Chapter 4
The continuous-time
Fourier Transform

Min Sun



4.0 Introduction

" We extend fourier series for periodic signal to fourier
transform for periodic and aperiodic signals with

finite energy



4.1.1 Development of the Fourier Transform
Representation of an Aperiodic Signal

To gain some 1nsight into the nature of the Fourier
transform representation, we begin by revisiting the
Fourier series representation for the continuous-time

periodic square wave examined in Example 3.5.

Specifically, over one period,

_ 1, M<Tl
X(t) _ {(), Ti<|t|<T /2

x(t)

|
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4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

As determined in Example 3.5, the Fourier series

coefficients @, for this square wave are
_ 2sin(kw,T))
kw,T

An alternative way of interpreting eq.(4.1) is as

[eq.(3.44)] a, (4.1)

samples of an envelope function, specifically,

_ 2sinaf; (4.2)

Tak - w=kaw, *

and we refer 2sinwl;  as it envelope




4.1.1Development of the Fourier Transform

Representation of an Aperiodic Signal
2sinwT,

Now let’s fix T, and change

T from 4T, (a), 8T,(b), 16T ,(c)
*Envelope hasn’t changes
*w, becomes smaller

*Sample more densely

27T wl, =7

W, T

w

_T
1,




4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

T 1ncreases, or equivalently, as the fundamental
frequency w, =27/T decreases, the envelope 1s
sampled with a closer and closer spacing.

The set of Fourier series coefficients approaches the
envelope function as 7— .
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4.1.1Development of the Fourier Transform

Representation of an Aperiodic Signal
In particular, consider a

signal x(t) that 1s of finite ()
duration. That 1s, for some f\/\l
number T, x() =0 if |¢| > T, T t

as 1llustrated in Figure 4.3(a).

From this aperiodic signal,

we can construct a periodic r\/\l r\"j r\’\l

signal () for which x(2) is B

one period, as indicated 1n
Figure 4.3(b).



4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

As T becomes larger, x(¢) 1s 1dentical to x(t) over a
longer interval, and as 7—o0, X(?) it is equal to x(t) for

any finite value of t.
X(t)




4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

Recall from FS:
In eq. (3.39) carried out over the interval
-T/2=<t=<T/2 ,we have

400

~ _ Jkaw,t

(0= ae™, s
| — i

a = T2 X (e dt, (4.4)

where @, =2x/T



4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

1 o — jkayt
a = [ 15, %@)e " dr,(4.4)

Since ¥(¢) = x(z) for |{<T/2 , and also, since
x(t)=0 outside this interval, eq. (4.4) can be
rewritten as

1 /2 — jka,t 1 o — jkayt
a =  X(@)e™ ™t = - j: x(t)e k.



4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

1 e — jkwy
a = [ x®e ™.
Therefore, defining the envelope X(jw)of Ta, as

X(jo)= [ xe " dt, s

we have, for the coefficients 4,

a, = %)q ika,). (4.6)



4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal

+00 . 1
x(t) = a.e’™ 43y a =—X(ikw (4.6
<>k=2_wk<>kT<Jo><>

Combining egs. (4.6) and (4.3), we can express
X() interms of X(jw) as

56(1‘) = E %X(]kwo )ejka)ot,
k=—00

or equivalently, since2z/T = w,,

X (1) = 1 E X (kw,)e’ ™ w,.
27 = (4.7)



4.1.1Development of the Fourier Transform
Representation of an Aperiodic Signal
- ot 2m
(1) = E X (jkw,)e™ ™ v, (4.7),w, = =

k_—oo

As T— X(¢t) approaches x(t), and consequently,
in the limit eq. (4.7) becomes a representation of

X(1).

x(t) = Lf:X(ja))ej“”a’co Inverse Fourier Transform (4.8)

and
Fourier Transform(4.9=4.5)

X(jw) = f:x(t)e'j‘“’dt.

Spectrum of x(t)



4.1.2 Convergence of Fourier
TranSfOrmS X(ja))=f_+:X(t)€_jwtdt.(4.9)

In 4.1.1, we derive Fourier Transform pairs for
aperiodic signal with finite duration. Acutally, it
IS also valid for signal of infinite duration

Consider x(jw)evaluated according to eq. (4.9),
and let x() denote the signal obtained by using
In the right-hand side of eq. (4.8). That is,

R(f) = — f “X(jw)e™ dw.



4.1.2 Convergence of Fourier
Transforms

If x(f) has finite energy, i.e., if it is square
integrable, so that

1o 2
[ x| dt <o, a1

then we are guaranteed that XU is finite [i.e.,
eq. (4.9) converges] and that ,with e(¢)denoting
the error between z¢yand x(t) [i.e.,e(t) = ¥(t) - x(2)]

f:\e(t)\zdt = 0. 4.12)

*no energy in their difference.




4.1.2 Convergence of Fourier
Transforms

= Alternative conditions:

These conditions, again referred to as the
Dirichlet conditions, require that:

1. x(t) be absolutely integrable; that is,
fm‘x(t)‘dt <. (4.13)

2. X(t) have a finite number of maxima and
minima within any finite interval.

3. X(t) have a finite number of discontinuities
within any finite interval. Furthermore, each of
these discontinuities must be finite.



4.1.3 Examples of Continuous-Time Fourier

Transforms | peo
x(f) = oy [ X(jw)e™ da(4.8)
—J.

