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4.0  Introduction

§  We extend fourier series for periodic signal to fourier 
transform for periodic and aperiodic signals with 
finite energy 
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4.1.1  Development of the Fourier Transform 
Representation of an Aperiodic Signal
   To gain some insight into the nature of the Fourier 

transform representation, we begin by revisiting the 
Fourier series representation for the continuous-time 
periodic square wave examined in Example 3.5.   
Specifically, over one period, 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

    As determined in Example 3.5, the Fourier series 

coefficients      for this square wave are 

    [eq.(3.44)]                                                             (4.1)

    An alternative way of interpreting eq.(4.1) is as 

samples of an envelope function, specifically, 

                                                   (4.2) 

    and we refer                    as it envelope 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal
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Now let’s fix T1 and change 
T from 4T1 (a), 8T1(b), 16T1(c) 
• Envelope hasn’t changes 
• ω0 becomes smaller 
• Sample more densely 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

    T increases, or equivalently, as the fundamental 
frequency                   decreases, the envelope is 
sampled with a closer and closer spacing. 

   
    The set of Fourier series coefficients approaches the 

envelope function as T→∞. 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

    In particular, consider a 
signal x(t) that is of finite 
duration. That is, for some 
number                if               
as illustrated in Figure 4.3(a).  
From this aperiodic signal, 
we can construct a periodic 
signal          for which x(t) is 
one period, as indicated in 
Figure 4.3(b). 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

    As T becomes larger,        is identical to x(t) over a 
longer interval, and as T→∞,       it is equal to x(t) for 
any finite value of t. 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

        Recall from FS:     
        in eq. (3.39) carried out over the interval  
                            , we have  
 
                                                                       (4.3) 
 
                                                                       (4.4) 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

   Since               for              , and also, since 
x(t)=0 outside this interval, eq. (4.4) can be 
rewritten as  
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

   Therefore, defining the envelope          of        as 
                                                              
                                                                         (4.5) 
   

   we have, for the coefficients     , 
 
                                                                         (4.6) 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

   Combining eqs. (4.6) and (4.3), we can express 
           in terms of           as 
 
 
   or equivalently, since 
 
 
                                                                        (4.7) 
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4.1.1 Development of the Fourier Transform 
Representation of an Aperiodic Signal

   As T→∞,       approaches x(t), and consequently, 
in the limit eq. (4.7) becomes a representation of 
x(t). 

                                     Inverse Fourier Transform (4.8)     
   and 
                                       Fourier Transform(4.9=4.5) 
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4.1.2 Convergence of Fourier 
Transforms 

    In 4.1.1, we derive Fourier Transform pairs for 
aperiodic signal with finite duration. Acutally, it 
is also valid for signal of infinite duration 

 
   Consider        evaluated according to eq. (4.9), 

and let      denote the signal obtained by using         
in the right-hand side of eq. (4.8).  That is, 
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4.1.2 Convergence of Fourier 
Transforms

    If x(t) has finite energy, i.e., if it is square 
integrable, so that 

 
                                                                    (4.11) 
    then we are guaranteed that        is finite [i.e., 

eq. (4.9) converges] and that ,with      denoting 
the error between      and x(t) [i.e.,                     ] 

                                                                     (4.12) 
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4.1.2 Convergence of Fourier 
Transforms

§     Alternative conditions: 
   These conditions, again referred to as the 

Dirichlet conditions, require that: 
   1. x(t) be absolutely integrable; that is, 
                                                                     (4.13) 
 
   2. x(t) have a finite number of maxima and 

minima within any finite interval. 
   3. x(t) have a finite number of discontinuities 

within any finite interval. Furthermore, each of 
these discontinuities must be finite. 
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Example 4.1 

   Consider the signal 
 
   From eq. (4.9), 
 
 
   That is, 
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4.1.3   Examples of Continuous-Time Fourier 
Transforms	

x(t) = 1
2π

X( jω)e jωt
−∞

+∞

∫ dω(4.8)

X( jω) = x(t)e− jωt
−∞

+∞

∫ dt(4.9)



