Second-Order Continuous-Time
Systems

The step response of a second-order system can be
calculated from eq. (6.37) for  # 1. This yields the
expression

( — )

s(0)=hO*ut)= [ h(z) =41+ M| == fru(e). (6:41)

_ -

—

s)= " he)y=utey | M| e —e =M [ B eﬂ

ey
= M| < M — Dy = (] -2 [y

For { =1, we can use eq. (6.39) to obtain

s =l—e ™ —ate ™ W(t). 64




Figure 6.22 hit)/w, t=0.1

i =0.2
s(t) ous-time secc {

different value 1 {=04
°r {=0.1 ratio ¢: (a) i =07
b) step respt =
[=0.2 (D) step resp -
1 1
r 12
ul‘l. LIJ"
I I la)
- 2 t Fig
wp, w,

2
o ous

Fot 0<( <1, overshoot and ringing.

For (= 1, the fastest response (1.¢., the shortest rise
time) that 1s possible without overshoot and thus has
the shortest settling time.

Fot 1<, the bigger the (', the longer the rlse/setthng

time
eclt eczt p— _é/a) -+ C()

s(t)=y1+M — >u(t)

N _Cl 62 — 62:_50)11_&);1\/;2_1'

~




6.5.2 Second-Order Continuous-Time

Systems .

MU= Gy +2co,Gayrar )

Furthermore, eq. (6.33) can be rewritten as
1
(jo/w)*+2¢(jo!w,)+1

Figure 6.23 depicted the Bode plot of the
frequency response given in eq. (6.33) for several

values of (. . )
[t}

H(jo)=

201og10\H( ja))\ =-10log,,

From this expression, 1t follows that

0, foralw, (6.42)

20log,,|H (jw) = '
go|H (j) —40log,, w+40log,, ®,, foro) o,




201og,|H( jw)—lOloglO“I—[a)J } +4§2(ﬁj }
a)l’l a)l’l

- L
GK: _v_\,/_\i 2 2 N 2 2 _
el radia = at BN =)
ﬁ_\{: OV b (o) ‘(/40\) = la = %7_? = 6
~ z
= 1’25
v ;
‘U’\/;\ = “7? =17 W:Wv\ '_\?{Z



6.5.2 Second-Order Continuous-Time
Systems

. 0, forallw,
20 loglO‘H(]a))‘ =~ {

—40log,, +40log,, @,, foro))o,

20

{=0.1
(=0.2
0dB (=04
— Asymptotic
% o0 approximation {=0.7
=) (=1
o
2 40k
o
(V]
—60
- 80 l |
0.1w, ®p, 10w, 100w,
W

2010g10H(ja))—lOloglo{ll—[a)J } +442[£j }
a)l’l a)n



6.5.2 Second-Order Continuous-Time
Systems

In fact, straightforward calculations using eq. (6.43)
show that, for << y2/2=0.707,|H(jw)| has a
maximum value at

o =w1-207, (6.47)

and the value at this maximum point is

1

2 e

For £>1/42 |H(U®)| | is a monotonically
decreasing function

H(jo

max




20

0dB

{=0.1

—40

20 logyg|H(jw)|

—80

Asymptotic
approximation {=0.7

07w, Wp, 10w, 100w,

w

Gain > 1 at specific frequency!

For a second-order circuit described by an
equation of the form of eq. (6.31), the quality 1s
usually taken to be 1

=3




6.5.2 Second-Order Continuous-Time

Systems |

(jo/w,) +2{(jo/w,)+1
We can, 1n addition, obtain a straight-line

approximation to ¢ H(jw) , whose exact expression
can be obtained from eq. (6.33):

oo Zg(a)/a)n)
¢ H(jw)=—tan (1—(&)/&),1)2}

H(jw)=

(6.45)
The approximation 1s

0, w<0.lo,
czH(ja))zi—Z{logm(wJ+l} 0.lo, <w<10w,, (646)
a)l’l

-7, wz10w,




0 =0.2
(=04
—m/4
3 Asymptotic
I -m/2 | approximation
.‘-\af'.
-3nw/4 |
—
| | I |
0.1w, W, 10w, 100w,
)
0, w<0.lo,
. T w
¢ H(jw) =+ _Z{IOgIOEa)J_'_l} 0.lv, <w<10w,,
n
-7, @w=10w,

Note that the approximation and the actual value again are
equal at the break frequency w =@, , where _ g4 Gay=—"



6.5.3 Bode Plots for Rational
Frequency Responses

15t and 2™ order system can be used as basic
building blocks for complex LTI systems with
rational frequency responses.