Example 4.1 | o
X(jw)= [ x(t)e " d(4.9)

Consider the signal
x(2) = e “'u(t) a>0.
From eq. (4.9),

. | 1
X(jw) =j; e edt = -

a+ jow

—(a+jw)t|
O °

That 1s,

X(jw) = 1. : a > 0.
a+ jw




Example 4.1

Since this Fourier transform is complex valued,
to plot it as a function of w , we express X(jw) in
terms of its magnitude and phase:

1

X(jw) =
X (jo) N

., CX(jw)=-tan™ (9)

4}

Each of these components is sketched in figure
4.5.



Example 4.1 X (jow)|=

Ja* +w




Figure 4.5 Fourier transform of the signal x(t) = e~#u(t),a > 0, consid-
ered in Example 4.1.



1

a+ jw

0

O .

—(a+jw)t

Example 4.1 X(jw)= [ e dr=-

e

Note that if a is complex rather than real, then
x(t) is absolutely integrable as long ~ Kela}>0
as , and In this case the preceding

calculation yields the same(foym for
That is,

X(jw)= - +1ja)’ ﬁﬁe{a}> 0




x(f) = — f X(jw)e™ dw

Example 4.4
X(jow) = f x(te ™dt.

Consider the rectangular pulse signal

xpy={" " (4.16)

0, ‘t‘>Tl . t
From Eq. 4.9, we obtain its Fourier transform as

-T, T

sin w7, X(jw)

X(jo)= [ e"dr=2

1 4, 2T,
sinw/, W
= 271 1 . W

w1, /T, T,




x(f) = — f X(jw)e™ dw

Example 4.5
X(jow) = f x(te ™dt.
Consider the signal x(?) whose T
Fourier transform 1s 1
X . r1, |a)|<W 4 18 Yy W -
)= s . a
(jo)=1, ", (418) u
\ x(t)
Using the synthesis equation Wi
(4.8), we can determine ? 5}
—a/W (b)qr/W
1 pw simWr W sin Wt
x(t)=— e dw = = (4.19)

27T Tt a Wt



4.1.3 duality property

Fig. 4.8 x(t) e

- T1 T-‘
X(jw) x(t)

—a/W  w/W

Comparing Figures 4.8 and 4.9 or, equival

ently, egs.

(4.16) and (4.17) with egs. (4.18) and (4.19), we see

an interesting relationship. In each case, t

he Fourier

transform pair consists of a function of the form

(sina®f) /b6 and a rectangular pulse.



4.1.3 Examples of Continuous-Time Fourier
Transforms

A commonly used precise form for the sinc function
1S sin Tl

sinc(0) = :
A, (4.20)
The sinc function is plotted in figure 4.10.

We can use sinc to express

sinc (6)

eqs.(4.17) and (4.19) 1
20T, 1)
40 JT
smWt W . (Wt)
= Smmc| —|. —
it JT JT 3 A1 0 1'\/2/\%\/;



4.1.3 Examples of Continuous-Time Fourier
Transforms

[ X4(t)
X( oa)) . < 1’ |w|<VVl WM’n’ﬁ
J B 0, |a)|>Wl
\
— /Wy /W,
sinWt W, (Wt) AN L\H %g A A
= sinc¢ t
Jrt JU JU
X1(jo)




4.1.3 Examples of Continuous-Time Fourier
Transforms

— /Wy /Wy




4.1.3 Examples of Continuous-Time Fourier
Transforms

X3(t)

W3/ ™
W
X3(jw)

y
—W3 Wy w

(c)

Figure 4.11 Fourier transform pair of Figure 4.9 for several different values of W.



4.2 The Fourier Transform for periodic
signals

To suggest the general result, let us consider a signal
x(t) with Fourier transform x(j») that 1s a single
impulse of area 27 at w = w, ; that is,

X(jw) =2m0(w- w,). (4.21)
To determine the signal x(7?) for which this is the

Fourier transform, we can apply the inverse transform
relation, eq. (4.8), to obtain

x(t) = ﬁ f _+: 270(w - w, e’ dw = e’

Jwyt

e’™ < 2m0(w - w,)



4.2 The Fourier Transform for periodic
signals

Japt

e’ < 2m0(w-w,)

More generally, 1f x(jw)1s of the form of a linear combination
of impulses equally spaced in frequency, that is,

X(jw) = S 2ma,0(w-kw,), (4.22)

=00

then the application of eq. (4.8) yields
b (4.23)

x(1) = E a e,

k=—OO

X(jw)




Example 4.6

I | 1

|
~2T -T T-T, T, T T 2T
2 2

[ee]

Y ae’ < i 2ma,d(w - kw,)

k=—00 k=—OO

Consider again the square wave illustrated in Figure
4.1. The Fourier series coefficients for this signal are

sin kaw,T|
a, =
Ttk
and the Fourier transform of the signal is

5

i 2sin kw, T,

X(jw)= o(w - ka,),

k=—OO



(i =+°°20T15inka)0T15 —k0,0=2—n
Example 4.6 9”72 @=kop.00 =

f=—00 ka)()]-i
. _sinkw T, _ o,T; sinkw, T, _ insmkn/zé(w—ka)o)
‘ k r  mkeod, & kw/2

which is sketched in figure 4.12 for T =471, In comparison
with Figure 3.7 (a), the only differences are a

proportionality factor of 2 and the use of impulses

rather than a bar graph. xgw)

» o /-./’I =
\ // \\!,’ w
\ Ve

Y-

Figure 4.12 Fourier transform of a symmetric periodic square wave.



