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6.0 Introduction
The frequency-domain characterization of an LTI 
system in terms of its frequency response represents 
an alternative to the time-domain characterization 
through convolution.  In analyzing LTI systems, it is 
often particularly convenient to utilize the Frequency 
domain because differential and difference 
equations and convolution operations in the time 
domain become algebraic operations in the 
frequency domain.
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6.0 Introduction
Moreover, concept such as frequency-selective 
filter are readily understood in frequency 
domain.
However, when designing a system, analyzing 
both time and frequency domain is typically 
required.
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

The magnitude-phase representation of the 
continuous-time Fourier transform         is 

(6.1)

連續時間傅立葉轉換的大小—相位表示法
Similarly the magnitude-phase representation of the 
discrete-time Fourier transform         is

(6.2)

離散時間傅立葉轉換的大小—相位表示法
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

we can think of X(jω) as providing us with a 
decomposition of the signal x(t) into a “sum” of 
complex exponentials at different frequencies.

X(jω)告訴我們訊號x(t)可分解成不同頻率的
複指數的和。
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

The magnitude             describes the basic frequency 
content of a signal—i.e.,           provides us with the 
information about the relative magnitudes of the 
complex exponentials that make up x(t).
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

The phase angle               , on the other hand, does 
not affect the amplitudes of the individual 
frequency components, but instead provides us 
with information concerning the relative phases 
of these exponentials. 
However, note that even magnitudes haven’t 
changed, due to change in phase angle, the 
signal in time-domain will change.
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

(6.3)
In general, changes in the phase function of X(jω) lead 
to changes in the time-domain characteristics of the 
signal x(t).
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform
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6.1 The Magnitude-Phase Representation of 
The Fourier Transform

In some instances phase distortion may be 
important, whereas in others it is not.    
Example, time reverse signal:
The corresponding effect in the frequency domain is 
to replace the Fourier transform phase by its 
negative:
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6.2  The Magnitude-Phase Representation of 
The Frequency Response of LTI Systems

The transform Y(jω) of the output of an LTI system is related to the transform X(jω) of the input to the system by the equation

連續時間LTI系統的輸出輸入傅立葉轉換和系統頻
率響應的關係
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6.2  The Magnitude-Phase Representation of 
The Frequency Response of LTI Systems

The Fourier transforms of the input          and output
of an LTI system with frequency response           

are related by
(6.4)

The effect that an LTI system has on the input 
is to change the complex amplitude of each of 
the frequency components of the signal.
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6.2  The Magnitude-Phase Representation of 
The Frequency Response of LTI Systems

The nature of the effect in more detail.  Specifically, 
in continuous time, 

(6.5)

輸入輸出在各頻率的振幅關係

and 
(6.6) 

輸入輸出在各頻率的相角關係
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6.2  The Magnitude-Phase Representation of 
The Frequency Response of LTI Systems

For this reason,              (or            ) is commonly 
referred to as the gain of the system.
故 或 )常稱為系統的「增益」。

and              is typically referred to as the phase shift
of the system.

稱為系統的「相位移」。

)( jH
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6.2.1  Linear and Nonlinear Phase 
Consider the continuous-time LTI system with 
frequency response
若頻率響應 (6.7)

so that the system has unit gain and linear phase—
i.e.,

(6.8)

則系統具有單位增益及線性相位移。
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6.2.1  Linear and Nonlinear Phase
The system with this frequency response 
characteristic produces an output that is simply a time 
shift of the input—i.e.,

(6.9)y(t)  x(t - t0 ).
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6.2.1  Linear and Nonlinear Phase
display the output when the signal is applied to a 
system with unity gain and nonlinear phase 
function—i.e.,

(6.10)
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6.2.1  Linear and Nonlinear Phase
In this case, the corresponding frequency response 
has a phase shift that is obtained by adding a linear 
phase term to              —i.e., 

(6.11)
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6.2.1  Linear and Nonlinear Phase
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6.2.1  Linear and Nonlinear Phase



6.2.2  Group Delay
A system with linear phase shift has the simple time-
shift interpretation.
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y(t) x(t - t0 ).
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6.2.2  Group Delay
By taking the band to be very small, we can accurately 
approximate the phase of this system in the band with 
the linear approximation

