Chapter 3
Fourier series
Representation of Periodic
Signals

Min sun



3.0 Introduction

* In this chapter, we focus on the representation of
continuous-time and discrete-time periodic signals
referred to as the Fourier series. In Chapters 4 and 3,
we extend the analysis to the Fourier transform
representation of broad classes of aperiodic, finite

energy signals.
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3.0 Introduction

* These representations provide one of the most

powerful and important sets of tools and insights for

analyzing, designing, and understanding signals and

LTI systems, and we devote considerable attention 1n

this and subsequent chapters to exploring the uses of

Fourier methods.
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3.1 A Historical Perspective

= We will see that 1f the input to an LTI system 1s expressed
as a linear combination of periodic complex
exponentials or sinusoids, the output can also be
expressed 1n this form, with coefficients that are related 1n

a straightforward way to those of the mput.
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3.1 A Historical Perspective

Vertical deflection
f(t,x)

X, Position along

the string

i
Sy
-
=

1748 L. Euler studied
“normal modes” of
Vibrating string.

Give any t f(t,x) is
harmonically related

to sinusoidal function of x*

*a set of periodic function

with fundamental frequencies
that are all multiples of a single
positive frequency.

Figure 3.1 Normal modes of a vi-
brating string. (Solid lines indicate the
configuration of each of these modes
at some fixed instant of time, t.)



3.1 A Historical Perspective

Any univariate function can be
rewritten as a weighted sum of
sines and cosines of different
Frequencies (1807)

Laplace Lagrange Legendre Poisson

...the manner in which the author arrives at these
equations is not exempt of difficulties and...his analysis to
integrate them still leaves something to be desired on the

score of generality and even rigour.

- Laplace

Not translated to English until 1878!



3.1 A Historical Perspective
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Figure 3.3 Ship encountering the superposition of three wave trains, each with a
different spatial period. When these waves reinforce one another, a very large wave
can result. In more severe seas, a giant wave indicated by the dotted line could result.
Whether such a reinforcement occurs at any location depends upon the relative phases
of the components that are superposed. [Adapted from an illustration by P. Mion in
“Nightmare Waves Are All Too Real to Deepwater Sailors,” by P. Britton, Smithsonian
8 (February 1978), pp. 64-65].



3.2 The Response of LTI Systems to
Complex Exponentials

* [t is advantageous in the study of LTI systems to represent
signals as linear combinations of basic signals that possess

the following two properties:

1. The set of basic signals can be used to construct a broad and useful class of
signals.
2. The response of an LTI system to each signal should be simple enough in

structure to provide us with a convenient representation for the response of the

system to any signal constructed as a linear combination of the basic signals.



3.2 The Response of LTI Systems to
Complex Exponentials

* The importance of complex exponentials stems from
the fact that the response of an LTI system to a
complex exponential input is the same complex
exponential with only a change 1n amplitude; that 1s,

continuous time: e — H(s)e™ , (3.1)
discrete time: z" — H(z)z", (3.2)

where the complex amplitude factor H(s) or H(z) will in
general be a function of the complex variable s or z.



3.2 The Response of LTI Systems to
Complex Exponentials

* To show that complex exponentials are indeed eigenfunctions
of LTI systems, let us consider a continuous-time LTI system
with impulse response #(¢) . For an input X(£), we can
determine the output through the use of the convolution

integral, so that with x(¢) = ¢
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3.2 The Response of LTI Systems to
Complex Exponentials ) =,

y0) = [ h(o)x(t-7)dr
- (3.3)

= [ h(r)e"“dr.

vy=e" | “h(r)edr

7) st —ST

Expressing e*“™ ase*e ™7, and noting that e” can
be moved outside the integral

(3.4)



3.2 The Response of LTI Systems to
Complex Exponentials (1) =¢e" j " h(r)e*"dr.

t

The response to ¢>* 1s of the form

() = H(s)e" (3.5)

Where H(s) 1s a complex constant whose value
depends on s ant which i1s related to the system
impulse response by

H(s)= | " h(r)edz (3.6)



3.2 The Response of LTI Systems to
Complex Exponentials

Hence, we have shown that complex exponentials are
eigenfunctions of LTI systems. The constant H(s) for
a specific value of s 1s then the eigenvalue associated

