Chapter 5
The Discrete-Time Fourier
Transform

Min Sun



5.0 Introduction

In the chapter, we take advantage of the similarities
between continuous-time and discrete-time Fourier
analysis by following a strategy essentially identical

to that used 1n Chapter 4.
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5.1.1 Development of the Discrete-Time
Fourier Transform

Consider a general sequence x/n/ that 1s of finite
duration. That is, for some integers &V, and NV, , x/n]
= 0 outside the range — N, <n< N, . A signal of this
type 1s 1llustrated in Figure 5.1(a).

x[n]




5.1.1 Development of the Discrete-Time
Foiirier Tranefnrm

x[n]

(@)
From this aperiodic signal, we can construct a

periodic signal %[n] for which x/#/ 1s one period, as

indicated in Figure 5.1(b).

X[n]




5.1.1 Development of the Discrete-Time
Fourier Transform

1 _ .
ak _ N Zx[n]e jk(27/N)n
n=(N) (5.2)

Since x[n]=%[n]over a period that includes the
interval —-~N, <rn< N, , 1t 1s convenient to choose the
interval of summation in eq. (5.2) to include this
interval, to that¥[»] can be replaced by x/n/ 1n the
summation. Therefore,

N2 1 +00
k2! k2!
Zx[n]e SRR IN)n :N Zx[n]e sezmion.

g =L
‘ Nn:—Nl n=—00
(5.3)



5.1.1 Development of the Discrete-Time
Fourier Transform 1 <

a, = ~ Z x[n]e " (5.3)

n=—ao

Where in the second equality in eq. (5.3) we
have used the fact that x/n] is zero outside the
interval =N, <n<N, . Defining the function

X(e’) = Z e, (5.4)

we see that the Coefflc;lents a, are proportional

to samples of X(e’), i.e.,

1 |
a, =— X (e”™),

N (5.5)

X(eja)+27z) _ Z x[n]e—j(w+27z)n _ Z x[n]e—ja)ne—j27m :X(eja))

N=—00 N=—00



5.1.1 Development of the Discrete-Time
Fourier Transform

. 1 -
x[n] = E ae’"(5.1) a, = —X(ejkwo )(5.5)
k=(N) N
Where @,=2z/N s the spacing of the samples

in the frequency domain. Combining egs.

(5.1) and (5.5) yields

X[n]= Z iX(ejkw0 Ye k", (5.6)
=y V

Since o,=27/N , or equivalently, 1/N=w,/2x
eq. (5.6) can be rewritten as

X Jjkw, ]ka)on .
Tz kZ (e7)e 5.7)



5.1.1 Development of the Discrete-Time
Fourier Transform

ZX(e]ka)o )e]ka)on
27z k=

As N -, X[nl=xn] and eq. (5.7) becomes

x[n] =L X(e’”)e'"dw,
27[ 2r

& N oo X[ an] B[ fGx[n]Ex ™) B R
Since X(j*)¢’” is periodic with period 217, the
iInterval of integration can be taken as any
interval of length 217. |

x[n]=— X(e”’)e’“’”da)(ag)

272- 2z

spectrum X(e’”) = Zx[n]e‘j “,



5.1.1 Development of the Discrete-Time
Fourier Transform

As our derivation indicates, the discrete-time
Fourier transform shares many similarities with
the continuous-time case. The major
differences between the two are the periodicity
of the discrete-time transform x(¢*) and the
finite interval of integration (2m) in the
synthesis equation.

1 12 wn +00 ;
x[n]= pys IZ”X(e] )’ dow, x(t) = i j—oo X(jw)e’”" dw(4.8)

X(e")= ix[n]e‘f“’”.(w) X(jw)= j f:x(t)e-fwfdz(4.9)

n=—o0



5.1.1 Development of the Discrete-Time
Fourier Transform
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Figure 5.3 (a) Discrete-time signal x [7]. (b) Fourier transform of x| a].
Mote that Xi{e*) is concentrated near e = 0, =2, ~4ar, ... (C) Discrete-
time signal x(n]. (d) Fourier transform of x:[n]. Note that Xz(e™) is concen-
trated near w = £, =3, ...,



Example 5.2
Let

x[n]=a", ‘a‘ <1.
This signal is sketched
for 0<a<1 in Figure
5.5(a). Its Fourier
Transform is obtained
from eq. (5.9):

x[n]

? 9
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(a)

1
xln|=—
[7] S

X(e'”) = Zx[n]e‘j“’”.

n=—0o0

X(e’”)e'"dw,
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Example 5-2 a+ar+ar’ +ar®+ -+ ar" ' = Z ar* =a
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00 1 % w
X )= S+ 3 ate ™ = 3 ey + 3 (ae”y
n=0 Nn=-00 n=0 n=1
_ 1 + ae’” 1-a’
1—ae™”

1—ae’” 1-2acos(w)+a’ X(e")

n (1 +a)/(1 —a}r :

(1—a)/(1+a)

—2n 0 2m w
(b)

Figure 5.5 (a) Signal x[n] = a" of Example 5.2 and (b) its Fourier trans-
form (0 <a<1).



5.1.3 Convergence Issues Associated with
the Discrete-Time Fourler Transform

X() = Z le 7/ (5.9)

N=—00

Specifically, eq. (5.9) will converge either if x[n]
IS absolutely summable, that ,is

Z\x ] <o, (5.13)
FEXN] S T BIIELAN T SEEA T -

or if the sequence has finite energy, that is,

Z\x | <o o
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5.1.3 Convergence Issues Associated with
the Discrete-Time Fourier Transform

x[n]= 1 X(e)e'"dw
272- 2
In particular, if we approximate an aperiodic
signal x[n] by an integral of complex
exponentials with frequencies taken over the

interval lo|<w | i.e.,

x[n] I X ()’ dw. (5.15)

27 W

when W= > x[n] equals *n] in Eq. 5.15



—+00

Example 5.4 x(*)= ) x[nle?".(5.9)

Let x/n] be the unit impulse; that is,
x[n]=0o[n].