(6.12)

so that 
(6.13)
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6.2.2  Group Delay
The group delay at each frequency equals the 
negative of the slope of the phase at that 
frequency; i.e., the group delay is defined as 

(6.14)
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Example 6.1
Consider the impulse response of an all-pass 
system with a group delay that varies with 
frequency.  The frequency response H(jω) for 
our example is the product of three factors; 
i.e.,
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Example 6.1
Where

(6.15)
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Example 6.1
It is often useful to express the frequencies      
measured in radians per second in terms of 
frequencies       measured in Hertz, where

In this case,

i
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Example 6.1

Since the numerator of each of the factors            is 
the complex conjugate of the corresponding 
denominator, it follows that               .  
Consequently, we may also conclude that

1)( jH i
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Example 6.1

The phase for each             can be determined from eq. 
(6.15):

and
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Example 6.1
If the values of              are restricted to lie between 
–π and π, we obtain the principal-phase function 
(i.e., the phase modulo 2π), as shown in figure 
6.5(a) where we have plotted the phase versus 
frequency measured in Hertz.  Note that this 
function contains discontinuities of size 2π at 
various frequencies, making the phase function non-
differentiable at those points.
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However, the addition or subtraction of any integer 
multiple of 2π to the value of the phase at any 
frequency leaves the original frequency response 
unchanged.  Thus, by appropriately adding or 
subtracting such integer multiples of 2π from 
various portions of the principal phase, we obtain 
the unwrapped phase in Figure 6.5(b). 
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The group delay as a function of frequency may 
now be computed as

where               represents the unwrapped-phase 
function corresponding to H(jω). A plot of τ(ω) is 
shown in Figure 6.5(c). 
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Example 6.1
Observe that frequencies in the close vicinity of 
50 Hz experience greater delay then frequencies 
in the vicinity of 150 Hz or 300 Hz.  The effect of 
such nonconstant group delay can also be 
qualitatively observed in the impulse response 
(see Figure 6.5(d)) of the LTI system.
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Example 6.1
Recall that F{δ(t)} = 1.  The frequency components of the 
impulse are all aligned in time in such a way that they 
combine to form the impulse, which is, of course, highly 
localized in time.  Since the all-pass system has 
nonconstant group delay, different frequencies in the 
input are delayed by different amounts.  This 
phenomenon is referred to as dispersion.  In the current 
example, the group delay is highest at 50 Hz.  
Consequently, we would expect the latter parts of the 
impulse response to oscillate at lower frequencies near 
50Hz.  This clearly evident in Figure 6.5(d).
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Example 6.2
Nonconstant group delay is among the factors 
considered important for assessing the transmission 
performance of switched telecommunications 
networks.  In a survey involving locations all across 
the continental United States, AT&T/Bell System 
reported group delay characteristics for various 
categories of toll calls.
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Example 6.2
Figure 6.6 displays some of the results of this study for two such classes.  In particular, what is plotted in each curve in Figure 6.6(a) is the nonconstant portion of the group delay for a specific category of toll calls.
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The group delay as a function of frequency is seen to be 
lowest at 1,700 Hz and increases monotonically as we 
move away from that figure in either direction.
When the group delay characteristics illustrated in Figure 
6.6(a) are combined with the characteristics of the 
magnitude of the frequency response in figure 6.6(b), we 
obtain impulse reponses of the type shown in Figure 6.7.
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Example 6.2

The impulse response in Figure 6.7(a) corresponds to the short-distance category.  The very low- and very high-frequency components of the response occur later than the components in the mid-frequency range.  This is compatible with the corresponding group delay characteristics in Figure 6.6(a).
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6.2.3  Log-Magnitude and Phase Plots
In graphically displaying continuous-time or discrete-
time Fourier transforms and system frequency 
responses in polar form, it is often convenient to use a 
logarithmic scale for the magnitude of the Fourier 
transform.

傅立葉轉換和系統頻率響應，常用對數大小刻度
的圖形表示。
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6.2.3  Log-Magnitude and Phase Plots

from eqs. (6.5) and (6.6), which relate the magnitude 
and phase of the output of an LTI system to those of 
the input and frequency response.  Note that the 
phase relationship is additive, while the magnitude 
relationship involves the product of            and             
.  Thus, if the magnitudes of the Fourier transform 
are displayed on a logarithmic amplitude scale, eq. 
(6.5) takes the form of an additive relationship, 
namely,

)( jX)( jH
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6dB  20 log10 2  6.02..