4.3 Properties of the Continuous-time Fourier
Transform

As developed 1n Section 4.1, a signal x(7) and its
Fourier transform X(jw)are related by the Fourier
transform synthesis and analysis equations,

leq. (4.8)] (1) = _f X(]a))e””da) (4.24)
and

X(jo) = f+°°x(z)e-f@‘dt.
eq. (4.9)] - (4.25)



4.3 Properties of the Continuous-time Fourier
Transform

refer to x(t) and x(jw)as a Fourier transform pair with the
notation :
x(t) < X (jw).

Thus, with reference to Example 4.1,

L F {e"”u(t)},

a+ jow

e'“’u(t)=F'1{ L }
a+ jw

and
1

a+jw

e “u(t) <+



4.3.1 Linearity

x(t) —— X (jw)

and i
y)y<——Y(jw),

Then
ax(t) + by(t) <= aX (jw) + bY (jw). (4.26)

SMENE(EEMEE )

I



4.3.2 Time Shifting

If
x(t)<—— X (jw),
Then

HRIBHIE x(t-t,) e X(jw). (4.27)

To establish this property, consider eq. (4.24);

x(7) ——f X(]a))e da)



4.3.2 Time Shifting )=~ X(jo)e  do

Replacing tby ¢ —¢, in this equation, we obtain
x(t-t,)) = —f X(]a))e]“’” "“dw

—i " ( E "X(]a))P“’tda)

Recognizing this as the synthesis equation for
x(t-t,) , we conclude that

Fix(t=t,)}=e7™ X (jw).



4.3.2 Time Shifting

If we express X(jw) in polar form as
F{X(f)}= X(]CI)) _ ‘X(jw)‘eﬂZX(jw),

then

F{x(t - to)} —e’"X(jw) = ‘X(ja))‘ej[w(jw)'wt‘)].

a time shift results to a phase shiftin FT



Example 4.9

To illustrate the usefulness
of the Fourier transform .
linearity and time-shift

properties, let us consider “
the evaluation of the Fourier o
transform of the signal x(t)

shown in Figure 4.15(a). )
First, we observe that x(t) 1, %l

can be expressed as the
linear combination ©

x(t) = %xl (1-2.5)+x,(t-2.5),

N[




Example 4.9 ] X1(t) 1 Xoft)

sma)T
X(jw)=2
Q)
where the signals x,(¢)and x,(¢) are the rectangular plus
signals shown in Figure 4.15(b) and (c). Then, using the

result from Example 4.4, we obtain

t

NIES

(SY [
N o

2sin(w/2) 2sin(3w/2)

X (jw) =

and X,(jo)=

Finally, using the linearity and time-shift properties of the
Fourier transform yields

X(]a)) _ e—j5a)/2{

sin(w/2)+ 2sin(3w/ 2) }
0,

x(t) = %xl (t=2.5)+x,(t=2.5), Fix(t=t,)}=e 7™ X (jw).



4.3.3 Conjugation and Conjugate Symmetry

The conjugation property states that 1f
xX(t)<—— X (jw),
then

HIEMEHE X' ()<Lt X' (—jw).
(4.28)



4.3.3 Conjugation and Conjugate Symmetry

X(jw)= [ T x(e M dr.(4.25)

This property follows from the evaluation of the
complex conjugate eq. (4.25)

X"(jow) = [ f:x(t)e'j“”dt]
_ f: X (e’ dt.

Replacing w by —w, we see that

X (-jw) =f_oo x (t)e"dt. (4 09



4.3.3 Conjugation and Conjugate Symmetry
(1)< X(jo) X ()<——X (-jw).

if x(2) is real so that x () = x(¢),

we have
X (-jo)=X(jo),
and, by replacing w and —w, we have
X' (jo)=X(-jw) (4.30)

conjugate symmetry



4.3.3 Conjugation and Conjugate Symmetry

From Example 4.1, with a real signal x(¢) = e *u(z),

I a-jo

X(j@) = a+jw a’+w’
and J

I a+jo

2 2

X(~jw) = —
a-jw a +w

=X (jw).




4.3.3 Conjugation and Conjugate Symmetry

X (jw)=X(=jw) (4.30)

As one consequence of eq. (4.30), if we
express X(jw) in rectangular form as

X(jw)=Re{X(jw)} + jSm{X(jw)},
Then if x(1) is real,

and Re{X(jw)} =NRe{X(-jw)} even

Sm{X(ja))} = —?Sm{X(—ja))}. odd



4.3.3 Conjugation and Conjugate Symmetry
X (jw)=X(-jw) (4.30)

iIf we express X(jw) in polar form as
X(jw)=|X(jw)e’ =,

As a further consequence of eq. (4.30), if x(t) is
both real and even, then X(jw) will also be real
and even. To see this, we write

X(=jw) = f:x(t)ej"”dt,

since  X(jw)= [ x(t)e ' dt.



4.3.3 Conjugation and Conjugate Symmetry
X(jw)y= [ x(t)edt.
or, with the substitution 7 = -,
X(-jw) = f _+: x(-1)e " "dt.

since x(-1) = x(1) (even), we have
X(-jo)= [ x(r)e " dr

= X(jw).
X (jo)=X(-jw) (4.30)

If x(t) is both real and odd, then X(jw) will also be imaginary
and odd.