For example,

H(jw)=— 00 +/®)
(10 + jw)(100 + jw)
— (L 1+ jw)

100 1+ jw /10 1+ jw /100

const 1st-order numerator



6.5.3 Bode Plots for Rational
Frequency Responses

We can readily obtain the Bode plots for frequency
responses of the forms

H(jo)=1+ jor (6.49)

and 2
H(jo)= 1+25[ ) [f”j

) )
” ” (6.50)



6.5.3 Bode Plots for Rational
Frequency Responses

The Bode plots for egs. (6.49) and (6.50) follow

directly from Figures 6.20 and 6.23 and from the
fact that

1

20log,,|H (jw)| = —20log,, m‘

and

¢(H(jw))=—<z[ 1 ]

H(jo)



6.5.3 Bode Plots for Rational
Frequency Responses

also, consider a system function that 1s a constant

- H(jw)=K.

Since K=|Kle”’if K >0 and g =|Kle’” 1t K <0, we see
that

2010g10‘H(ja))‘ = 2Olog10‘K‘
0, if K)O0

CZH(ja)):{ﬂ KO



Example 6.4

Let us obtain the Bode plot for the frequency
response 2%10*

H(jw)= :
e) (jo) +100j+10"

First, we note that
H(jw)=2H(jw),
where H(j®) has the same form as the standard

second-order frequency response specified by eq.
(6.33). It follows that

20 logm‘H(ja)) =20log,,2+20log

Fl(ja))‘.



2x10* w,f

N - H(iw) = .
Hije) (ja))2+100ja)+104 (o) (ja))2+24’a)n(ja))+a),f

By comparing H(je) with the frequency response
in eq. (6.33), we conclude that @, =100 and { =
Y2 for Ajw) . Using eq. (6.44), we may now
specify the asymptotes for 20log,|A(jo)|

20log,, ﬁ(ja))‘ =0 for w<<100,
and
201og,,|H ( ja))‘ ~—40log,, +80  for @ >>100.

0, Jorollw,

20log,o|H (j)| = |
glo‘ (U )‘ {—4010g10w+4010g10a’n» Joro)p o,



[t follows that 20log,,|H (jw)|will have the same
asymptotes, except for a constant offset at all
frequencies due to the addition of the2010g;, 2 term
(which approximately equals 6 dB). The dashed
lines 1n Figure 6.24(a) represent these asymptotes.

I 1 R

0dB

20 log, [H(jo)]

Bl | \

_100 | | |
10° 10’ 10° 502 o
w

Since the value of { for H(jw)is less than /2 /2 , the actual
Bode plot has a slight peak near w = 100.



To obtain a plot of « H(jw) , we note that

7 H(jo)=z H(jo)
and that ¢ H(j®) has its asymptotes specified in
accordance with eq. (6.46); that 1s,

0, w<10
z H(jow)={—(z/2)[log,,(#/100)+1] 10 < @ <1,000.
— 1, @ >1,000.

The asymp;totes and the actual values forz H(jw) are
plotted with dashed and solid lines.

[ |
10° 10" 10° 10° 104



6.6.1 First-Order Discrete-Time Systems

Consider the first-order causal LTI system described
by the difference equation

y[n]—ay[n—1]= x[n], (6.51)

with ‘a‘ < 1. the frequency response of this system 1s

1 (6.52)

_ja)D

H(e’") =

l—ae
and 1ts 1mpulse response 1s

hn]=a"u[n], (6.53)



6.6.1 First-Order Discrete-Time Systems

Converge faster when
hln]=a"uln], la| is small

Also, the step response of the system 1s

1_ n+l
stl=hin)*uln)=—"—ulnl. (5 54)

-E 4
@i w»w—-dw—ap-mmd- JJ-HTMEMJ’-«WM G G -G-GO~ B0 G B-B
T
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6.6.1 First-Order Discrete-Time Systems

Converge faster when
hln]=a"uln], la| is mall

Also, the step response of the system 1s

s[n]=h[n]*u[n]= ll_—aa uln], (6.54)

=
—

— P L th
—
-1
& o
* -
s =l
S - A ST B N .