6.2.3  Log-Magnitude and Phase Plots
For example, on a linear scale, the detailed magnitude 
characteristics in the stop band of a frequency-
selective filter with high attenuation are typically not 
evident, whereas they are on a logarithmic scale.
The typical log amplitude scale used is in units of 
20log10, referred to as decibels (dB).
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6.2.3  Log-Magnitude and Phase Plots
If h(t) is real, then           is an even function of ω
and                is an odd function of ω.  Because of 
this , the plots for negative ω are superfluous and 
can be obtained immediately from the plots for 
positive ω.
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6.2.3  Log-Magnitude and Phase Plots
The use of a logarithmic frequency scale offers a 
number of advantages in continuous time.  For 
example, it often allows a much wider range of 
frequencies to be displayed than does a linear 
frequency scale.  In addition, on a logarithmic 
frequency scale, the shape of a particular response 
curve doesn’t change if the frequency is scaled.
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6.2.3  Log-Magnitude and Phase Plots
Furthermore for continuous-time LTI systems described by differential equations, an approximate sketch of the log magnitude vs. log frequency can often be easily obtained through the use of asymptotes.
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6.2.3  Log-Magnitude and Phase Plots
In discrete time, the 
magnitudes of Fourier 
transforms and 
frequency responses 
are often displayed is 
dB for the same 
reasons that they are in 
continuous time. 
However, log scale in 
frequency is not often 
used since they are 
periodic with period 2π
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters

As introduced in Chapter 3, a continuous-time ideal 
lowpass filter has a frequency response of the form 

(6.17)

This is illustrated in Figure 6.10(a).  Similarly, a 
discrete-time ideal lowpass filter has a frequency 
response

(6.18)
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters
連續時間理想
低通濾波器的
頻率響應(配合
(6.17)式)

離散時間理想
低通濾波器的
頻率響應(配合
(6.18)式)
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters

An ideal filter with 
linear phase over the 
passband, as illustrated 
in Figure 6.11, 
introduces only a 
simple time shift 
relative to the response 
of the ideal lowpass 
filter with zero phase 
characteristic.
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters

In particular, the impulse response corresponding to 
the filter in eq. (6.17) is 

(6.19)

連續時間理想低通濾波器的脈衝響應

Similarly, the impulse response of the discrete-time 
ideal filter in eq. (6.18) is

(6.20)

離散時間理想低通濾波器的脈衝響應
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters

Inverse relation:
Note that in both contiunous and discrete time, the 
width of the filter passband is proportional to

,while the width of the main lobe of the impulse 
is proportional to        .

c
c/1
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6.3  Time-Domain Properties of Ideal 
Frequency-Selective Filters
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The step responses s(t) of the ideal lowpass filters in 
continuous time
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The step responses s(t) of the ideal lowpass filters in 
continuous time
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6.4 Time-Domain and Frequency-Domain 
Aspects of Nonideal Filters

The characteristics of ideal filter are not always 
desirable in practice. For example, in case where the 
spectra of two signal overlap slightly. A filter with 
gradual transition from passband to stopband is 
preferable.

444



6.4 Time-Domain and Frequency-Domain 
Aspects of Nonideal Filters

Moreover, even in cases where the ideal frequency-
selective characteristics are desirable, they may not 
be attainable. For example, idea filter is noncausal 
which is not attainable for real-time system.

Moreover, it costs more to implement a more precise 
filter.
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6.4 Time-Domain and Frequency-Domain 
Aspects of Nonideal Filters

For all of these reasons, nonideal filters are of 
considerable practical importance, and the 
characteristics of such filters are frequently specified 
or quantified in terms of several parameters in both 
the frequency and time domain.
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6.4 Time-Domain and Frequency-Domain 
Aspects of Nonideal Filters
In addition to the 
specification of magnitude 
characteristics in the 
frequency domain, in 
some cases the 
specification of phase 
characteristics is also 
important. In particular, a 
linear or nearly linear 
phase characteristic over 
the passband of the filter 
is desirable.
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6.4 Time-Domain Aspects of Nonideal Filters
Rise time tr of the step function –i.e., the interval over which the step response rises toward its final value. If ringing is present, then there are three other quantities that are often used to characterize the nature of these oscillations:
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r

st

st
the overshoot △ of the final value of the step response, the ringing frequency     ,and the settling time ts—i.e., the time required for the step response to settle to within a specified tolerance δ of its final value. 