4.3.3 Conjugation and Conjugate Symmetry

Finally, as was discussed in Chapter 1, a real
function x(t) can always be expressed in terms

of the sum of an even function *.(¢) =gv{x(t)}
and an odd function x,(#)=od{x(t)}; that is,

x(t)=x,(t)+x,(1).
From the linearity of the Fourier transform,

Fix(t)} = F{x,(0)}+ Fix, (1)}



4.3.3 Conjugation and Conjugate Symmetry

and from the preceding discussion, Fix, ()} is a
real function and F{xo(t)} IS purely imaginary.
Thus, we can conclude that, with x(t) real,

x()«——X(jw),
alx(t) <L RelX (o)},
od{x(t) }L— jSIm{X ()}

st )ty DR B[S (7 B (R DT SRR S )7 S 55 (5
I IEEANTE A o aaTHyE B (I 3E
EAS R ENS 1L R AN 1 -




Example 4.10

Consider again the Fourier transform evaluation of
Example 4.2 for the signal x(@z)=e", where a >0.
This time we will utilize the symmetry properties
of the Fourier transform to aid the evaluation

Process.
From Example 4.1, we have

1

e "u(t)y«~t———.
a+ jw




Example 4.10

Note that for t >0, x(t) equals e “u(t), while for
t<0, x(t) takes on mirror image values. That is,
x(®) =e M = e u(t) + e“u(~t)

e u(t) + e u(-t) |
2

— 2‘;‘v{e'“tu(t)}.

=2




x(t) <L X (jo),
Example 4.10  ef@)}<"—%Re{x(jm)}
od {x(t) <= jIm{X (jo)}

Since ¢ u(t) is real valued, the symmetry
properties of the Fourier transform lead us the
conclude that

w{e'“tu(t)}éﬁﬁe{ : }

a+ jw
it follows that x(1) = 2ev{e u()}.
X(jw) =2%e. 1. }= 22a =,
a+jw a +w
which is the same as the answer found in

Example 4.2.



4.3.4 Differentiation and Integration
x(t) = i f _+: X(jw)e™ dw(4.24)

By differentiation both sides of the Fourier
transform synthesis equation (4.24), we obtain

de(t) 1
dt 27T

fooja)X(ja))ej"”da).

Therefore,

d(t)
dt

(4.31)

> joX (jo).

This is very useful for LTI described by
differential equations

SRR B M I 5 ST D



4.3.4 Differentiation and Integration

one might guess f:ox(r)dté.iX(ja)).

_ o
The precise relationship is
f W(@)dT s X (jw)+ 72X (0)5(w).
o jw

(4.32)
i) PANE =]

dc (average value): X(0)= f _+:x(t)dt.



(@)dT L X(jw)+ 72X (0)5(0).
. o

Example 4.11 f

Let us determine the Fourier transform X(jw) of the
unit step x(t) = u(t), making use of eq.(4.32) and
the knowledge that

gt)=0(t)<—G(jow)=1.
Noting that

x(7) = ]foo o(1)d7

and taking the Fourier transform of both sides,

we obtain |
G(jw)

ja

X(jw) =

+71G(0)0(w),



Example 4.11

Where we have used the integration property listed in

Table 4.1. Since G(jw) = 1, we conclude that

X(jw) = L + 710 (w).

jw
Observe that we can apply the differentiation property of

eq. (4.31) to recover the transform of the impulse. That
LG A jow L + 10(w)
dt jw

IS, 8(1) = -1,

where the last equality follows from the fact that
wo(w)=0.



4.3.5 Time and Frequency Scaling

it x(1) <L X (jw),

Then

)
R A€ (4.34)

where a 1s a nonzero real number. This property
follows directly from the definition of the Fourier
transform—specifically,

F {x(at)} = j: +:x(at)e"j “dt.



4.3.5 Time and Frequency Scaling

Using the substitution 1=at , we obtain

lfroox(7:)6_1'(“’/‘Z)Tolz’, a)0

F =447,
{x(a )} < —éjio x(7)e /I gg a0

Thus, aside from the amplitude factor 1/lal, a linear
scaling in time by a factor of corresponds to a linear
scaling in frequency by a factor of 1/a, and vice versa.

Also, letting a = -1

x(=t)<t—=X(-jw).
(4.35)
AP\ [ R T M A (B T TR S PR R AF i -




x(at)«<+t——X

Example 4.5 1 (]a))
(Inverse Relationship) q |

X(jo)

Consider the signal x(?) whose
Fourier transform 1s

r

X . 1, |a)|<W 4 18 Y W ©
(.]a)) = 9 0. |a)|>W ( . ) (a)
\ X(t)
Using the synthesis equation Wi
(4.8), we can determine ? S;
1 v sin Wt T
x(t)=— e dw = (4.19)

27T Tt



4.3.6 Duality

The symmetry between

x(t)—— f X(jw)e'dw (424

X(jw) = ﬁ:x(t)e"j“’tdt. (4.25)



4.3.6 Duality

In the former example we derived the Fourier
transform pair

X (f { t‘<Tl o > X W) = ’
ARz B QT 180) «— sinpR B Z0(HEIEY)
while 1n the latter we considered the pair
Sin Wt F . {1 ‘a)‘<W
X, (1) = — X, (Jw) =), .
, (1) o ,(Jw) 0. 0P (4.37)

sinpR BT (L) ~— A A= (ETEY)




4.3.6 Duality

X4(t)

Xo(t)

/W/'n

iU
W

Y/

3
/EI

t

X (jo)

Xo(jo)

-W W )

Figure 4.17 Relationship between the Fourier transform pairs of egs. (4.36)

and (4.37).