With the eigenfunction e"



3.2 The Response of LTI Systems to
Complex Exponentials

Suppose that ant LTI system with impulse response hln]

has as its input the sequence x[n] =z" (3.7)

Where z 1s a complex number. Then the output of the
system can be determined from the convolution sum

)= S Ak

f=—o0

— +Z.O h[k]Zn—k — " +Z.O ]’l[k]Z_k. (38)

k=—o0 k=—00



3.2 The Response of LTI Systems to
Complex Exponentials Wn]=2" Z W[k,

The output 1s the same complex exponentlaoi
multiplied by a constant that depends on the value of

z. That 1s,
vln|l=H(2)z", 9

H(Z)Z Z h[k]Z_k. (3.10)



3.2 The Response of LTI Systems to
Complex Exponentials

Consequently, as in the continuous-time case, z”
complex exponentials are eigenfunctions of discrete-
time LTI systems. The constant H(z) for a specified
value of z 1s the eigenvalue associated with the
eigenfunction z”.



3.2 The Response of LTI Systems to
Complex Exponentials

Let x(¢) correspond to a linear combination of three
complex exponentials; that 1s,

x(t)=ae™ +a,e™ +ae™. (3.11)

From the eigenfunction property, the response to each

separately 1s i E
P Y ae" — aH(s,)e",

a,e” — a,H(s,)e™,

a,e™ — a,H(s,)e™,



3.2 The Response of LTI Systems to
Complex Exponentials

and from the superposition property the reponse to
the sum 1s the sum of the responses, so that

y(t)=a,H(s,)e" +a,H(s,)e™ +a,H(s,)e™.
(3.12)



3.2 The Response of LTI Systems to
Complex Exponentials

If the mput to a continuous-time LTI system 1s
represented as a linear combination of complex
exponentials, that 1s, 1f

.X(t) :ZakeSkt, (313)
k
then the output will be

= (s, L
Y0 Zk:a (S )e (3.14)



3.2 The Response of LTI Systems to
Complex Exponentials

It
x|n|= Z%ZZ» (3.15)
k

then the output will be

y[n]zzakH(Zk)ZZ' (3.16)
k



»(t)=H(s)e"(3.5)

Example 3.1 H(s)= | " h(z)e " dr(3.6)

As an 1llustration of Egs. (3.5) and (3.6), consider an
LTI system for which the mput x(z) and output y(?)
are related by a time shift of 3.1.e.,

(3.17)
y(t) =x(t-3).
If the 1nput to this system 1s the complex exponential
signal ~, then, from eq.(3.17),

(3.18) *¥(O)=e"
y(t) _ ej2(t—3) _ e_j6€j2t.



y(t)=H(s)e"(3.5) y(t)=e’’e’*'(3.18)

=Xxa@mple 3T o 2 [ hepe " (3.6) y(t) = x(t-3)(3.17)

Equation (3.18) 1s in the form of eq. (3.5), as we would expect,

. 2t . . . . . .
since €’ is an eigenfunction. The associated eigenvalue is

H(j2)=¢e™’" ltis straightforward to confirm eq. (3.6) for this

example. Specifically, from eq. (3.17), the impulse response
of the system is fy(¢) = 5(¢ — 3) Substituting into eq.
(3.6), we obtain H(S) J‘é‘(z. Ne'dr = o

so that H(JQ,) —e /



x()=a,e" +a,e™ +a,e™(3.11)
Example 3.1y(t)=aH(s))e" +a,H(s,)e™ +a,H(s;)e™ (3.12)
y(t)=x(t—-3)(3.17)
As a second example, 1n this case 1llustrating egs.
(3.11) and (3.12), consider the input signal

x(t) =cos(4t)+cos(7t). From eq. (3.17), y(t) will of
course be

y(2) = cos(4(t —3)) +cos(7(t - 3)). (3.19)

To see that this will also result from eq. (3.12), we

first expand x( t) using Euler’s relation:

X(t)— ]4t 18_4t+l€]7t+ 1 e—j7t
22 2 (3.20)