= o2
o |~



6.6.1 First-Order Discrete-Time Systems

H(”)= L 1
l—ae”™ 1-acosw+ jasinw

The magnitude and phase of the frequency response
of the first-order system 1n eq. (6.51) are,
respectively,

- |
H(e'”) = (6.55)
‘ ( )‘ (1+a° —2acosw)"”

and

CZH(ej“’):—tanl{ asmn o } (6.56)

l—acosw






1

H(e")|=

(1+a° —2acos w)

1/2

For a >0, the system attenuates high frequencies [1.e.,
H(e™)| is smaller for @ near *7 than it is for @ near 0]

Note also that for‘a ‘ small, t
minimum values, 1/(1-a) and

he maximum and
1/(1+a), of|H(e™)|are

close together 1n value, and the graph of H(e™) 1S

relatively flat.
20 log |H(e’

+ 20d

15

[
I

;‘-
ah]

o Il
| M= B ool~
o=
II’
|
h

l.l.})l
B




asin @

¢ H(e’”)=—tan™

l—acosw

=2n

Figure 6.28 Magnitude and phase of the frequency response of eq. (6.52)
for a first-order system: (a) plots for several values of a > 0; (b) plots for
several values of a < 0.



|
(1+a° —2acos w)

H(e")|=

1/2

For a<0, the system amplifies high frequencies and
attenuates low frequencies.

. 20 logyo [H(e!")|
=8

- 20dB
a=

Yy
T1
a=-3 A ——12 ‘

a:

AR A
=29 . )’\ T 4 A .. 2




asin @

¢ H(e’”)=—tan™

l—acosw

(b)

Figure 6.28 Continued



6.6.2 Second-Order Discrete-Time
Systems

Consider next the second-order causal LTI system
described by

y[n]=2rcosyn—1]+r’yn-21=x{nl, (6.57)

with 0<r<1 and 0=60=mnr. The frequency
response for this system 1s

1 (6.58)

— 2 —i2w °
J“’+re”‘)

H(e'”) =
1-2rcosfe

H(ejw) [ re’e)e JQII _]9 ]



Joy _ \ I
B 050 R |

For 8 # 0 or « , the two factors in the denominator
of H(e’?) are different, and a partial-fraction
expansion yields

A B

H(e’”) = . . . .
(e ) 1_(re]9)e—]a) +1_(re—]9)e—ja) ? (660)
where
6 .y
4-—< _ p=_°<_
2jsin 6 2jsiné (6.61)
In this case, the impulse response of the system 1s
h[n] = |A(re’®)" + B(re™*)" lu[n] (6.62)

o sin(n +1)6]

u[n].

sin @



6.6.2 Second-Order Discrete-Time

Systems |

(n+ 1)a"uln], |al < |

(1 — ageJu)

For 8 =0 or x, the two factors in the denominator of eq.
(6.58) are the same. When 6= 0,

- 1
H(e'”) = — v (6.63)
and (1 —re’ )
hn]=m+1)r'uln]. (6.64)
When 6 = =,
H(e")= 1 — (6.65)
and (1+I"€_]w)

hn]=m+1)(=r)"u[n]. (6.66)



hn]=|A(re’®)" + B(re "’y W[n]
For@#0ornx

s[n]=h[n]*u| Zh[m A[l(re]l }+B[1(re]]2, ]u[n].

l—re

(6.67)
Also, using the result of Problem 2.52, we find that for
0 =0,

1 A n
S[”]{(r_l)z o }”[”]’ (6.68)

while for 6 = x,

1 v . r n
sln]= {(r_l_l)z + (I’+1)2 (-7) +m(n+1)(_ 7”) }u[n] (669)



6.6.2 Second-Order D{jlscrete-]jime

Systems

e

1 4
[ i a=1 " =0 | B=0
. . Ul
o n a i i

hn]= {A(reje)” +B(re™ %) Ju[n] |

=r" Sin[(’H—l)é)]u[n]. = . ) a M

I
dalz] Ll

Sing “Jn fi Tl i olf ™

i 1
=3 r=3
™
JE— ° =5 1 a 1 - 1
9_ O : | E‘_E ‘ H_z [
> ; ; fosca
n 5} T

hn]=mn+1)r"uln].