Example 4.13

Let us consider using duality to find the Fourier transform

G(jw) of the signal 0
g(t)=

5

In Example 4.2 we encountered a Fourier transform pair
In which the Fourier transform, as a function of w, had a
form similar to that of the signal x(f). Specifically,
suppose we consider a signal x(t) whose Fourier

transform is . 2
X(jow)=

1+ w?

Then, from Example 4.2,

2
l+w

x(t) = e L X (jw) = ——.



Example 4.13

The synthesis equation for this Fourier transform pair

1S
e—|f| =L Oo 2 - ejwtdw_
279\ 1+ w

Multiplying this equation by 217 and replacing t by
—t, we obtain

De ! =fo (1 2 - )e‘j“”da).
-2\ 1+ @




X(jow)= [ x(t)e ™ dr.

Dae ! = f _o;(i)e'j‘“’da).

1+ w?

Example 4.13

Now, interchanging the names of the variables ¢ and
w, we find that

2.71'8_‘60‘ =j:i($)€_jwtdt.
(4.38)

The right-hand side of eq. (4.38) is the Fourier
transform analysis equation for 2/(1+ ¢* ), and
thus, we conclude that

4 2 N |w| 2

G(w) = F+ =2e g(t) =
() ¥1+t2f

1422




4.3.6 Duality

d);(tt)@e]wX(]w) X(jw) = f x(t)e 1 dt.

To determine the precise form of this dual property,
we can proceed 1n a fashion exactly analogous to that
used 1n Section 4.3.4. Thus, if we differentiate the
analysis equation (4.25) with respect to w, we obtain
(4.39)

. dX(jw) jo
That is, e = [ - jex(@)edr.

r dX(jo) (4.40)
dow

WO R AR -

- jtx(t) <




4.3.6 Duality  x(t-t,)<t=e "™ X(jw).(427)

[ x(r)dré,i)(( )+ mX(0)5(w).(4.32)
B o

Similarly, we can derive the dual properties of egs.
(4.27) and (4.32):

e x(t) <= X (j(w-)) (4.41)

FHIRFEIR AL B BRI E N
and |

- 5O+ a(0)3(0) <[ x(m)dn.

AR MR SRR -

(4.42)




4.3.7 Parseval’s Relation
x ()<t—=X (-jw). x(t)—— f X(jw)e'™ dw

If x(t) and X(jw) are a Fourier transform pair, then

+00 2 1 g0 . 2
Lo‘x(t)‘ dt = EJ:JX(]CU)‘ dw. (4.43)
T BUER (R U (EHE)

This expression, referred to as Parseval’s relation,
follows from direct application of the Fourier transform.
Specifically,

f:o‘x(t)‘zdt = f_+: x(1)x (¢)dt

-/ x<r>[$ [7X oy dw] dr.



4.3.7 Parseval's Relation
X(jw)= [ x(De .

Reversing the order of integration gives

400

L. ‘x(f)‘zd’f = i [ X (jo) [ [ +:x(t)e‘f“”dt]da).

The bracketed term is simply the Fourier
transform of x(t); thus,

100 2 | S . 2
j:oo‘x(t)‘ dt = ZLO‘X(]CU)‘ dw.

x(jw)|  often refer to as energy density spectrum.

I EER BRSO HTAERE R E N X Go)f /27 EHE(E
FRARREIRE 7T © B G T R | e B REAREY




Example 4.14

For each of the Fourier X(je)
transforms shown in Figure 4.18, i
we wish to evaluate the following /2
time-domain expressions: 05 0 05 1w
> 2 @
E = f x(1)| dt "
v
D = —x(t)‘ " )
To evaluate E in the frequency
domain, we may use Parseval’'s “ivm
relation. That s, ®)

Figure 4.18 The Fourier transforms considered in Example 4.14.

| NS
(4.44) E = Eﬁw‘X(]w)‘ dw



Example 4.14

1 .
X(jw) E - EJ:OO ‘X(]Cl))‘ dC()
var
vir/2
1 05 0 05 1 ® E=L £+ﬂ:)=l+l=§
@ 2x 4 8 2 8
X(j)
W
1
= : L =—(mw+m)=1
27T
—jvm
(b) which evaluates to for

Figure 4.18(a) and to 1 for
Figure 4.18(b)

Figure 4.18 The Fourier transforms considered in Example 4.14.



Example 4.14 (f)—— — [ Glj)e™"do

To evaluate D 1n the frequency domain, we first use the
differentiation property to observe that

¢(f) = %x<r>éijuw> - G(jw).

Noting that

1 po
=80)=—] G(jw)dw
2 (4.45)

we conclude: i
D=— ) iwX(jw)dw 4.4



Example 4.14 1
D=— [ joX(jw)dw
27 Y 7

X(jw)
i
Vir/2
-1 —01.5 0 Ol.5 1 ) D — O
(a) [ |
X(jo)
W
Do L (C05Ym+-05ym)- T _ =l
» 2 2w 2w
0 1 )
—jvm
(b) which evaluates to 0 for

Figure 4.18(a) and to -1
for Figure 4.18(b) )

Figure 4.18 The Fourier transforms considered in Example 4.14.