Example 4.1

    Since this Fourier transform is complex valued, 
to plot it as a function of     , we express         in 
terms of its magnitude and phase: 

 
 
 
 
   Each of these components is sketched in figure 

4.5. 
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Example 4.1
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Example 4.1
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Example 4.1

    Note that if a is complex rather than real, then 
x(t) is absolutely integrable as long 
as                , and in this case the preceding 
calculation yields the same form for           .  
That is, 
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Example 4.4 

Consider the rectangular pulse signal 
 
 
 
From Eq. 4.9, we obtain its Fourier transform as 
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Example 4.5 

    Consider the signal x(t) whose 
Fourier transform is  

 
                                                                            
  
    Using the synthesis equation 

(4.8), we can determine 
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4.1.3 duality property

 Comparing Figures 4.8 and 4.9 or, equivalently, eqs.  
(4.16) and (4.17) with eqs.  (4.18) and (4.19), we see 
an interesting relationship.  In each case, the Fourier 
transform pair consists of a function of the form    

                      and a rectangular pulse. 
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4.1.3   Examples of Continuous-Time Fourier 
Transforms

    A commonly used precise form for the sinc function 
is  

                                                                                (4.20) 
    The sinc function is plotted in figure 4.10.   
    We can use sinc to express 
     eqs.(4.17) and (4.19)  
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4.1.3   Examples of Continuous-Time Fourier 
Transforms
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4.1.3   Examples of Continuous-Time Fourier 
Transforms
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4.1.3   Examples of Continuous-Time Fourier 
Transforms
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4.2  The Fourier Transform for periodic 
signals

    To suggest the general result, let us consider a signal 
x(t) with Fourier transform          that is a single 
impulse of area      at            ; that is, 

                                                                                (4.21)   
    To determine the signal x(t) for which this is the 

Fourier transform, we can apply the inverse transform 
relation, eq. (4.8), to obtain 
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4.2  The Fourier Transform for periodic 
signals

   More generally, if         is of the form of a linear combination 
of impulses equally spaced in frequency, that is, 

                                                                           (4.22) 

    then the application of eq. (4.8) yields 

                                                                           (4.23)   
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Example 4.6 

    Consider again the square wave illustrated in Figure 
4.1.  The Fourier series coefficients for this signal are 

 
 
    and the Fourier transform of the signal is 
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Example 4.6

    which is sketched in figure 4.12 for         .  In comparison 
with Figure 3.7 (a), the only differences are a 
proportionality factor of 2π and the use of impulses 
rather than a bar graph. 
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4.3 Properties of the Continuous-time Fourier 
Transform

    As developed in Section 4.1, a signal x(t) and its 
Fourier transform          are related by the Fourier 
transform synthesis and analysis equations, 

     
    [eq. (4.8)]                                                        (4.24) 
 
    and 
 
    [eq. (4.9)]                                                        (4.25) 
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4.3 Properties of the Continuous-time Fourier 
Transform

   refer to x(t) and          as a Fourier transform pair with the 
notation 

 
    Thus, with reference to Example 4.1, 
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4.3.1    Linearity 

If 
 
and 
 
Then 
                                                                      (4.26)  
 
線性性質(重疊性質適用)                                                                                  
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4.3.2    Time Shifting 

    If 
 
    Then 
 
 時間移位性質                                                             (4.27) 
 
     To establish this property, consider eq. (4.24); 
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4.3.2 Time Shifting

   Replacing t by            in this equation, we obtain 
 
 
 
 
   Recognizing this as the synthesis equation for     
               , we conclude that  
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4.3.2    Time Shifting

    if we express X(jω) in polar form as  
 
 
 
    then 
 
 
 
    a time shift results to a phase shift in FT 
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Example 4.9 

   To illustrate the usefulness 
of the Fourier transform 
linearity and time-shift 
properties, let us consider 
the evaluation of the Fourier 
transform of the signal x(t) 
shown in Figure 4.15(a). 