In this case the analysis equation (5.9) is
easily evaluated, yielding

X(ej”)zl.



Example 5.4

In other words, just as in continuous time, the
unit impulse has Fourier transform
representation consisting of equal contributions
at all frequencies. If we then apply eq.(5.15) to
this example, we obtain

Jow  _—joW
f[n]:i w eja)nda):LLe]a)n KV _ e e
27" 271 jn 27 jn
_sinWn W sinWn (5.16)

n 7 Wn



Al W = 31/8
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x[n] W = 3n/4
X[ﬂ] W = n/2
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Figure 5.7  Approximaltion to the unit sample obiained as in eq. (5.16) using complex
exponentials with frequencies |w| = W: (a) W = m/4; (b) W = 3w/8: (¢) W = =/2;
(d) W = 3n/4; () W = 7x/8; () W = . Note that for W = =, ¥[n] = &[n].



5.2 The Fourier Transform for Periodic
Signals

As 1n the continuous-time case, discrete-time
periodic signals can be incorporated within the
framework of the discrete-time Fourier transform by
interpreting the transform of a periodic signal as an
impulse train in the frequency domain.

To derive the form of this representation, consider the
signal .
x[n]=e’" (5.17)
In continuous time, the FT of €/®%is an impulse at

o=w,. However, DTFT must be periodic with period
27



5.2 The Fourier Transform for Periodic
Signals

The Fourier transform of x/n/=¢/*" is the impulse
train

X(e”) = i 2ro(w—(w, +27l)),

[=—00

(5.18)

X (el

21

‘ ' ‘ ‘ l - Figure 5.8 Fourier transform of

(wg — 4m) (g — 2m) @ (wg + 2) (wg + 4m) x[n] = ei",




5.2 The Fourier Transform for Periodic
SINals ooy = 3" 2 28— (@, +241),

[=—o0

In order to check the validity of this expression,
we must evaluate its inverse transform.
Substituting eq. (5.18) into the synthesis
equation (5.8), we find that

1 o 1 i |
— | X()e"dw=— 20w —w, —2x)e’"dw.
— |, ") — |, 2 2m0—o,~2a)

[=—00



5.2 The Fourier Transform for Periodic
SINals ooy = 3" 2 28— (@, +241),

[=—o0

If the interval of integration chosen includes
the impulse located at @, + 277, then

X[n] = L X(eja))eja)ndw _ ej(a)0+27rr)n _ eja)on
272- 2 .

X (el

21

‘ ' ‘ ‘ l - Figure 5.8 Fourier transform of

(wg — 4m) (g — 2m) @ (wg + 2) (wg + 4m) x[n] = ei",




5.2T

ne Fourier Transfomw for Periodic Signals

x[n]=e " <> X(e”)= D 2n5(w—(w, +27l))

[=—o0

Now consider a periodic sequence x[n] with period N
and with the Fourier series representation

x[n] _ Zakejk(27z/N)n.
k=(N)

(5.19)
In this case, the Fourier transform is
. +00 27Zk
X(”)= ) 2m 5(0)——}
kzw ' N (5.20)

so the FT of periodic signal can be directly constructed
from FS coefficients

X[n]H e T TR A (R R I R B E 0T




5.2 The Fourier Transform for Periodic

Signals |
x[n]= Z akejk(zﬂ/N)”,
k=(N)

In particular, suppose that we choose the
interval of summation in eq. (5.19) as k
=0,1,..., N-1, so that

Jj(27m/N)n j2(27n/N)n

x|ln]l=a,+ae +a,e
J(N-1)(27/N)n

(5.21)

+...+a,_ e



5.2 The Fourier Transform for Periodic

Signals
a,;w,=k(2x/N)
, +00
x[n]=e’""" x(")=>) 278w~ (w,+2xl)),
[=—o0
2mag = 2ma_y 2mag 2mag = 2way
21 0 @ 2T w

| | |

CRE #) o)

(o)




5.2 The Fourier Transform for Periodic
Signals

(in-0 %) %) (n-02)
.Y ' } &
2may_q = 2ma_ 2may_q = 2ma_, 2may ¢
(c)
2ma_y 27ay 2mray
2ma_piq 2may | ‘ 2maN 14
m... LIL T
;-zw l, 0 ‘ 27
2ma_y _ 1 2wa 4 2may 4
(d)

X(ej”)—ilxjvi:v_ 2ra,d ( Zﬂkj ZZﬂ'dk (

[=—0 k=IxN k=—c0

27zk



Example 5.5

J@yn.

X(e”) = i 20w —(w, +27l)),

[=—00

xln]=e

Consider the periodic signal

1 | , 27
x[n]=coswn=—e’"" +—e’",  with @,=".

2 > (5.22)
From eq. (5.18), we can immediately write

X ()= Zﬂ5(a)———27zlj+ Zﬂﬁ(a)Jr——Zﬂlj

o (5.23)



Example 5.5

That 1s,

And x(e’”) repeats periodically with period of 217, as
illustrated in Figure 5.10.



Example 5.5

X(e!)

P tl1 b1

— 27T —wg 0 g 2m

(—27—wg) (—27+wg) (2m—wg) (27 +wg)

Figure 5.10 Discrete-time Fourier transform of x[n] = c0S wyn.



5.3 Properties of the Discrete-Time
Fourier Transform

By comparing this table with Table 4.1, we can
get a clear picture of some of the similarities
and differences between continuous-time and
discrete-time Fourier transform properties.