4.4 The Convolution Property

referring back to eq. (4.7), x(?) 1s expressed as the
limit of a sum; that is,

_i - ; jor _1: L C . Jkayt
x(t) = o f_w X(jw)edw = 1@109} - kZ_OOX( jka,)e™ ™ w,.
(4.47)

As developed 1n Sections 3.2 and 3.8, the response of
a linear system with impulse response /(%) to a
complex exponential ¢/** is H(jkw,)e™™  where

H(jkoy)= [ h()e " dt. (4.48)



4.4 The Convolution Property

From superposition [see €q.(3.124)], we then have

2 X (jkw,)e" ™ w, — — 2 X (jkay)H (jkaw,)e™ ™ w,,

k_—oo k_—oo

and thus, from eq. (4.47), the response of the linear

system to x(i t) 1S

y(1) = l1m EX (jkawy)H (jke,)e"™ ™ w,

C()O%O k——OO

(4.49)
=2—f X(jo)H(jw)e dw.
.71/' —00



4.4 The Convolution Property
Y0 == [ X(j) H(jw)e" do.

Since y(t) and its Fourier transform Y(jw) are
related by

y(t) = —f Y(]a))e”’”da) (4.50)
we can identify Y(jw) from eq. (4.49), yielding

Y(jw)=X(jo)H(jw). 45

As a more formal derivation, we consider the
convolution integral

y(t) = ﬁ:x (it -T)d (4.52)



4.4 The Convolution Property

We desire Y(jw), which is

V() = Fo = | [ x@hte-ode|edr. 5q)

Interchanging the order of integration and noting
that x(1) does not depend on t, we have

Y(jo) = [ x(z) [ [ r)e‘j"”dt]dr. (4.54)



4.4 The Convolution Property
H()= [ ht)e ™ dt.e” H(w)= [ h(t-7)e " dt.
By the time-shift property, eq. (4.27), the bracketed term

is €’ H(jw). Substituting this into eq. (4.54) yields
Y(jo)= [ T x()e " H(jo)dT = H(jw) [ " x(v)edr.

The integral is X(jw), and hence,

hatis Y(jw)=H(jo)X(jw).

Y(t) = h(t)*x(t) <——Y(jw) = H(jw) X (jw).
(4.56)
LB R 17 TR A A e B B A S

EREFRERRDIT LB AEEN, ENFEPREHEREFRELE
SR B BB RIS



4.4 The Convolution Property

As illustrated in Figure 4.19,
since the impulse response
of the cascade of two LTI
systems is the convolution of
the individual impulse
responses, the convolution
property then implies that the
overall frequency response
of the cascade of two
systems is simply the
product of the individual
frequency responses.

X(t) e

Hq(jw)

x(t)

Ha(jw)

X(t) e

Ho(jw) |

Hq(jo)




4.4 The Convolution Property

(Sec. 4.12) convergence of FT 1s guaranteed only
under certain condition. Hence, frequency response
cannot be defined for every LTI system.

If, however, an LTI system 1s stable, then, as we saw
in Section 2.3.7 and Problem 2.49, 1ts impulse
response 1s absolutely integrable; that 1s,

ff: h(t)dt < oo.

This 1s one of Dirichlet condition. Assuming other 2
conditions are satisfied, it will have a valid H(jw)




4.4 The Convolution Property

In using Fourier analysis to study LTI systems, we
will be restricting ourselves to systems whose
impulse responses possess Fourier transforms.

In Chap. 9, we will develop a generalization of
CTFT, the Laplace transform, for examine unstable

LTI system.

Ry T A AEBBER AR ERILTIZRR » W2H
Fe ) —TEEIIEERA— AR B TR
WA




Example 4.15

Consider a continuous-time LTI system with impulse
response
h(t)=0(t-t,). (4.58)

The frequency response of this system is the Fourier
transform of h(t) and is given by

H(]a)) _ e—ja)to . (4.99)

Thus, for any input x(t) with Fourier transform X(jw), the
Fourier transform of the output is

Y(jw)=H(jo)X(jw)

=" X(jw). o



Example 4.15

This result, in fact, is consistent with the time-shift
property of Section 4.3.2. Specifically, a system for

which the impulse response is 0(¢f —¢,) applies a
time shift of ¢, to the input—that is,

y(t) = x(t=1,).



Example 4.15

Thus, the shifting property given in eq. (4.27)
also yields eq. (4.60). Note that, either from
our discussion in Section 4.3.2 or directly from
eq. (4.59), the frequency response of a system
that is a pure time shift has unity magnitude at
all frequencies (i.e., [e”**|=1 ) and has a
phase characteristic- @i;that is a linear
function of w .

Y(jw)=H(jw)X(jw)
=’ X(jw).



Example 4.20 f

-w W w —-m/W /W

As another 1llustration of the usefulness of the
convolution property, let us consider the problem of
determining the response of an i1deal lowpass filter to
an mput signal x(z) that has the form of a sinc
function. That 1s, sin a.t

Of course, the impulse response of the 1deal lowpass
filter 1s of a similar form, namely,

sma)t
h(t) =
(¢) p”




Example 4.20

The filter output y(t) will therefore be the convolution of two sinc
functions, which, as we now show, also turns out to be a sinc
function. A particularly convenient way of deriving this result is to
first observe that

Y(jw)=X(jo)H(jw),

where

X(jw) =1 9=

and

H(jw) = {B e



Example 4.20

Therefore, ‘ ‘
. 1 w\=w,
Y (] C()) _ {O elsewhere?®

where @), 18 the smaller of the two numbers @, and @, .
Finally, the inverse Fourier transform of Y(jw) is

glven by r SiIlC()ct .
p ifw,<w;
y(t) . sinw;t ifoo, S0
Jzt 11— 77cC

That is, depending upon which of @w_and @ is
smaller, the output is equal to either x(t) or h(t).