   First, we observe that x(t) 
can be expressed as the 
linear combination 
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Example 4.9

   where the signals        and        are the rectangular plus 
signals shown in Figure 4.15(b) and (c).  Then, using the 
result from Example 4.4, we obtain 

 
 
    Finally, using the linearity and time-shift properties of the 

Fourier transform yields 
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4.3.3   Conjugation and Conjugate Symmetry

    The conjugation property states that if 
 
 
    then 
 
共軛性質                                                                

(4.28) 
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4.3.3   Conjugation and Conjugate Symmetry

   This property follows from the evaluation of the 
complex conjugate eq. (4.25): 

 
 
 
   Replacing ω by –ω, we see that  
 
                                                                       (4.29) 
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4.3.3   Conjugation and Conjugate Symmetry

    if x(t) is real so that  
    we have 
 
 
     and, by replacing ω and –ω, we have 
 
 
    conjugate symmetry 
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4.3.3   Conjugation and Conjugate Symmetry

      From Example 4.1, with a real signal 
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4.3.3   Conjugation and Conjugate Symmetry

    As one consequence of eq. (4.30), if we 
express X(jω) in rectangular form as 

 
 
Then if x(t) is real, 
 
and 

X( jω) =ℜe X( jω){ }+ jℑm X( jω){ },

ℜe X( jω){ }=ℜe X(− jω){ } even

ℑm X( jω){ }= −ℑm X(− jω){ }. odd
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4.3.3   Conjugation and Conjugate Symmetry

     if we express X(jω) in polar form as  
 
 
    As a further consequence of eq. (4.30), if x(t) is 

both real and even, then X(jω) will also be real 
and even.  To see this, we write  
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4.3.3   Conjugation and Conjugate Symmetry

     or, with the substitution τ = -t, 
 
 
    since x(-τ) = x(τ) (even), we have  
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X*( jω) = X(− jω) = X( jw) (4.30)

 if x(t) is both real and odd, then X(jω) will also be imaginary 
and odd.  

X( jω) = x(t)e− jωt
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∫ dt.



4.3.3   Conjugation and Conjugate Symmetry

    Finally, as was discussed in Chapter 1, a real 
function x(t) can always be expressed in terms 
of the sum of an even function          =εv{x(t)}  
and an odd function        =σd{x(t)}; that is, 

 
 
   From the linearity of the Fourier transform, 

{ } { } { },)()()(

).()()(

0

0

txFtxFtxF

txtxtx

e

e

+=

+=

)(txe
)(0 tx

305	



4.3.3   Conjugation and Conjugate Symmetry

    and from the preceding discussion,              is a 
real function and              is purely imaginary.  
Thus, we can conclude that, with x(t) real, 

 
 
 
 
    訊號的偶函數部份的傅立葉轉換等於原訊號傅

立葉轉換的實部。訊號的奇函數部份的傅立葉
轉換等於原訊號傅立葉轉換的虛部。
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Example 4.10 

    Consider again the Fourier transform evaluation of 
Example 4.2 for the signal                , where a ＞0.  
This time we will utilize the symmetry properties 
of the Fourier transform to aid the evaluation 
process. 

    From Example 4.1, we have 
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Example 4.10

    Note that for t ＞0, x(t) equals      u(t), while for  
    t＜0, x(t) takes on mirror image values.  That is, 
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Example 4.10

    Since       u(t) is real valued, the symmetry 
properties of the Fourier transform lead us the 
conclude that 

 
 
    It follows that 
 
 
    which is the same as the answer found in 

Example 4.2. 
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4.3.4  Differentiation and Integration 

   By differentiation both sides of the Fourier 
transform synthesis equation (4.24), we obtain 

 
 
   Therefore, 
                                                                      (4.31) 
 
This is very useful for LTI described by 

differential equations 
訊號微分性質時域的微分相對於頻域乘以jω。
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∫ dω(4.24)



4.3.4  Differentiation and Integration

The precise relationship is 
 
 
                                                                     (4.32) 
訊號積分性質

).()0()(1)( ωδπω
ω

ττ XjX
j

dx
t F +⎯→←∫ ∞−

one might guess x(τ )dτ F← →#
−∞

t
∫ 1

jω
X( jω).

dc (average value) : X(0) = x
−∞

+∞

∫ (t)dt.