Trade-off & Example 6.3
There may be a trade-off between the width of the 
transition band and the settling time of the step 
response.
Let us consider two specific lowpass filter designed 
to have a cutoff frequency of 500 Hz.  Each filter 
has a fifth-order rational frequency response and a 
real-valued impulse response.  The two filters are of 
specific types, one referred to as Butterworth filters 
and the other as elliptic filters.  Both of these classes 
of filters are frequently used in practice.
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Example 6.3
The magnitudes of the 
frequency responses of 
the two filters are 
plotted (versus 
frequency measured in 
Hertz) in Figure 
6.18(a).  We take the 
transition band of each 
filter as the region 
around the cutoff 
frequency (500 Hz) 
where the frequency 
response magnitude is 
neither within .05 of 
unity magnitude

446

(the passband ripple) nor within .05 
of zero magnitude (the stopband 
ripple).  From Figure 6.18(a), it can 
be seen that the transition band of the 
Butterworth filter is wider than the 
transition band of the elliptic filter.



Example 6.3
The price paid for the 
narrower transition 
band of the elliptic 
filter may be observed 
in Figure 6.18(b), in 
which the step 
responses of both 
filters are displayed.  
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We see that the ringing in the elliptic filter’s step response is 
more prominent than for the Butterworth step response.  In 
particular, the settling time for the step response is longer in the 
case of the elliptic filter.



6.5  First-Order and Second-Order 
Continuous-Time Systems

Higher-order system is typically implemented by 
combining first-order and second-order systems 
in cascade or parallel arrangements. Hence, we 
need to understand the time and frequency 
domain properties of them.
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6.5.1  First-Order Continuous-Time 
Systems

The differential equation for a first-order system is 
often expressed in the form

(6.21)

The corresponding frequency response for the first-
order system is

(6.22)
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6.5.1  First-Order Continuous-Time 
Systems
and the impulse response is

(6.23)

The step response of the system 
is

(6.24)

,1
1)( +  jjH
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6.5.1  First-Order Continuous-Time 
Systems

Specifically, from eq. (6.22), we obtain
(6.25)

From this we see that for              ,the log magnitude is approximately zero, while for             ,the log magnitude is approximately a linear function of                .  That is,
(6.26)

and 
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6.5.1  First-Order Continuous-Time 
Systems

For the first-order 
system, the low- and 
high-frequency 
asymptotes of the log 
magnitude are straight 
lines, where the 
magnitude decrease 
20dB for every 10 
times ω
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The point at which the slope of the approximation 
changes is precisely ω = 1/τ.
ω = 1/τ referred to as break frequency
note that at ω = 1/τ the two terms [          and 1] in the 
argument of the logarithm in eq. (6.25) are equal.

(6.28)

referred to as 3-dB point.
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6.5.1  First-Order Continuous-Time 
Systems

It is also possible to obtain a useful straight-line 
approximation to 

(6.29)
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6.5.1  First-Order Continuous-Time 
Systems

It is also possible to obtain a useful straight-line 
approximation to 

(6.29)
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6.5.1  First-Order Continuous-Time 
Systems
Note that this approximation 
decreases linearly (from 0 to –π/2) 
as a function of               in the 
range

the approximation agrees with the 
actual value of 

at the break frequency ω 
= 1/τ, at which point
(6.30)
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6.5.1  First-Order Continuous-Time 
Systems
As we make τ smaller, we speed 
up the time response of the 
system [i.e., h(t) becomes more 
compressed toward the origin, 
and the rise time of the step 
response is reduced] and we 
simultaneously make the break 
frequency large [i.e., H(jω)
becomes broader, since                
for a larger range of 
frequencies]. .1
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6.5.2  Second-Order Continuous-Time 
Systems

The linear constant-coefficient differential equation 
for a second-order system is