e

= =

1 I
il

Pl =
-
L=

m— ]
—— i o
E— r
—

|

-} = e d
)= (n +1)(r)"uln]). b |—— |

Figure &.29 Impulse response of the second-order system of eq. (6.57) for a range
of values of rand 8. g go0 SRR b 0L TS A



6.6.2 Second-Order Discrete-Time

alul e H[n]
: il 1-‘:.

Systems .
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6.6.2 Second-Order Discrete-Time
Systems

=10

h|§"
:F‘ga
-h#
=i

1 1 -
a n\'3! a ||-?l1"' :
| |,

The second-order system given is the counterpart of
the underdamped second-order system in continuous
time, while the special case of & = 0 is the critically
damped case. For any value of 6 # 0, the impulse
response has a damped ocillatory behavior, and the
step response exhibits ringing and overshoots.



The frequency

| =0
response of this
20 logyo [H(e)
system is depicted in =3 24 dB
Figure 6.31 for a i Il
el
number of values of r k ’

and 6. From Figure

6.31, we see that a

band of frequencies 1s
amplified, and

determines how

sharply peaked the
frequency response 1s
within this band.




O=n/4

20 logyq [H(e'*)|

+ 24 dB
- 20

- 16
= ]2

4 H(e')
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O=n/2 20 logyo [H(e™)|

+ 24 dB

+ 20
_3
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O=31/4 20 logq [H(e'™)|
+ 24 dB




O=r

20 logyg |H(e!)|

+ 24 dB
- 20
=16




6.6.2 Second-Order Discrete-Time
Systems ) 1

I = e E |

It 1s also possible to consider second-order systems
having factors with real coefficients. Specifically,
consider 1

A e (1= de ™)

1
1-(d, +d,)e”’’ +d d,e

(6.70)

$

yln]- (dl T dz)J/[n —1]+d\d,y[n—-2]=x[n](6.71)



6.6.2 Second-Order Discrete-Time

Systems
H(e")= —— .
_ —jo\(1 __ —jo
(1 de )\1 d,e )
In this case,
H(e’”)= A_. + B_. : (6.72)
1-de”’” 1-d,e”’”
where
g4 B (6.73)
d—d, d,—d,
Thus,
h[n]=|Ad" + Bd. W[n), (6.74)



6.7.1 Automobile Suspension Systems

JRER IR 1 BT

Chassis \ — -
mass, M WUEMZZE&)F%/W?%
1I.
Spring, L=—3 Dashpot,
k b Road
Y[t}_k}‘rﬂ M
4
1 KEH Reference
elevation

Figure 6.32 Diagrammatic representation of an automotive suspension
system. Here, y;, represents the distance between the chassis and the road

surface when the automobile is at rest, y(t) + y, the position of the chassis
above the reference elevation, and x(f) the elevation of the road above the

reference elevation.
k and b are the spring and shock absorber constants



o’ 1

H(jw)= L =
e (jo) +2¢0,(jo)+o,  (jo/o )V +2¢(olo )+1

The differential equation governing the motion of the
chassis 1s then

d’y)  , dy(@) dx(t)
M 12 +b ” +ky(t) = kx(¢t) +b " (6.76)

k For fix mass, spring
W, =, |— constant controls natural
M  frequency

. k+bjw | |
H(]a)) = — . , B i For fix mass and fix k,
Gl M+ba)rk 260 =3 o i
2 2 . ] |
Hijo)-—2t260,00) _ (+20(olo) (o

(jo) +2lw (jo)+w. (jolw) +2(jo/o,)+1



20 {=0.05
{=01
/‘ {=0.15
Y A {=0.2
= 0dB e
=
&= =1
g 71 (04 =05
=
(]
_2{] B
_4{] .
|
W, 10w,
Frequency

Figure 6.33 Bode plot for the magnitude of the frequency response of the
automobile suspension system for several values of the damping ratio.

We want w, to be small so that the high frequency road fluctuation can
be filtered and the ride becomes smoother.