Example 4.11

    Let us determine the Fourier transform X(jω) of the 
unit step x(t) = u(t), making use of eq.(4.32) and 
the knowledge that 

 
    Noting that 
 
 
    and taking the Fourier transform of both sides, 

we obtain 
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Example 4.11

   Where we have used the integration property listed in 
Table 4.1.  Since G(jω) = 1, we conclude that 

 

    Observe that we can apply the differentiation property of 
eq. (4.31) to recover the transform of the impulse.  That 
is, 

 

   where the last equality follows from the fact that 
ωδ(ω)=0. 
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4.3.5  Time and Frequency Scaling

If  
 
Then 
 
時間刻度變換                                                          (4.34) 
    where a is a nonzero real number.  This property 

follows directly from the definition of the Fourier 
transform—specifically, 
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4.3.5  Time and Frequency Scaling

     Using the substitution τ=at , we obtain 
 
 
 
      
    Thus, aside from the amplitude factor 1/lal, a linear 

scaling in time by a factor of corresponds to a linear 
scaling in frequency by a factor of 1/a, and vice versa.  
Also, letting a = -1 

 
                                                                                     

(4.35) 
   訊號時間倒轉對應的傅立葉轉換為頻率倒轉。
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Example 4.5 
(Inverse Relationship) 

    Consider the signal x(t) whose 
Fourier transform is  

 
                                                                            
  
    Using the synthesis equation 

(4.8), we can determine 
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X( jω) =
0, ω >W

1, ω <W{ .(4.18)

x(t) = 1
2π

e jωt
−W

W
∫ dω =

sinWt
π t

.(4.19)

x(at) F← →#
1
a
X jω

a
$

%
&

'
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4.3.6   Duality

    The symmetry between 
 

        (4.24) 
 
 

        (4.25) 
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4.3.6   Duality

    In the former example we derived the Fourier 
transform pair 

 
                                                                                (4.36) 
   脈波型式(時域)       sin函數型式(頻域) 
   while in the latter we considered the pair 
 
                                                                                (4.37) 
 sin函數型式(時域)        脈波型式(頻域)  
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4.3.6   Duality
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Example 4.13

    Let us consider using duality to find the Fourier transform 
G(jω) of the signal 

 
    In Example 4.2 we encountered a Fourier transform pair 

in which the Fourier transform, as a function of ω, had a 
form similar to that of the signal x(t).  Specifically, 
suppose we consider a signal x(t) whose Fourier 
transform is 

 
    Then, from Example 4.2, 
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Example 4.13

    The synthesis equation for this Fourier transform pair 
is 

 
 
    Multiplying this equation by 2π and replacing t by 

–t, we obtain 
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Example 4.13

    Now, interchanging the names of the variables t and 
ω, we find that 

 
                                                                        (4.38) 
   The right-hand side of eq. (4.38) is the Fourier 

transform analysis equation for 2/(1+    ), and 
thus, we conclude that 
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4.3.6   Duality

    To determine the precise form of this dual property, 
we can proceed in a fashion exactly analogous to that 
used in Section 4.3.4.  Thus, if we differentiate the 
analysis equation (4.25) with respect to ω, we obtain 

                                                                      (4.39) 
   That is, 
 
                                                                       (4.40) 
   
由微分性質及對偶性質而得。
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4.3.6   Duality

     Similarly, we can derive the dual properties of eqs. 
(4.27) and (4.32): 

 
                                                                                  (4.41) 
     
   由時間移位性質及對偶性質而得。

    and 
 
                                                                                  (4.42) 
    由積分性質及對偶性質而得。
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4.3.7   Parseval’s Relation

   If x(t) and X(jω) are a Fourier transform pair, then 
 
                                                                                 (4.43) 
   巴斯瓦關係式(定理) 
    This expression, referred to as Parseval’s relation, 

follows from direct application of the Fourier transform.  
Specifically, 
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∫ dω