LLiERA .1 5.1 R e A ey ] EAL g gy i P (89T
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5.3 Properties of the Discrete-Time
Fourier Transform

In the following discussions, it will be convenient to
adopt notation similar to that used in Section 4.3

to indicate the pairing of a signal and its transform.
That is,

{7 T X (') = Fi{x{n]},

S A I TR

x[n]=F" {X(ej” )},

i Hop L EL A 5]

X e X(e”)



5.3.1 Periodicity of the Discrete-Time

Fourier Transform

As we discussed 1n Section 5.1, the discrete-time
Fourier transform is always periodic in w with

period 21T; I.€.,

X (') = X (e/). (5.28)

X(e™),ph B 38 HA pfrE -

=

This 1s 1n contrast to CTFT

AHA 21T ©



5.3.2 Linearity of the Fourier Transform

If

xl[”]<_F—>X1(ejw)

And

x,[n] < X, (e’),

Then

ax,[n]+bx,[n]«——— aX,(e’*)+bX,(e’”).

G EE(E

B M)

(5.29)



5.3.3 Time Shifting and Frequency Shifting

It x[n]<L>X(ej“’),
Then F — joon j

xln—n, |[<——e """ X(e

[n—n] (™) (5.30)
And

e’ x[n]«"—>X ("™, (531

As a consequence of periodicity in frequency domain,
there exist a special relation between 1deal low-pass
and high-pass filters.



Example 5.7 e

In Figure 5.12(a) we have

depicted the frequency e I °n
response H,, (") of a @

lowpass filter with cutooff Higle! ™)
frequency @, , while in JF1

Figure 5.12(b) we have | , , ,
displayed H,,(e"™) -- that is, e o _\(ﬂ_wc) L_"Tw) o

the frequency response #,,(¢’*)
shifted by one-half period

(by m).

Since high frequencies in discrete time are concentrated near
1T (and other odd multiples of 1), the filter in Figure 5.12(b) is
an ideal highpass filter with cutoff frequency z-g_ . Thatis,

th (eja)) — Hlp (ej(a)_ﬂ) )



J@oh F J(o—awy)
Example 5.7 e x[n]< > X(e )

As we can see from eq. (3.1222), and as we will
discuss again 1n Section 5.4, the frequency response
of an LTI system 1s the Fourier transform of the
impulse response of the system. Thus, if Aj,[n| and

hhp[n] respectively denote the impulse response of the
lowpass and highpass filter, and we know

H,(e) and H,(e")=H, (™)
the frequency-shifting property imply that

h,,[n]=¢e"h,[n](5.33)

=(=1)"  h,[n].(5.34)



x4[n]

La,

(@)

%a[n]

(c)

Figure 5.3

Note that Xi(e*') is concentrated near e

Xq(e™)

27 —m 0 3 2 i
)]
xz':ﬁ‘iw}
I I | I | | | i
2r - 0 = 2w w
(d)

(a) Discrete-time signal x,[n]. (b) Fourier transform of x;[n].

= 0, =27, =4, .... (c) Discrete-

time signal x;[n]. (d) Fourier transform of x;[n]. Note that X;(e™) is concen-

trated near w = *w, +3w



5.3.4 Conjugating and Conjugate Symmetry

If
x[n]<Lt— X (e’?),

Then
X [n]«—— X" (e™). (5.35)
Also, 1f x/n/ 18 real valued, 1ts transform X (/)18

conjugate symmetric. That is

X=X () if x[n] is real (5.36)

Ex[n] REETT - Hlx (e EaILHeEEiEE -



5.3.4 Conjugating and Conjugate Symmetry

From this, it follows that%e{ X(e’)}is an even
function of @and 9n{x(™)}is an odd function of @
. Similarly, the magnitude of X(e’?) is an even
function and the phase angle 1s an odd function.
Furthermore,

w{x[n]}@ ‘J?e{X(ej”)}
and

od{x[n]}@ j&m{X(ejw)},



5.3.5 Differencing and Accumulation

From the linearity and time-shifting properties,
the Fourier transform pair for the first-difference
signal x[n]-x[n—1]Is given by

x[n]—x[n-1]<«E—(1-e7*) X (e’).

(5.37)
= EE
Next, consider the signal
n|= x| m|.
ynl= D alm] -

m=—a0



5.3.9 DiIferencing and Accumulation

y[nl= D x[m].

m=—a0

Since y[n]-y[n—1]=x[n], we might conclude that
the transform of y/n] should be related to the
transform of x/n] by division by (1—¢™/*)

This is partly correct, but as with the
continuous-time integration property given by
eq. (4.32), there is more involved. The precise
relationship is

ix[m](—F—> l_jw X (&) + X (e’ i&(a)—Zﬂk).

m=—o0 l-e

k=—0

(5.39)



—+00

Example 5.8  x()= 2. x[n]e”".(5.9)

n=—0o0

Let us derive the Fourier transform X(e’”) of the unit
step x[r]=u[r] by making use of the accumulation
property and the knowledge that

g[n]=o[n]«——G(e’*) =1.

From Section 1.4.1 we know that the unit step 1s the
running sum of the unit impulse. That 1s,

)= Y glm]

m=—a0



Example 5.8

Taking the Fourier transform of both sides and using
accumulation yields

1 2 jo N
=) G(e’)+ nG(e )k;f(a)—zﬂk)

1 o0
= —+7 ) o(w—27k).
l—e’” k; ( )

X ()=




5.3.6 Time Reversal

Let x/n] be a signal with spectrum X(e’) , and consider
the transform Y(€') of y[n]=x[-n]. From eq. (5.9),

Vo) = Yolnle = Yadnle

Nn=—0o0 =

Substituting m = - n into €q.(5.40), we obtain
Y joy — N —j(-w)m — X —jo .
(™) ,,,Zf[m]e SR
That is,
x[-n]<—— X (e’). (5.42)
5 fe (R



5.3.7 Time Expansion

In Section 4.3.5 we derived the continuous-time property

x(at) «+t— I‘X(Ej.

4} a

(5.43)
= x[an] is undefined when a not an integer

= X[an] (a>1 integer) doesn’t only speed up but also
sample

There is a result that does closely parallel eq. (5.43),
however. Let k be a positive integer, and define the
signal
X, [n]= {x[n/k] if nis a multiple of k  (5.44)
(k) 0, if n is not a multiple of k.