H(s)=e

Example 3.1 x(t)=a,e” +a,e™ +a,e™(3.11)
w(t)=a H(s))e" +a,H(s,)e™ +a,H(s,)e™ (3.12)

| 1 1 1
' x(H)=—e"+ e+ "+ e,
G1ven (1) ) 7 7 )

From eqgs. (3.11) and (3.12),

16—112 jat 1 J12 —j4t 1 —j21 _j7t 1 j21 -7t

f)= t-e e’ t—ee t_—eTe’
Y =3 ; : .
or
(1) =—e"" 4 — Lras L pmees (1 e

=cos(4(t—3))+cos(7(t—3)). (3.19)



y(t)=cos(4(t—3))+cos(7(t—3))(3.19)

Exam ple 3.1 x()=ae™ +a,e™ +ae”(3.11)
Wt)=a H(s))e" +a,H(s,)e™ +a,H(s,)e™ (3.12)

In this case we can determine y(t) in eq. (3.19) by
iInspection rather than by employing egs. (3.11) and
(3.12)

However, egs. (3.11) and (3.12) not only allows us
to calculate the responses of more complex LTI
systems, but also provides the basis for the
frequency domain representation and analysis of
LTIl systems.



3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

As defined 1n Chapter 1, a signal 1s periodic if, for
some positive value of T,

(3.21) x(t)=x(t+T) for all t.

The fundamental period of x(?) 1s the minimum
positive, nonzero value of T for which eq. (3.21) 1s
satisfied, and the value @,=27/T 1s referred to as the
fundamental frequency (z& 37 ).



3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

Two basic periodic signals, the sinusoidal signal

5% Rz 1% x(1) = cosw,t (3.22)
and the periodic complex exponential
TEHIEISH  x(r)= ™ (3.23)

Both of these signals are periodic with fundamental
frequency @, and fundamental period T =27/w, .
Associated with the signal in eq. (3.23) is the set of
harmonically related complex exponentials®

¢k (t) — ejka)ol‘ — ejk(27r/T)t,k _ 0,i1,i2, ......

*a set of periodic exponentials with fundamental frequencies
that are all multiples of @,



3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

= Fourier series representation:

A linear combination of harmonically related complex
exponentials of the form

+00 +00
x(t): Z akejka)ot _ Z akejk(27r/T)t (3.25)

k=—o0 k=—o0
IS also periodic with period T.

In eq. (3.25), the term for k=0 is a constant. The terms for k=
+1 and k= -1 both have fundamental frequency equal to% and

are collectively referred to as the fundamental components for
the first harmonic components.

More generally, the components for k= +N and k= -N are
referred to as the Nt" harmonic components.



Example 3.2

Consider a periodic signal x(t), with fundamental
frequency 21, that is expressed in the form of eq. (3.25)

as +3
_ jk 2t

X(f) = k;3ake , (326)
where

a, =1,

1
d, =d_; = Za
a2 = a_2 = )

Q
"
I
Q
o
I



Example 3.2 x(r)=§akef“”’<3.26>

Rewriting eq. (3.26) and collecting each of the harmonic
components which have the same fundamental
frequency, we obtain

x(t)=1+l(ej2’” +e_j2”’)+l(ej4’” +e /)
4 1 2 (3.27)
(e]6m+e—]67zt)

Equivalently, using Euler’s relation, we can write x(t) in
the form

x(t)=1+ %cos 27t + cosdnt + %cos o7t. (3.28)

* alternative form for Fourier Series of real periodic
signal



Exam ple 3.2 x(t) =1 +%cosZm‘ +cos4nt +§cos67n‘.

In figure 3.4, we illustrate graphically how the signal x(t)
IS built up from its harmonic components.

Individual signal Combined signal




Exam ple 3.2 x(t) =1 +%cos27zf +cos4nt +§cos6m‘.