4.3.7   Parseval’s Relation

    Reversing the order of integration gives  
 
 
   The bracketed term is simply the Fourier 

transform of x(t); thus, 
 
    
             often refer to as energy density spectrum. 
此定理意指訊號x(t)的總能量等於                對整個

頻率軸積分。故          常稱為「能量密度頻譜」。
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Example 4.14 
    For each of the Fourier 

transforms shown in Figure 4.18, 
we wish to evaluate the following 
time-domain expressions: 

 
 
 
 
    To evaluate E in the frequency 

domain, we may use Parseval’s 
relation.  That is, 

                                                                                                          
(4.44) 

0

2

)(

)(

=

∞

∞−

=

= ∫

t
tx

dt
dD

dttxE

ωω
π

djXE
2
)(

2
1
∫
∞

∞−
=

312	



Example 4.14
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 which evaluates to    for 
Figure 4.18(a) and to 1 for 
Figure 4.18(b)	



Example 4.14

    To evaluate D in the frequency domain, we first use the 
differentiation property to observe that  

 
 
    Noting that  
  
                                                                                           (4.45) 
    we conclude: 
                                                                                           (4.46) 
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D = 0
D =

1
2π
(−0.5 π +−0.5 π ) = − π

2π
=

−1
2 π

 which evaluates to  0  for 
Figure 4.18(a) and to      
for Figure 4.18(b)	
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4.4  The Convolution Property

 referring back to eq. (4.7), x(t) is expressed as the 
limit of a sum; that is, 





                                                                             (4.47) 
   As developed in Sections 3.2 and 3.8, the response of 

a linear system with impulse response h(t) to a 
complex exponential          is                    , where 

                                                                               (4.48) 
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4.4  The Convolution Property

    From superposition [see eq.(3.124)], we then have  

 

 

    and thus, from eq. (4.47), the response of the linear 
system to x(t) is 

 

                                                                                (4.49) 
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4.4  The Convolution Property

   Since y(t) and its Fourier transform Y(jω) are 
related by 

                                                                      (4.50) 
   we can identify Y(jω) from eq. (4.49), yielding 
 
                                                                      (4.51) 
   As a more formal derivation, we consider the 

convolution integral 
                                                                      (4.52) 
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∫ dω.



4.4  The Convolution Property

    We desire Y(jω), which is 
 
                                                                       (4.53) 
   Interchanging the order of integration and noting 

that x(τ) does not depend on t, we have  
 
                                                                       (4.54) 
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4.4  The Convolution Property

    By the time-shift property, eq. (4.27), the bracketed term 
is         H(jω).  Substituting this into eq. (4.54) yields 

 
 
    The integral is X(jω), and hence, 
  
    That is, 
                                                                                      

(4.56)   
    連續時間傅立葉轉換的迴旋運算性質

Y ( jω) = x(τ )e− jωτ
−∞

+∞

∫ H ( jω)dτ = H ( jω) x(τ )e− jωτ
−∞

+∞

∫ dτ .

).()()( ωωω jXjHjY =

).()()()(*)()( ωωω jXjHjYtxthty F =⎯→←=

ωτje−

上式在訊號與系統分析上是極為重要的，它將時域中較複雜的迴旋運算轉換至
頻域中較簡單的乘法。	
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H (ω) = h(t)e− jωt
−∞

+∞

∫ dt;e− jωτH (ω) = h(t −τ )e− jωt
−∞

+∞

∫ dt.



4.4  The Convolution Property

    As illustrated in Figure 4.19, 
since the impulse response 
of the cascade of two LTI 
systems is the convolution of 
the individual impulse 
responses, the convolution 
property then implies that the 
overall frequency response 
of the cascade of two 
systems is simply the 
product of the individual 
frequency responses. 
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4.4  The Convolution Property

    (Sec. 4.12) convergence of FT is guaranteed only 
under certain condition. Hence, frequency response 
cannot be defined for every LTI system. 

 
    If, however, an LTI system is stable, then, as we saw 

in Section 2.3.7 and Problem 2.49, its impulse 
response is absolutely integrable;  that is,  

 
 
    This is one of Dirichlet condition. Assuming other 2 

conditions are satisfied, it will have a valid H(jω)
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4.4  The Convolution Property

    In using Fourier analysis to study LTI systems, we 
will be restricting ourselves to systems whose 
impulse responses possess Fourier transforms. 