5.3.7 Time Expansion

x[n/k] 1fn1s amultiple of k
X [n]= |
(k) 0, otherwise

-
l ' ‘ ] ‘ |X[3][‘nll | | ‘

Figure 5.13 The signal x[n] ob-
tained from x[n] by inserting two zeros
between successive values of the
original signal.



0, otherwise

x[n/k] 1f n1s a multiple of k
(k)[ ]

see that the Fourier transform of x,,[#] is given by

+00 +0
. » o
X (€)= Zx(k)[n]e S — Zx(k)[rk]e T
Nn=—00

r=—00

Furthermore, since *wl*1=xlr] e find that

X (@)= x[rle”* " = X ().

ko
That is, (k)[”]<—>X(e] )-

When signal X2l is spread-out and slow down
In time, its Fourier transform is compressed.



5.3.7 Time Expansion
X [n]—— X ().

x[n] X(e™)
& 1
0 n

K{E;I[n] xﬂ?lqajm] - K[Ej"z-:o:l
g
0 n

%l X;3(e) = X(e%|

ﬂ VUV VU

f
- _I i
3 3

Figure 5.14 Inverse relationship between the time and frequency domains; As k in-
creases, X [n] spreads out while its transform is compressed.



Example 5.9

x[n]
As an illustration of the I l ! l l
usefulness of the time-expansmn
property in determining Fourier R 1T yin]
transforms, let us considerthe =24+t

sequence x/n] displayed in figure > e
5.15(a). This sequence can be A_JU_; ! . [ 5 l ‘ ! - oo
related to the simpler sequence

y[n] depicted in Figure 5.15(b l [ l [ I

In particular

2yln 1]

C 1 2 3 4 5 6 7 8 9
(d)

x[n] = y(z)[n] T 2y(2)[n —1],
where

n/2 If nis even
y(z)[] {[ !

If nis odd



on]= Lo Jnl<y Gle) = SOt +1/2)

0, |npN, sin(@ / 2)

x[n]<£— X(e),

x[n—n,]<——e '™ X(e")

Next, note that y[»]=g[#n-2] , where g[n] is a
rectangular pulse as considered in Example 5.3
(withN, =2) and as depicted in figure 5.6(a).
Consequently, from Example 5.3 and the time-
shifting property, we see that

sin(Sw/ 2)

Y(e/*)=e/* = :
sin(w/ 2)




sin(5e/ 2)

)’(k>["]<L>Y(ejkw)- Y(e/)=e /" = -
sin(w/ 2)
Using the time-expansion property, we then obtain

sin(w)
and using the linearity and time-shifting properties, we

get _i50 SIN(SW)

2y, [n—1]«1>2e .
Yol ] sin(w)

y[n—n,J«——e’"Y (')
Combining these two results, we have

X () =e*(1+ 2e-f”)(ssiinn((5 5) ) ]




5.3.8 Differentiation in Frequency
X(e”)= i x[n]e”?".(5.9)

Nn=—00

Again, let .
o e x[n]<<L— X (e’?).

If we use the definition ofX(e’*) in the analysis equation
(5.9) and differentiate both sides, we obtain

dX(ej“’) & iam
= — jnx|njie .
. > — jnx{n]

n=-—00

The right-hand side of this equation is the Fourier
transform of —jnx[n]. Therefore, multiplying both sides by
J, we see that .

Fo.dX(e™)

nx|nl< > ] y : (5.406)
SRR VR @




5.3.9 Parseval’s Relation

If x/n] and X(¢’*) are a Fourier transform pair, then

ni‘x[n]‘ = iJ‘M ‘X(ef”)‘zda). (5.47)

Parseval’s relation states that this energy can also be
determined by integrating the energy per unit
frequency, |x (™) /2z , over a full 217 interval of
distinct discrete-time frequencies.

= ATR B RSN T AL BT AR Y f
b F A8 o



Example 5.10

Consider the sequence x/n] whose Fourier
transform X() is depicted for -z <w<x In
figure 5.16. We wish to determine whether or
not, in the time domain, x/n] is periodic, real,

even, and/or of finite energy.

L X(e")
27 4+

(b)



AR

=t |X(e)]

Example 5.10 — /I 2 I\

T I

&z —IT _ I m
2 {a} 2

Accordingly, we note first that periodicity in the time domain
implies that the Fourier transform 1s zero, except possibly for
impulses located at various integer multiples of the
fundamental frequency. This is not true for X(e’”). We
conclude, then, that x/»/ 1s not periodic.

Next, from the symmetry properties for Fourier transforms,
we know that a real-valued sequence must have a Fourier
transform of even magnitude and a phase function that is odd.
This is true for the given [X(e*) and & x(e™). We thus
conclude that x/n/ 1s real.



|X(e)]

Example 5.10 — /I 2 I\

27 -1 _ T i1 T
i 2 (a) 2

Third, if x[n] is an even function, then, by the symmetry
properties for real signals, X(¢’*) must be real and
even. However, since X(¢’)=|X(™)e”™ X(e’”) is not a
real-valued function. Consequently, x[n] is not even.

Finally, to test for the finite-energy property, we may
use Parseval’s relation,

- 2
;‘x[n] = i_‘;ﬂ‘){(ej”)‘zda).

It is clear from figure 5.16 that integrating ‘X(ef"’)‘2 from — 7
to 7 will yield a finite quantity. We conclude that x/n]
has finite energy.



5.4 The convolution Property

Specifically, if x[n] ,h[n], and y[n] are the input,
Impulse response, and output, respectively, of an
LTI system, so that

B —LTIERG

yln] = x[n]* hln],

e~ o A R ETEE E R AR TERE 7 BE A (B IEk)
then

Y(e’?)=X(e’)H(e’), (5.48)

Bt~ B ARSI IR R R B R AL e B (R (FRIEK)

1

_f



Example 5.11

Consider an LTI system with impulse response
hn]=0o[n—n,].