(6.31)

this type of equations arise in many physical 
system such as
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In the figure, the input is the applied force x(t) and the 
output is the displacement of the mass y(t) from 
some equilibrium position at which the spring exerts 
no restoring force.
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The frequency response for the second-order system 
of eq. (6.31) is

(6.33)
The denominator of H(jω) can be factored to yield

where

(6.34)

452

.)(2)()( 22
2

nn
n

jjjH 
 ++

d 2y(t)
dt 2 + 2n

dy(t)
dt +n

2y(t) n
2x(t)

,))(()(H
21

2

cjcjj n -- 


.1
,1

2
2

2
1

---
-+-




nn

nn
c
c



For            ,          and         are unequal, and we can 
perform a partial-fraction expansion of the form

(6.35)
where

(6.36)

From eq. (6.35), the corresponding impulse response for the system is
(6.37)

H ( j)  M
j - c1

- M
j - c2

,

M  n
2  2 -1.
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6.5.2  Second-Order Continuous-Time 
Systems

If             , then                        , and 
(6.38)

From Table 4.2, 

we find that in this case the impulse response is
(6.39)
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Note from eqs. (6.37) and (6.39), that h(t)/      is a 
function of        .   tn n

n


452h(t) n
2te-ntu(t).(6.39)
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we see that for 0＜ζ＜1 ,
and       are complex, and we can rewrite the 

impulse response in eq. (6.37) in the form

(6.40)
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we see that for ζ＞1 ,
and       are real and negative, and we can rewrite 

the impulse response in the form

which is the difference between two decaying 
exponentials.
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The case of ζ = 1, when              , is called the critically 
damped case.

453
21 cc 

h(t )
n

nte-ntu(t) h(t)
n

 e-nt

1- 2 sin(n 1- 2 )t u(t).

h(t)
n

 1
2  2 -1 exp (- +  2 -1)nt - exp (- -  2 -1)nt  u(t)

under-damped

over-damped



6.5.2  Second-Order Continuous-Time 
Systems

The step response of a second-order system can be 
calculated from eq. (6.37) for ζ ≠ 1.  This yields the 
expression

(6.41) 

For ζ = 1, we can use eq. (6.39) to obtain

(6.42)
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Fot  0<ζ <1, overshoot and ringing.
For ζ = 1, the fastest response (i.e., the shortest rise time) that is possible without overshoot and thus has the shortest settling time.
Fot  1<ζ , the bigger the ζ , the longer the rise/settling time 
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6.5.2  Second-Order Continuous-Time 
Systems

Furthermore, eq. (6.33) can be rewritten as

Figure 6.23 depicted the Bode plot of the frequency response given in eq. (6.33) for several values of ζ .
(6.41)

From this expression, it follows that 
(6.42)
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6.5.2  Second-Order Continuous-Time 
Systems
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6.5.2  Second-Order Continuous-Time 
Systems

In fact, straightforward calculations using eq. (6.43) 
show that, for ζ＜ has a 
maximum value at

(6.47)

and the value at this maximum point is

(6.48)

For ζ>                    , is a monotonically 
decreasing function
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Gain > 1 at specific frequency!
For a second-order circuit described by an 
equation of the form of eq. (6.31), the quality is 
usually taken to be
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6.5.2  Second-Order Continuous-Time 
Systems

We can, in addition, obtain a straight-line 
approximation to               , whose exact expression 
can be obtained from eq. (6.33):

(6.45)
The approximation is 

(6.46)
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Note that the approximation and the actual value again are 
equal at the break frequency              , where
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6.5.3  Bode Plots for Rational 
Frequency Responses

1st and 2nd order system can be used as basic 
building blocks for complex LTI systems with 
rational frequency responses.
For example, 
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6.5.3  Bode Plots for Rational 
Frequency Responses

We can readily obtain the Bode plots for frequency 
responses of the forms

(6.49)
and

(6.50)
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6.5.3  Bode Plots for Rational 
Frequency Responses

The Bode plots for eqs. (6.49) and (6.50) follow 
directly from Figures 6.20 and 6.23 and from the 
fact that

and
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6.5.3  Bode Plots for Rational 
Frequency Responses

also, consider a system function that is a constant 
gain

Since               if K＞0 and               if K＜0, we see 
that
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Example  6.4
Let us obtain the Bode plot for the frequency 
response