    In Chap. 9, we will develop a generalization of 
CTFT, the Laplace transform, for examine unstable 
LTI system.  

    為了利用轉換法來檢視不穩定的LTI系統，必須

藉助一種傅立葉轉換的一般化型式，即「拉氏

轉換」。
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Example 4.15 
    Consider a  continuous-time LTI system with impulse 

response   
                                                                                    (4.58) 
    The frequency response of this system is the Fourier 

transform of h(t) and is given by  
                                                                                    (4.59) 
 
    Thus, for any input x(t) with Fourier transform X(jω), the 

Fourier transform of the output is 
 
                                                                                    (4.60) 
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Example 4.15

   This result, in fact, is consistent with the time-shift 
property of Section 4.3.2. Specifically, a system for 
which the impulse response is              applies a 
time shift of      to the input—that is, 

).()( 0ttxty −=

0t
)( 0tt −δ
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Example 4.15

   Thus, the shifting property given in eq. (4.27) 
also yields eq. (4.60).  Note that, either from 
our discussion in Section 4.3.2 or directly from 
eq. (4.59), the frequency response of a system 
that is a pure time shift has unity magnitude at 
all frequencies (i.e.,               ) and has a 
phase characteristic       that is a linear 
function of    . 

10 =− tje ω

0tω−
ω
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Example 4.20

    As another illustration of the usefulness of the 
convolution property, let us consider the problem of 
determining the response of an ideal lowpass filter to 
an input signal x(t) that has the form of a sinc 
function.  That is, 



    Of course, the impulse response of the ideal lowpass 
filter is of a similar form, namely, 
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Example 4.20

    The filter output y(t) will therefore be the convolution of two sinc 
functions, which, as we now show, also turns out to be a sinc 
function.  A particularly convenient way of deriving this result is to 
first observe that  

 
    where  
 
 
    and 
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Example 4.20

   Therefore, 




   where      is the smaller of the two numbers     and      .  
Finally, the inverse Fourier transform of Y(jω) is 
given by 

 
 
    That is, depending upon which of      and      is 

smaller, the output is equal to either x(t) or h(t). 
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4.5   The multiplication Property

    Because of duality between the time and frequency 
domains, we would expect a dual property also to 
hold (i.e., that multiplication in the time domain 
corresponds to convolution in the frequency domain).  
Specifically, 

 
                                                                                (4.70) 
    乘法性質：

　時域中訊號相乘對應至頻域中為個別的傅立葉
轉換的迴旋積分。
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4.5   The multiplication Property

   Multiplication of one signal by another can be 
thought of as using one signal to scale or 
modulate the amplitude of the other, and 
consequently, the multiplication of two signals is 
often referred to as amplitude modulation. For 
this reason, eq. (4.70) is sometimes referred to 
as the modulation property. 

 
    兩訊號相乘常稱之為「振幅調變」。故(4.70)

式常稱為「調變性質」。
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Example 4.23

    Another illustration of the usefulness of the Fourier 
transform multiplication property is provided by the 
problem of determining the Fourier transform of the 
signal 

 
    The key here is to recognize x(t) as the product of two 

sinc functions: 
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Example 4.23

    Applying the multiplication property of the Fourier 
transform, we obtain 

 
 
 
    Noting that the Fourier transform of each sinc 

function is a rectangular pulse, we can proceed 
to convolve those pulses to obtain the function 
X(jω) displayed in Figure 4.25. 
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4.5.1 Frequency-Selective Filtering with 
Variable Center Frequency

    Multiplication property is important for amplitude 
modulation in communication system: 

    In a frequency-selective bandpass filter built with 
elements such as resistors, operational amplifiers, and 
capacitors, the center frequency depends on a number 
of element values, all of which must be varied 
simultaneously in the correct way if the center 
frequency is to be adjusted directly. 
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Hard to change ωc  