The frequency response is

H(’)= ) Sln—nyle”™ =™

Thus, for any input x/n] with Fourier transform
x’*) , the Fourier transform of the output is

Y(e/”)=e """ X (). (5.49)



joN _ —jon, Jjo
Example 5.11 1€ )=e Xie )-(5:49)

We note that, for this example, nl=xn—n,]
and eq. (5.49) is consistent with the time-
shifting property. Note also that the frequency
response H(e!”)=e /™

of a pure time shift has unity magnitude at all
frequencies and a phase characteristic — wn, that
IS linear with frequency.



Example 5.12

H(e')
] | [ ] | ] i
—211' —ar ~we 0 wge e 2T

(a)

Consider the discrete-time ideal lowpass filter in
Section 3.9.2. This system has the frequency
response H(e”) (Fig. 5.17(a)). Since the impulse
response and frequency response of an LTI
system are a Fourier transform pair, we can
determine the impulse response of the ideal
lowpass filter from the frequency response using
the Fourier transform synthesis equation (5.8).



Example 5.12

h[n]

S —

(b)

In particular, using —7<w=x as the interval
of integration in that equation, we see from

Figure 5.17(a) that
_L 7 Jjo jon :L D jon
Hnl=——| H(e"")d"do=— | ¢ dae
_sinw.n

(5.50)

b

n

in figure 5.17(b).



5.4.1 Examples

In figure 5.17, we come across many of the same
issues that surfaced with the continuous-time ideal
lowpass filter in Example 4.18.

For a causal LTI system: hjn]=0 forn<0

h[n]

S| —

(b)



1-1"

1

n-1 r
a+m'+ar2+m‘3+---+m'""‘=Zm"‘=a .
m
k=0

X(”)= Z x[n]e”’”" (5.9)

n=—00

Consider an LTI system with impulse
response

Example 5.13

hn]=a"u[n],

With o] < 1, and suppose that the input to
this system is

x[n]= fuln],
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With |8 <1. Evaluating the Fourier transforms of
h[n] and x[n], we have

51
H(e”)= 1_. (55 )
and l1—ae™
Jj@o 1
X(e )=1_ﬁe_ja,, (5.52)
so that

1

Y(e'?)= H(e’°) X (') = : —.
(e™)=H(e™)X(e™) (1-ae’)1-pe ) (5.53)




]
(1—ae’)1- Be’)

As with Example 4.19, determining the inverse
transform of Y(e’*) is most easily done by
expanding Y(e’®) by the method of partial
fractions. Specifically, Y(e/*) is a ratio of
polynomials in powers of ¢”“, and we would
like to express this as a sum of simpler terms
of this type so that we can find the inverse
transform of each term by inspection (together,
perhaps, with the use of the frequency
differentiation property of Section 5.3.8).

Example 5.13 Y(&/*) =
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The general algebraic procedure for rational
transforms is described in the appendix. For
this example, if a#B, the partial fraction
expansion of Y(e’*)is of the form

Y(e'?) = A_. + B_. . (5-54)
l—ae™” 1- e’

Equating the right-hand sides of egs (5.53) and
(5.54), we find that




A B 1
n _

l—ae™ 1-Be (1—ae)1-Le )
= Get A: multiply both size by (1—ae™®)

e |
A+ B(l @e : ) — : —, set e_]a) — l
1 ﬂe_]a) (1 _ﬂe—ja)) 04
uBO-H 1«

1-B/a (-8/a) (a—p)
= Get B: multiply both size by (1—Be™®)

A(l_'ge_jw)+B: : set e’ =—
l—ae™ (1-ae™™)
o B P
(f-a) (a=p)




oA B
Example 5.13 Y(e™)=- ot T ge

—ae’

x p
A= = .
a-p g o—p
Therefore, from Example 5.1 and the linearity
property, we can obtain the inverse transform of eq.
(5.54) by inspection:

yin]= ﬁ“ u[n]——ﬂﬂ un] (5.55)

a ﬂ I:an+1u I’l] ,6’"+1u[n]]
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For a = B, the partial-fraction expansion in eq.
(5.54) is not valid. However, in this case,

1 2
FE™)= (l—ozejwj ’

which can be expressed as

Y(e™)="Le |
(€™) o ) do (1 —ae”’j (5-56)



F dX(e’”)
Example 5.13 mlnle—j—-—.(5.46)

As 1in Example 4.19, we can use the frequency
differentiation property, eq. (5.46), together with the

Fourier transform pair

1
a"u[n]<«——
l-ce

_ja)9

to conclude that

na'uln]<«+t—j d ( : j

>/ do\1—ae ™



Example 5.13 no"ul[n]<-~ > ] a ( 1 j

do\1—ae™”
x[n—n, ](Lw_jmo)((ejw)

Y(eja))zieja) d l_ja) .
o do\1—ce

To account for the factor e’? , we use the time-
shifting property to obtain

(n+ D™ u[n+1]«L— je'® d ( : . j,
do\1-ae™”

and finally, accounting for the factor 1/a, in eq.
(5.56), we obtain

y[n]l=(n+Da"u[n+1]. (5.57)
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It is worth noting that, although the right-hand
side is multiplied by a step that begins at n = -1,
the sequence (n+Da"u[n+1] s still zero prior to
n =0, since the factorn + 1 is zero at n = -1.
Thus, we can alternatively express y[n] as

y[n]=(n+Da"uln]. (5.58)



5.4.1 Not every LTI system has a H(ew)

The LTI system with impulse response i[n]=2"u[n]
dose not have a finite response to sinusoidal inputs,
which is reflected in the fact that the Fourier transform
analysis equation for h/n] diverges. However, if an LTI
system is stable, then, from Section 2.3.7, its impulse
response is absolutely summable; that is,

§|h[n]| < Q0

IR — (A R LTI 247580 B S R

H—LTIRG AT - RIEAREZE H4E %ﬁTDDE{’J U
PIBE 2 SRREELE WY -

[



5.5 The Multiplication Property

Consider y/n] equal to the product of X[#]and x,[7] |
with Y(e’”), X,(’*), and X,(e’*) denoting the corresponding
Fourier transforms. Then