4.5 The multiplication Property

Because of duality between the time and frequency
domains, we would expect a dual property also to
hold (1.e., that multiplication in the ttme domain
corresponds to convolution in the frequency domain).

Specifically,

0)=5Op(0) < RG) = [ SGOP(j(w-0))i6
& (4.70)

T

5 SR S 2 e 2 (I LT

R 5




4.5 The multiplication Property

Hﬂ—ﬂﬂﬂﬂ*fﬂﬂw——i[SU@WOw)ﬁﬂm

Multiplication of one signal by another can be
thought of as using one signal to scale or
modulate the amplitude of the other, and
consequently, the multiplication of two signals is
often referred to as amplitude modulation. For
this reason, eq. (4.70) is sometimes referred to
as the modulation property.

FIERSRETRAEAE 2 5 T IRIEE - $(4.70)
AR EEEE, -



Example 4.23

Another 1llustration of the usefulness of the Fourier
transform multiplication property 1s provided by the
problem of determining the Fourier transform of the
signal sin(z)sin(z/ 2)

x(1) = > :

. Tt

The key here 1s to recognize x(?) as the product of two
sinc functions:

x(t) = JZ’(

Tt JTL

sin(t) )( sin(z/2) )



Example 4.23

. I, o<W SlIl Wt
X(]a))={0, (4.18) == x(1) =

|a)|>W

gt

Applying the multiplication property of the Fourier
transform, we obtain

X(jw) = lF{sin(t)}*F{sin(tQ) }

2 Jtt It

Noting that the Fourier transform of each sinc
function is a rectangular pulse, we can proceed
to convolve those pulses to obtain the function
X(jw) displayed in Figure 4.25.



Example 4.23

X(jw) = lF{sin(t)}*F{sin(tM) }

2 it it
A X(jw)
1/2
| [
-3 ~1 1 3 W
2 2 2 2

Figure 4.25 The Fourier transform of x(t) in Example 4.23.



4.5.1 Frequency-Selective Filtering with
Variable Center Frequency

Easy to modulate signal :

with w,

Multiplication property 1s important for amplitude
modulation in communication system:

In a frequency-selective bandpass filter built with
elements such as resistors, operational amplifiers, and
capacitors, the center frequency depends on a number
of element values, all of which must be varied
simultaneously in the correct way 1f the center

frequency 1s to be adjusted directly. Hard to change w,
H(jo)

(jo)

1

+1

-0
- wo 0«)0 w < 2(00—->




4.5.1 Frequency-Selective Filtering with
Variable Center Frequency

ejwctx(t)J%X(j(w ~w,))

e Juet |deal lowpass R
filter
H(jw)
t 1 w(t
x (1) x yo__ L (1
—Wq (O] w

Figure 4.26 Implementation of a bandpass filter using amplitude modula-
tion with a complex exponential carrier.



4.5.1 Frequency-Selective Filtering with

Variable Center Frequency
ejwctx(t)éX(j(a) - a)c))

FadhaN

'wc'wo 'wc+w0

Y(jo)
’

Frequency response of |——+4—-—-
ideal lowpass filter \:1/\/\/\
| |
L |




4.5.1 Frequency-Selective Filtering with
Variable Center Frequency

—j F .
e chtw(t)%F(](a) + a)c))
W(jw)
—wq wg o
F(jw)
+A
i
P e T ®  Figure 4.27 Spectra of the signals

(-we—wg)  (—og + wp) in the system of Figure 4.26.



4.5.1 Frequency-Selective Filtering with
Variable Center Frequency

e’ x(t) =X (j(w-w,))

The Fourier transform of y(¢) = &’ x(¢) is
Y (jw) = 8(j(w-w,))* X(jo) =
[ 6j(6-w )X(j(w-0))db = X(j(w-w,))

—jw.t

the Fourier transform of f(¢) =e™'w() 1S
F(jo)=o(jlw+w,)*W(jw)=
[ 830+ )W (j(w-60))d6 =W (j(w+w,)),



4.5.1 Frequency-Selective Filtering with
Variable Center Frequency

So that the Fourier transform of F(jw) is W(jw)
shifted to left by @, . From Figure 4.27, we
observe that the overall system of Figure 4.26
IS equivalent to an ideal bandpass filter with
center frequency -w.and bandwidth 2@, | as
illustrated in Figure 4.28.

H(jo)

l«—z‘”" “  Figure 4.28 Bandpass filter equiva-
HoT lent of Figure 4.26.