First, we note that 

where            has the same form as the standard 
second-order frequency response specified by eq. 
(6.33).  It follows that
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By comparing           with the frequency response 
in eq. (6.33), we conclude that               and ζ = 
½ for          .  Using eq. (6.44), we may now 
specify the asymptotes for                    :

and
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It follows that                      will have the same 
asymptotes, except for a constant offset at all 
frequencies due to the addition of the               term 
(which approximately equals 6 dB).  The dashed 
lines in Figure 6.24(a) represent these asymptotes.
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2log20 10
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Since the value of ζ for            is less than            , the actual 
Bode plot has a slight peak near ω = 100.
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To obtain a plot of                  , we note that
and that               has its asymptotes specified in 
accordance with eq. (6.46); that is,

The asymptotes and the actual values for              are 
plotted with dashed and solid lines.
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6.6.1  First-Order Discrete-Time Systems
Consider the first-order causal LTI system described 
by the difference equation

(6.51)

with      ＜1. the frequency response of this system is
(6.52)

and its impulse response is
(6.53)
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6.6.1  First-Order Discrete-Time Systems

Also, the step response of the system is
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6.6.1  First-Order Discrete-Time Systems

Also, the step response of the system is
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6.6.1  First-Order Discrete-Time Systems

The magnitude and phase of the frequency response of the first-order system in eq. (6.51) are, respectively,
(6.55)

and
(6.56)

461

2/12 )cos21(
1)( 
aaeH j -+

.cos1
sintan)( 1 



-- - 


a

aeH j

H (e j )  1
1- ae- j  1

1- acos + jasin ,





For a＞0, the system attenuates high frequencies [i.e.,                  adfadfis smaller for ω near ±π than it is for ω near 0] Note also that for      small, the maximum and minimum values, 1/(1-a) and 1/(1+a), of           are close together in value, and the graph of               is relatively flat.
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For  a＜0, the system amplifies high frequencies and attenuates low frequencies.

464
2/12 )cos21(

1)( 
aaeH j -+



465
.cos1

sintan)( 1 



-- - 


a

aeH j



6.6.2  Second-Order Discrete-Time 
Systems

Consider next the second-order causal LTI system 
described by

(6.57)

with 0＜r＜1 and 0≦θ≦π.  The frequency 
response for this system is

(6.58)
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For θ ≠ 0 or π , the two factors in the denominator 
of             are different, and a partial-fraction 
expansion yields

(6.60)
where

(6.61)
In this case, the impulse response of the system is

(6.62)
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6.6.2  Second-Order Discrete-Time 
Systems

For θ = 0 or π, the two factors in the denominator of eq. (6.58) are the same.  When θ= 0,
(6.63)

and
(6.64)

When θ = π,
(6.65)

and
(6.66)
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For θ ≠ 0 or π

(6.67)
Also, using the result of Problem 2.52, we find that for 

θ = 0,

(6.68)

while for θ = π,

(6.69)

s[n] h[n]*u[n] h[m]
m0

nå  A 1- re j n+1

1- re j






+B 1- re- j n+1

1- re- j














u[n].
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6.6.2  Second-Order Discrete-Time 
Systems
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= 0;
h[n] (n+1)rnu[n].

= p;
h[n] (n+1)(-r)n u[n].



6.6.2  Second-Order Discrete-Time 
Systems
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= 0;
s[n] 1

r -1 2 - r
r -1 2 rn + r

r -1 n+1 rn



u[n],

= p;
s[n] 1

r +1 2 + r
r +1 2 (-r)n + r

r +1 n+1  -r n



u[n].
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6.6.2  Second-Order Discrete-Time 
Systems

The second-order system given is the counterpart of 
the underdamped second-order system in continuous 
time, while the special case of θ = 0 is the critically 
damped case. For any value of θ ≠ 0, the impulse 
response has a damped ocillatory behavior, and the 
step response exhibits ringing and overshoots.