4 y[n]=x,[n]x,[n] (TERFE )

V)= 3 yinle ™ = S x[nlx[nle ™,

or since

x[n]=—— _X,(e")e™de (5.60)

it follows that 27

. < 1 AL —jon
Y(e™)= ZXz[”]{ZLEXI(eJ < dg}e B (5.61)

Nn=—00



5.9 The Multlpllcatlon Property
Y(e'”) = sz {lﬂ j X(e"g)e]‘g”dﬁ

—jn

€

4

J

Interchanging the order of summation and integration,
we obtain

Y(ef‘”)—i Xl(ej”){ioxz[n]ej(”e)”}dﬁ. (5.62)

n=—0o0

The bracketed summation is X, (e/*“®), and
consequently, eq. (5.62) becomes (periodic
convolution)

1

Y(e'”) = py X, (e/)X, (e’ ?)do.

Al y(er”) 2 (5.63)FN(EARIE Ry g =) -

(5.63)




5.5 The Multiplication Property

Y(e’”) = 1 X, (e’ X, (e’ )do.
D 92n
Equation (5.63) corresponds to a periodic convolution
of X,(e’”)and X,(e’?), and the integral in this
equation can be evaluated over any interval of length

2TT.

(5.63)xU%— M A et 7y > B0 i T Ay



Example 5.15

Consider the problem of finding the Fourier
transform X (e/?) of a signal x/n/ which 1s the product

of two other signals; that 1s,

xn] = x,[n]x,[n],

H(e'®)

1

[ ]

where
|
sin(3/m/4 -
x,[n]= ( )
TN
and
sin(7zzm /2
x,[n] = ( ) °

7in
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From the multiplication property given in eq. (5.63),
we know that X (e’”)is the periodic convolution of

X(e’”)and X,(e’”) , where the integral in eq. (5.63)
can be taken over any interval of length 217.
Choosing the interval -z <z , we obtain

R -
X (e’ ):E _ﬂXl(eJ )Xz(ej( 0))617(9. (5.64)



Example 5.15

Equation (5.64) resembles aperiodic
convolution, except for the fact that the
integration is limited to the interval-7z <0< r.
However, we can convert the equation into an
ordinary convolution by defining

O joN _ 1X,(e’?)  for-m<w<r
X =1 |

otherwise
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Then, replacing X,(¢””) in eq. (5.64) by X, (") |
and using the fact that X,(¢’) is zero forlg|>~ ,
we see that

. 1 ¢ ~ . .
X ()= 1. X, (e X,(e”")d6
_1r X, ()X, (e”)d6.
27T 9=



Example 5.15 x()= i | " X)X, )de

Thus, x@) Is %, ()

1/(217) times the I1

aperiodic | | | |
convolution of —2m -m -3 5 2m ®
the rectangular X, ()

pulse X,(e’?) 1

and the periodic ”a l“'f’_é:_——%f [ = )

square wave Xx,(e’)
, both of which

are shown in 2

Figure 5.19. X(e’) \—/—V
IS shown In 3 w o = w3 @
Figure 5.20. L C

Figure 5.20 Result of the periodic convolution in Example 5.15.

X(e!®)




TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM £51 HEGHELZESRYHAYR
Section Property Aperiodic Signal Fourier Transform
x[n] Xie)) periodic with
vln] Y(e'}] period 27
532 Linearity ax{n] + by[n] aX(e™) + bY(e™™)
5.33 Time Shifting x[n — my] g fum K iuy
5.33 Frequency Shifting el v y] X (pflunly
534 Conjugation 1 [n] X'(e ™)
5.36 Time Reversal x[—n] X(e ™)
; x[mfk], 1f n = multiple of k "
5.3.? T E- [ = _ ; x’ Pl
ime EXpansion *ln] [ 0, if n = multiple of (™)
54 Convolution x[n] = v[al X(e™)y¥ie™)
5.5 Multiplication x[n]vnl EL".ITJ Xie"MYie"™ "do
5.3.5 Differencing in Time x[n] — x[n — 1] (1 — e ™)X (™)
-3 i > xlk for
5335 Accumulation 1:;1 [ k] = = X(e’™)
4
+ar Xie™) Z flw — 2mwk)
k= -
i
5.3.8 Differentiation in Frequency  nx[n] .dX;; )
X{{:";“'} — X'[f .lu}
(H-E'{X(f“"]} = m{‘{X{f"""}}
534 Conjugate Symmetry for x|n] real I X(e'™)} = ~Im{X(e ™)}
Real Signals IX(e)| = |X(e )
EX(eM) = —LX(e ™)
5.3.4 Symmetry for Real, Even x|n] real an even Xi{e'™) real and even
Signals
534 Symmetry for Real, Odd xln] real and odd X(e™) purely imaginary and
Signals odd
5.3.4 Even-odd Decomposition x.n] = &{x[n]} [x[n] real] RelXie'™)
of Real Signals x,(n] = Odix(nl} [xln] reall jom{X (e}
539 Parseval’s Relation for Aperiodic Signals