Figure 6.34 Step response of the automotive suspension system for vari-
ous values of the damping ratio (¢ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0, 1:2, 1.5, 2.0,.5.0).

But when w, decreases, the rise time increases,
since w,t is fixed for fix . This will make our

system responses slowly.
This shows that there is a time vs frequency

domain trade-off.
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Figure 6.33 Bode plot for the magnitude of the frequency response of the
automobile suspension system for several values of the damping ratio.

We want { to be small so that the low-pass filter cut-off frequency
sharply.



Figure 6.34 Step response of the automotive suspension system for vari-
ous values of the damping ratio (¢ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.2, 1.5, 2.0, 5.0).

But when  decreases, the step response
overshoots and rings a lot.

Again, this shows that there is a time vs
frequency domain trade-off.
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6.7.2 Examples of discrete-Time
Nonrecursive Filters

* The 1ssue for recursive discrete-time filter 1s the
nonlinear phase
20 logyg [H(s'") . Nonrecursive filters
o N Pros: linear phase
2 Cons: more delay element

+ 16
112




6.7.2 Examples of discrete-Time
Nonrecursive Filters

For this class of filters, the output 1s the average of
the values of the input over a finite window:

|
Mnl=—— M+1kzx[n k] (6.78)

The corresponding impulse response 1s a rectangular
pulse, and the frequency response 1s

l ol el(N=M)12] Sin[a)(M + N +1)/ 2] (6.79)

N+M+1 sin(a)/Z)

H(e'”) =




6.7.2 Examples of discrete-Time
Nonrecursive Filters
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Figure 6.35 Log-magnitude plots for the moving-average filter of eqs.
(6.78) and (6.79) for(a) M+ N +1 =33 and (b) M+ N+ 1 = 65.



6.7.2 Examples of discrete-Time
Nonrecursive Filters
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Figure 6.35 Log-magnitude plots for the moving-average filter of egs.
(6.78) and (6.79) for(a) M+ N+1 =33 and (b) M+ N +1 = 65.
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6.7.2 Examples of discrete-Time

Nonrecursive Filters

The more general form of a discrete-time
nonrecursive filter 1s

y[l’l] — Zbkx[n _k]a

To 1llustrate how adjustment of the coefficients can
influence the response of the filter, let us consider a
filter of the form of eq. (6.80), with N= M =16 and
the filter coefficients chosen to be

(sin(27% /33)

b, =+ 7k ’
0, k)32

(6.80)

k| <32
- (6.81)




« (sin(27k /33)
yln]= Zbkx[n - k], b = pra— ] S32,
k=—N

0, k[)32

The impulse response of the filter 1s

sin(27m/33) <32
h[n]=- m ’ .

2
33' '

Time-domain Ml

Real, even

noncausal

Frequency-domin 1

Real, even
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6.7.2 Examples of discrete-Time
Nonrecursive Filters
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Figure 6.37 (a) Impulse response for the nonrecursive filter of eq. (6.82);
(b) log magnitude of the frequency response of the filter.



6.7.2 Examples of discrete-Time
Nonrecursive Filters
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Figure 6.38 (Comparison, on a

linear amplitude scale, of the frequency
“  responses of (a) Figure 6.37 and

(b} (b} Figure 6.35.




6.7.2 Examples of discrete-Time
Nonrecursive Filters
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Figure 6.39 Lowpass nonrecursive filter with 251 coefficients designed to obtain the
sharpest possible cutoff.



6.7.2 Examples of discrete-Time
Nonrecursive Filters

Now define the nonrecursive LTI system resulting
from a simple N-step delay of i/n/, 1.e.,

)= Hln -] ©8

then A |n]=0 for all n<0, so that this LTI system is
causal. Furthermore, from the time-shift property for
discrete-time Fourier transforms, we see that the
frequency response of the system 1s

)=k o




6.8 Summary

Magnitude-Phase Representation

Bode Plot (log Magnitude and log frequency)
Phase Distortion & Group Delay
Time-domain Properties

Frequency-domain Properties

1st and 2"d —order Continuous-time System
1st and 2"d —order Discrete-time System

Higher-order System from 1st and 2"9-order
Systems

Automobile Suspension Systems
Nonrecursive Discrete-time System