4.6 Tables of Fourier Proerties and of
Basic Fourier Transform Pairs

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM & 4.1 4%z ¥ 4dee) T 20 H
Section Property Aperiodic signal Fourier transform
x(t) X(jw)
y(t) Y(jw)
43.1 Linearity ax(t) + by(r) aX(jw) + bY(jw)
432 Time Shifting x(t — ty) e N X (jw)
4.3.6 Frequency Shifting e/ x(t) X(j(@ = wo))
433 Conjugation x'(r) X'(—jw)
435 Time Reversal x(—1) X(— jw)
435 Time and Frequency x(at) ﬁX (ﬂ)
Scaling @ ¢
4.4 Convolution x(1) * y(t) X(jo)Y(jw)
45 Multiplication Oy 2'—4 X(O)Y(i(w — 6)do
434 Differentiation in Time %x(l) joX(jw)
434 Integration J x(t)dt J%X(jw) + 7X(0)8(w)
43.6 Differentiation in 1x(1) jdi—X(jw)
Frequency @
X(jo) = X'(— jw)
Re{X(jo)} = Re{X(~ jw)}
433 Conjugate Symmetry  x(¢) real Im{X(jw)} = —In{X(~ jow)}
for Real Signals [X(jo)| = [X(- jo)|
IX(jw) = —4X(— jow)
433 Symmetry for Realand  x(r) real and even X(jw) real and even
Even Signals
433 Symmetry for Realand  x(7) real and odd X(jw) purely imaginary and odd
0Odd Signals
433 Even-Odd Decompo- = gV{X(’) b L) real] q;e(xu )}
sition for Real Sig- x,(t) = Od{x(1)} [x(7) real] JIm{X(jw)}
nals
437 Parseval’s Relation for Aperiodic Signals

J : |x()]dt =

I (Yo .
3| KGoido




4.6 Tables of Fourier Proerties and o
Basic Fourier Transform Pairs

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS & 42 A4 5 34yt

Fourier series coefficients

Signal Fourier transform (if periodic)
+a ) 4o
Z agelte’ 2 Z ad(w — kwg) ay
k=== k==
e/ 278 (w — wo) ar=1
a;, = 0, otherwise
= =1
cos wot 7[8(w — wg) + 8(w + wy)] 4 =4 =g X
a, = 0, otherwise
= — =1
sinwt 3[6(0) = o) — 8(w + wy)] a a 2
J a, = 0, otherwise
a =1 a, =0 k#0
x(0) =1 27 8(w) this is the Fourier series representation for
any choice of 7' > 0
Periodic square wave
_[L s % 2sinkar T, T kewoT, in koo T,
MO=Vo mcp =1 S 2Rl sy T e (ReoTi) _ sinkeoTy
g k T T kr
and k=
x(t+T) = x(t)
L 2 2k 1
";su - nT) T ;ﬁa( T) a =  forallk
x(l)[ 1, lf|<T 2sinwT) o
0, |f|>T ]
si s <W
sin Wt X(jw) = [ L ol _
Tt 0, |w/>W
8() 1 —
1
u(t) — + m8(w) —
jw
8(t — ty) e ety J—
“u(t), Rela) > 0 L
e “u(r), Refa Eam
te "u(t), Rela} > 0 _ —
' (a+ jo)
e ), ! _
Refa} >0 (a+ jo)




4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

A particularly important and useful class of
continuous-time LTI systems 1s those for which the
input and output satisfy a linear constant-coefficient
differential equation of the form

N

d'y(t) &, d*x(t)
a =MD . (472
Zo © ot ZO ©dtt (472)
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4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

There are two closely related ways in which to
determine the frequency response H(jw) for an
LTIl system described by the differential
equation (4.72).

The first way is use the fact that x(f) =&’

is the eigenfunction of a LTI system, the
output must be y(z) = H(jw)e™
N

d'y(t) &, d'x@)
Sy
=() dt =0 dt




4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

Alternatively, consider an LTI system characterized by eq.
(4.72). From the convolution property,

Y(jw)=H(jo)X(jw),

or equivalently,

- Y(jw)
H(jo)=——", 4.73
X(jw) (4.73)
o 1| L i 4 R P A A
Y(jw)=H(jw)X(jw)
B[] -
H(jo)=Y(jw)/ X(jo)



4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

Consider applying the Fourier transform to both sides
of eq. (4.72) to obtain

Y

rN dk t\ rM dk t_\
Fiya y,f)>=F<Zbk (0|
i dt i dt

(4.74)
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4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

From the linearity property, eq. (4.26), this becomes

N rdk t- 3N M rdk Z’- N
ZakF< y}f ) - ZbkF< x}g ) ! (4.75)
=() dt =0 dt

and from the differentiation property, eq. (4.31),

N

; a,(jw)'Y(jow) = ;bk (jw) X(jw),



4.7 Systems Characterized by Linear
Constant-Coefficient Differential Equations

Or equivalently,

Y(jw)

3

a,(j w)k

Thus, from eq. (4.73),

H(jw) =

= X(jw)

Y(jw) _ Eiiobk(jw)k

-2bk(jw)k--

X(jw) Ej‘ioak(ja))k |

T AR S H (o) B4 55 TR 5 (B B et -

(4.76)



b
Example 4.24 H(jw)= Y _ 2 b (4.76)
X(jw) E a, ]a))

Consider a table LTI system characterized by the differential
equation dy (t)

+ay(t) = x(1),

(4.77)
with a >0. From eq. (4.76), the frequency response is
, 1
H(jw)= - :
Jo+a (4.78)

Comparing this with the result of Example 4.1, we see
that eq. (4.78) is the Fourier transform of e “u(t) . The
impulse response of the system is then recognized as

h(t) =e “u(t).



4.8 Summary

Derive FT for aperiodic signal from FS
Convergence of FT
FT for periodic signals

Properties of FT: linearity, time-shifting,
Conjugate symmetry, differentiation &
integration, duality, Parseval’s relation, etc.

Convolution & multiplication properties

Frequency-Selective Filtering with Variable
Center Frequency

Solving Linear Constant-Coefficient Differential
Equations using FT properties