=

B= -z

> |anlf = LJ- X(e™ ) dw
e 271' im




TABLE 5.2 BASIC DISCRETE-TIME FOURIER THANSFORM PAIRS #0520 of M 1R a3 b
Signal Fourier Teansform Fourier Series Coefficients (if periodic)
E i N I :3_." pl.ﬁ(u - 2_?) ay
b=l iw-=
) wg = A
= I, b=mmeNm=2N_.
il 1 Bl — - 2wl =
# ﬂ;;. i — wy - 2ml) iy [“ D
[b] ﬁ wrmtimnal S The*ignll s qmind.i:
(o} oy = %
o | - -y -y
CUS i Y Trz[&[u—uu—liﬂ+3[m+u;—1wﬂl a ={¥ ot S 2 Y 2 R AN
i 1 otherwise
) 34 wrational 3 The signal is aperiodic
fl_l by = iw
o - k=rrENreIN...
) " w 5
R TJ;_[&:m g = 2wl) = Blw + g = 2l = F!IF' ke =pf=rzN—-rziN..
N otherwise
fh) 52 irestional < The signal is aperiadic
- I, k=10, 2N 2N
n) = | hr.z.a.ﬂm i) o = B e
Petiodic squone wave |
NI = = MGt + 3] v
]~ 0 Ny < a] = N2 w5 a,.',{u = 2;'&} il TP Y, i I el i ol
L .z,-z"'"n—:".*—nth'.:m....
xin + N] = fn]
‘_E_ﬂn — N] 2;,-' ."\E_,_Js(m . 3;_*] a = # fir all &
aulnl ol <1 . -
1—ae ™
o | = i sinfai Ny <+ 3]
Lk PR sinfu/2) =
I, 0= || = W
sl W W =
e rﬂml:'r] Kiuw) Q w{hlﬁﬂ'
0cWew Xfu) perivdic with period 2
fin] 1
I -
al o+ 3 wbteam -
&[n — ngl e —
y 1
(m+ Dauln]  |af =1 s . o
(n+r—1p I
e kU U = - =




5.7.1 Duality in the Discrete-Time
Fourier Series

Recall duality in CTFT Clear duality in DTFS
B 1 +00 ) - x[n] — Z akejk(Zﬁ/N)n.
x(t) = pys j_w X(jw)e dw(4.8) e
X(]a)): j+wx(t)e—jwtdt(4.9) ak — i Z x[n]e—jk(Zﬂ/N)n.
0 N ~
duality is not as clear in DTFT =)
x[n]:LJ. X(eja))eja)nda)’ x[n]: Z a[k]ejk(Zﬂ/N)n.
21 "2 =N
X(e")= i x[nle”".(5.9 1 —jk(27/N)n
(e™) [n]e"™.(5.9) a[k]:_zx[n]ej( n

n=—00 N

n=<N >



5.7.1 Duality in the Discrete-Time
Fourier Series

x[n]= Z a[k)e™ ™" (synthesis)

=) ) [n]<Eafk]
al k] :% Z x[n]e 7" (analysis)
n:<N>

n=—m;x[—m]= Z al ke FEFOm 1
k=(N Cl[k]( UEEN
(N) I
1 1 ]\1[

—x[-m]=— D alkle """ e Lk
v N & 1] ~x{]

(analysis)



5.7.1 Duality in the Discrete-Time
Fourier Series

See that the pair of properties

x[n—n, |« q e T (5.68)
and
e n« 2 >a, (5.69)

are dual. Similarly, from the same table, we can
extract another pair of dual properties;

Zx [n—r]<=—>Na,b, (5.70)

r:<N

x[nlyln]e—— > ab,,. (5.71)

I=(N)

and



Example 5.16
ES

square< >SIN C
FS

SIN C < >square

Consider the following periodic signal with a
period of N = 9:

e .

éSITl(Sﬂn//gg), nzmultiple  of 9
x[n] _ ; sin(7zm/9)

> n=multiple of 9

9

(5.72)



(1 sin(2 7k(N,+1/2)/N)
N sin(5/m/9)

)
N sin(zk/N) 1

for k#0,£N,£2N.,... . 9 sin(/m/9) ’
|||” ||”| A = w1 : X[Ifl]—<§
2 \ 9

N, 0 N, QN N ’
Figure 3.16 for k=0,£N,£2N.,...

\

In Chapter 3, we found that a rectangular
square wave has Fourier coefficients in a form
much as in eq. (5.72). Duality, then, suggests
that the coefficients for x[/n] must be in the form
of a rectangular square wave. To see this more

precisely, let g/n] be a rectangular square wave
with period N = 9 such that

), |nj=2
g[n]—{o, 2<|n|<4.



1, n|<2
Example 5.16 g[n] = {o, ‘2‘4”‘34.

The Fourier series coefficients b, for g/n] can be
determined from Example 3.12 as

1 sin(57k/9)

b =+ 9 sin(7k/9)’
=

5

7 k=multiple of 9
.

k#multiple of 9

g[n]«——=—b,

The Fourier series analysis equation (3.95) for
g[n] can now be written as

1 .
1 2 » g4 =— x[n]e—]k(Zﬂ/N)n.
b= 2, Me v 5

n=-2 (analysis)



Example 5.16 5, :éi(l)e-f’“””)".

Interchanging the names of the variables k& and » and
noting that x/n/= b, , we find that

1 2

bn — Z (l)e—jn(27z/9)k — X[n]
9 1
Letting x'= —k 1n the sum on the right side, we obtain
1 2 | 2 1 |
X[n] _ - Z e+]n(27z/9)k _ Z _e+]k (27/9)n (SyntheSiS)
9 k'=—2 k'=—2 9

x[n]= Z a, e’ ™" (synthesis)
k=(N)
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2
x[n]= Z ée”k 7O (synthesis).
k=2

We thus conclude that the Fourier coefficients of x/n/

_ {1/9, |k|<2
dp = 0, 2<|k|<4,

are given by

and, of course, are periodic with period N=9.

x[n]«=—>alk] a[n]«—— 1 x[—k]



5.7.2 Duality between the discrete-Time Fourier
Transform and the Continuous-Time Fourier Series

We repeat these equations here for
convenience:

[eq. (5.8)] x[n]zij‘ X(e’”)e'"dw, (9.73)
272- 27

L e X[n]——X(€)
leq. (5.9)] X(°)= ) xnle™™, (5.74)
leq. (3.38)] ¥() = kZ ae™™, (5.75)

1 ko
eq. (3.39)] % =7 |, xOe "™t (5.76)



5.7.2 Duality between the discrete-Time Fourier
Transform and the Continuous-Time Fourier Series

x[n]=— ) X(e’”)e’"dw,
27 - Observation
X()= > x[nle”™, X(e'”) period 2r

n=—0o0

x(t) = iakejk‘"o’, X(t) pel”iOd T
lkz_oo x[n] aperiodic
a, = —j X(t)e_jkwotdt,
I a, aperiodic
x[-m]= % _[TX(ejw)e_jwmdw, T=2r