Easy to modulate signal 
with ωc  



4.5.1 Frequency-Selective Filtering with 
Variable Center Frequency
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4.5.1 Frequency-Selective Filtering with 
Variable Center Frequency

326	

e jωct x(t) F← →# X j(ω −ωc )( )

-ωc+ω0 -ωc-ω0 



4.5.1 Frequency-Selective Filtering with 
Variable Center Frequency
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e− jωctw(t) F← →$ F j(ω +ωc )( )



4.5.1  Frequency-Selective Filtering with 
Variable Center Frequency

    The Fourier transform of                        is 
 
 
 
    the Fourier transform of                     is 
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)()( txety tj cω=

Y ( jω) = δ( j(ω −ωc ))∗X( jω) =

δ( j(θ −ωc )−∞

+∞

∫ )X( j(ω −θ ))dθ = X( j(ω −ωc ))
)()( twetf tjwc−=

F( jω) = δ( j(ω +ωc )∗W ( jω) =

δ( j(θ +ωc−∞

+∞

∫ ))W ( j(ω −θ ))dθ =W j(ω +ωc )( ),

e jω0t x(t) F← →# X j(ω −ω0 )( )



4.5.1  Frequency-Selective Filtering with 
Variable Center Frequency

   So that the Fourier transform of F(jω) is W(jω) 
shifted to left by       .  From Figure 4.27, we 
observe that the overall system of Figure 4.26 
is equivalent to an ideal bandpass filter with 
center frequency      and bandwidth       , as 
illustrated in Figure 4.28. 
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4.6  Tables of Fourier Proerties and of 
Basic Fourier Transform Pairs 
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4.6  Tables of Fourier Proerties and of 
Basic Fourier Transform Pairs
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations 

    A particularly important and useful class of 
continuous-time LTI systems is those for which the 
input and output satisfy a linear constant-coefficient 
differential equation of the form 

 
                                                                          (4.72) 
 
   連續時間N階線性常係數微分方程一般式
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations

    There are two closely related ways in which to 
determine the frequency response H(jω) for an 
LTI system described by the differential 
equation (4.72). 

 
    The first way is use the fact that 
    is the eigenfunction of a LTI system, the 

output must be 

tjetx ω=)(
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y(t) = H ( jω)e jωt
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations

   Alternatively, consider an LTI system characterized by eq. 
(4.72).  From the convolution property,  

 

   or equivalently,  
   
                                                                                       (4.73) 
 
   另一為利用迴旋運算定理可得：

,
)(
)()(

),()()(

ω
ω

ω

ωωω

jX
jYjH

jXjHjY

=

=

)(/)()(

)()()(

ωωω

ωωω

jXjYjH
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=

=

即：
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations

    Consider applying the Fourier transform to both sides 
of eq. (4.72) to obtain 

 
 
                                                                               (4.74) 
     
    直接對微分方程各項求取傅立葉轉換。
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations

    From the linearity property, eq. (4.26), this becomes 
 
                                                                               (4.75) 
 
 
    and from the differentiation property, eq. (4.31), 
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4.7  Systems Characterized by Linear 
Constant-Coefficient Differential Equations

    Or equivalently, 






   Thus, from eq. (4.73), 
 
                                                                               (4.76) 
 
   可得頻率響應H(jω)與微分方程各係數的關係式。
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Example 4.24 

    Consider a table LTI system characterized by the differential 
equation 

 
                                                                                          (4.77) 
    with a＞0.  From eq. (4.76), the frequency response is 
 
                                                                                  (4.78) 
    Comparing this with the result of Example 4.1, we see 

that eq. (4.78) is the Fourier transform of            .  The 
impulse response of the system is then recognized as 
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4.8  Summary 
§  Derive FT for aperiodic signal from FS 
§  Convergence of FT 
§  FT for periodic signals 
§  Properties of FT: linearity, time-shifting, 

Conjugate symmetry, differentiation & 
integration, duality, Parseval’s relation, etc. 

§  Convolution & multiplication properties 
§  Frequency-Selective Filtering with Variable 

Center Frequency 
§  Solving Linear Constant-Coefficient Differential 

Equations using FT properties 
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