467



The frequency 
response of this 
system is depicted in 
Figure 6.31 for a 
number of values of r
and θ. From Figure 
6.31, we see that a 
band of frequencies is 
amplified, and r
determines how 
sharply peaked the 
frequency response is 
within this band.
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θ=0



470Θ=π/4



471Θ=π/2



472Θ=3π/4



473Θ=π



6.6.2  Second-Order Discrete-Time 
Systems

It is also possible to consider second-order systems 
having factors with real coefficients.  Specifically, 
consider

(6.70)
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y[n]- d1 + d2  y[n-1]+ d1d2y[n- 2] x[n](6.71)
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6.6.2  Second-Order Discrete-Time 
Systems

In this case,
(6.72)

where
(6.73)

Thus,
(6.74)
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6.7.1  Automobile Suspension Systems
474

汽車懸吊系統的機
械元件結構示意圖

k and b are the spring and shock absorber constants 



The differential equation governing the motion of the 
chassis is then

(6.76)
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,)()()()()(
2

2

dt
tdxbtkxtkydt

tdybdt
tydM +++

H ( j) k + bj
( j)2 M + b( j)+ k ,

H ( j) n
2 + 2n ( j)

( j)2 + 2n ( j)+n
2  (1+ 2 ( j /n ))

( j /n )2 + 2 ( j /n )+1(6, 77)

n  k
M

2n  b
M

.)(2)()( 22
2

nn
n

jjjH 
 ++  1

( j /n )2 + 2 ( j /n )+1,

For fix mass, spring 
constant controls natural 
frequency
For fix mass and fix k, 
shock absorber constant 
controls damping ratio
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We want ωn to be small so that the high frequency road fluctuation can 
be filtered and the ride becomes smoother. 



476

But when ωn decreases, the rise time increases,
since ωnt is fixed for fix ζ. This will make our 
system responses slowly.
This shows that there is a time vs frequency 
domain trade-off. 



475

We want ζ to be small so that the low-pass filter cut-off frequency  
sharply.



476

But when ζ decreases, the step response 
overshoots and rings a lot.
Again, this shows that there is a time vs 
frequency domain trade-off. 



Active Filter



 The issue for recursive discrete-time filter is the 
nonlinear phase

6.7.2 Examples of discrete-Time 
Nonrecursive Filters

Nonrecursive filters
Pros: linear phase
Cons: more delay element 



6.7.2 Examples of discrete-Time 
Nonrecursive Filters

For this class of filters, the output is the average of 
the values of the input over a finite window:

(6.78)

The corresponding impulse response is a rectangular 
pulse, and the frequency response is

(6.79)
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6.7.2 Examples of discrete-Time 
Nonrecursive Filters
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6.7.2 Examples of discrete-Time 
Nonrecursive Filters
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6.7.2 Moving average in Dow Jones 
index

479



4796.7.2 Moving average in Dow Jones 
index

51 days moving average



4796.7.2 Moving average in Dow Jones 
index

100 days moving average



6.7.2 Examples of discrete-Time 
Nonrecursive Filters

The more general form of a discrete-time nonrecursive filter is
(6.80)

To illustrate how adjustment of the coefficients can influence the response of the filter, let us consider a filter of the form of eq. (6.80), with N = M =16 and the filter coefficients chosen to be
(6.81)
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The impulse response of the filter is

(6.82)
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6.7.2 Examples of discrete-Time 
Nonrecursive Filters

480



6.7.2 Examples of discrete-Time 
Nonrecursive Filters
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Truncated Sinc

Moving Average



6.7.2 Examples of discrete-Time 
Nonrecursive Filters
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6.7.2 Examples of discrete-Time 
Nonrecursive Filters

Now define the nonrecursive LTI system resulting 
from a simple N-step delay of h[n], i.e.,

(6.83)

then                for all n＜0, so that this LTI system is 
causal.  Furthermore, from the time-shift property for 
discrete-time Fourier transforms, we see that the 
frequency response of the system is

(6.84)
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 Magnitude-Phase Representation
 Bode Plot (log Magnitude and log frequency)
 Phase Distortion & Group Delay
 Time-domain Properties
 Frequency-domain Properties
 1st and 2nd –order Continuous-time System
 1st and 2nd –order Discrete-time System
 Higher-order System from 1st and 2nd-order 

Systems
 Automobile Suspension Systems
 Nonrecursive Discrete-time System

6.8  Summary