+00 jw FS .
X(@)= x{—m]e’" ) X(e'")< > x[—m]

m=—0




5.7.2 Duality between the discrete-Time Fourier
Transform and the Continuous-Time Fourier Series

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

Continuous time

Discrete fime

Time domain

Frequency domain

Time domain

Frequency domain

I
x(r) = ! dy =
- et t I 1 L
2ohe i et | 7o I, Alrye= ik
Fouricr I
& . : | 3 r
Series continuous Hme i diserete frequency
periodic in time ! aperiodic in frequency
| .
xit) = : Xijw) =
| | : r | += S
o 5o | X jw)e™ duw . [ % x(ne= It gy
Fourier |

Translorm

conbinuous tme
aperiodic in time

continuous frequency
aperiodic in frequency

xn] =

? i 2 N
:?ai—-lf.-"-'} :T“aJ i

discrete tme
periodic in time

]
I
']-'? 1
I
|

i =

I S L s
discrete freguency
perindic in freguency

xln] =

discrete time
apericdic in time

|
ol ST P2 TR

Xiele) =

3oL alne don
continuous freguency
perodic in freguency




5.8 Systems Characterized by Linear
Constant-Coefficient Difference Equations

A general linear constant-coefficient difference
equation for an LTI system with input x/n] and
output y/n] is of the form

N M
> ayn—k]=> bxln—kl. (578
k=0 k=0

NEESRITE T RECE 77 iR R



5.8 Systems Characterized by Linear
Constant-Coefficient Difference Equations

There are two ways to find the frequency
response of a LTI system :

|. eigenfunction:x(n]=e’" —> Y[n]=H(e'")e’”

Il. The convolution property, eq. (5.48), of the
discrete-time Fourier transform then implies that

Y()=H(e'")X(e*)

Hewy=Y ((ej.”)) | (5.79)
X (e’



5.8 Systems Characterized by Linear
Constant-Coefficient Difference Equations

F{> ayn—kl}=F{D bx[n—kl}

Applying the Fourier transform to both sides of eq.
(5.78) and using the linearity and time-shifting
properties, we obtain the expression

N M
Z ae’Y(e’”) = Zbke_jk“’X(ejw),
k=0 k=0

or equivalently, | Vo ke
H(eja)) _ Y(e ) _ Zk:obke (5.80)

Xy YN ae




Y(") ZM be

H eja) —
( ) X(eja)) Zk_ ake—]ka)

Example 5.19

Consider a causal LTI system that 1s characterized by

the difference 3equation |

yln] 2 y[n—1] 3 y[n—2]=2x[n]. (5.84)
From eq. (5.80), the frequency response 1s
- 2
H(e)=
|-/ 4 /% (5.85)

4 3



Example 5.19

As a first step in obtaining the impulse response,
we factor the denominator of eq. (5.85):

T (5.86)
(1_58 )(I—Ze )

can be expanded by the method of partial
fiefions, as in Example A.3 in the appendix.
The result of this expansion is

H(e'”) = LA -~ (5.87)



Example 5.19

|
a"uln), |a| < |
| — ge™ /%
H(e™)= 14 _ 12
1——e7” 1-—¢e7°
2 4

The 1nverse transform of each term can be recognized
by inspection, with the result that

1Y) 1Y
— 4| = _9| 2 o (5.88)
h[n] 4(2j uln] 2(4) uln]



5.8 Systems Characterized by Linear
Constant-Coefficient Difference Equations

Specifically, after expanding H(e’”) by the method of
partial fractions, we can find the inverse transform
of each term by inspection. The same approach can
be applied to the frequency response of any LTI
system described by a linear constant-coefficient
difference equation in order to determine the system
impulse response.
L H 3 5y SRR+ TS ELR A T B
 FREH LTI 2SR 6 2 -




Example 5.20

Consider the LTI system of Example 5.19, and
let the input to this system be

x[n]= (ij uln].

Then, using eq. (5.80) and Example 5.1 or 5.18,
we obtain

2 1
I 1 1 .

_(1—2e_j“’)(1—4e ”")“1—46 _ (589)

2

Y(e’)=H(’")X ()=

B 1 _. 1 |
l——e /)1 ——e“)?
(1= e )1= e ™)



Example 5.20

As described 1n the appendix, the form of the partial-
fraction expansion in this case 1s

1 —jo (1__e—ja))2 1__e—ja) (590)



Example 5.20

where the constants B,;, B,,, and B,, can be
determined using the techniques described in
the Appendix. This particular expansion is
worked out in detail in ExampleA.4, and the
values obtained are

B, =—4, B, =-2, B, =3,

so that

. 4 2 8
Y(e!¥)=- - — + T
1-—e” (1-—e’")Y 1-—e” (5.91)

4 2




Example 5.30 4 ’ 8
Y(e'")=- 1 B 1 T 1
= e (- e’ 1-_e
4 4 2
r |
(n+ t}ﬂJ Hi”]i |ﬂ| <1 J (1 - Hf‘fﬂ-‘}l

The first and third terms are of the same type as those
encountered in Example 5.19, while the second term
1s of the same form as one seen 1n Example 5.13.
Either from these examples or from Table 5.2, we can
invert each of the terms 1n eq. (5.91) to obtain the
inverse transform

-

yln]=-

.

X

1

4

j" —2(n+ 1)(

1
4

)+

1

2

i

) (5.92)

uln.




5.9 Summary

= Derive FT for aperiodic signal from FS
= Convergence of FT
= FT for periodic signals

* Properties of FT: linearity, time-shifting,
Conjugate symmetry, differencing&
accumulation, time-expansion, duality,
Parseval’s relation, etc.

= Convolution & multiplication properties
* Duality in the Discrete-Time Fourier Series

» Solving Linear Constant-Coefficient Difference
Equations using FT properties