In figure 3.4, we illustrate graphically how the signal x(t)

IS built up from its harmonic components.
Individual signal

Combined signal




3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

Alternative form for Fourier Series of real periodic
signal

Suppose that x(t) is real and can be represented in the
form of eq. (3.25). Then, since x'(t)=x(t) , we obtain

xt)=x"()= D aie ™. x(t)= a,e""(3.25)

k:—oo k:—OO

Replacing k by — k in the summation, we have

+00
x(f)= Z ajkejka)ot,

k=—00
by comparison with eq. (3.25), requires that ¢, =a_; |
or equivalently, that



3.3.1 Linear combinations of Harmonically

Related Complex Exponentials )= iakejmof(g,%)

k=—0

To derive the alternative forms of the Fourier series, we
first rearrange the summation in eq. (3.25) as

X(t) — a() +Z|:akejkw0t _I_a_ke—jka)ot]
« k=l
Substituting a, for a_, from eq. (3.29), we obtain

x(l‘) =a,+ Z [akejka)ot n a;:e—jka)ot]
k=1

x(t)=a,+ i 29%8{akejkw°t}.
k=1



3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

Since the two terms inside the summation are complex
conjugates of each other, this can be expressed as

x(t)=a, + i 29?e{ak kot } (3.30)
k=1

. . — 4 J O
If 4, is expressed in polar formas d; = A€,
then eq. (3.30) becomes

That is, x(t)=a,+ Z 29%6{Akej (k”(’”g")}
k=1

x(t)=a,+2)_ A, cos(kayt +6,). (3.31)
k=1



3.3.1 Linear combinations of Harmonically
Related Complex Exponentials

Another form is obtained by writing @, in
rectangular form as
a, =B, + jC,

where B, and C,; are both real. With this
expression for a, , eq. (3.30) takes the form

x(t)=a,+ 22 [Bk coskwyt —C, sin ka)ot} (3.32)
k=1

x(t)=a, +izm€{akejkw"t} =a, +i2(9¥e{Bkejk“’°t } + ‘Re{jCkejk‘”Ot })

k=1 k=1



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

= Given x(t) and w, , how to determine a,?

Multiplying both sides of eq. (3.25) by e /"',
we obtain

+00
— k .

k=—o0

Integrating both sides from 0 to T =27/, , we
have

T . T & . .
(1 — jnawyt :j Jkayt —jnayt .
jo (t)e dt : k;ake e dt

T is the fundamental period of x(1),



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

Interchanging the order of integration and
summation yields

T . — T
{ —]na)otdt _ |: Jj(k—n)wyt dtil
J , X(0)e l;oak | 0 (3.34)

Rewriting this integral using Euler’s formula, we
obtain

IT jk=m)ant ! (o
e dt = jo cos(k —n)a,tdt + jo sin(k — n)ew,tdt.
(3.35)



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

For k # n, cos(k —n)w,t and sin(k — n)a)ot are
periodic sinusoids with fundamental period (T/ |
k-n | ). Therefore, eq. (3.35) equals zero. For k
= n, the integrand on the left-hand side of eq.
(3.395) equals 1, and thus, the integral equals T.
In sum, we then have

j T pilkmant 7. _ { T k=n
0 0,k+#n

J Fermesds= [ Tcosk—nyw,tdi+ j | " sin(k—n)o,tdt.(3.35)



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

jTej(k—n)thdt :{ T, k=n
0 0,k#n

joTx(t)e_jnwotdt = i ak[ jOT e/ ! dt}z i a,Tolk—n]
k=—o0 k=—o0

the right-hand side of eq. (3.34) reduces to 1a,
Therefore,

1 o7 .
— — Jnwyt
a = 7 JO x(t)e dt,  (3.36)



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

If we denote integration over any interval of
length T by [, , we have

Jj(k=n) ot _{T, k=n
ITe dt_ 0, k#n>

and consequently,

_ 1 —Jjhayt (3.37)
a = P IT x(t)e dt.



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

defines the Fourier series of a periodic
continuous-time signal:

_ < koot < jkQr Tt
x(t) = k;ake = k;ake , (3.38)
1 - 1 .
_ { —]ka)otdt _ { —]k(27r/T)tdt.
a, =] 1x(0)e -] (e (3.39)

{a,}Fourier coefficients



3.3.2 Determination of the Fourier Series
Representation of a Continuous-time Periodic Signal

The set of coefficients {a,} are often called the
Fourier series coefficients or the spectral
coefficients of x(1).

The coefficient 4, is the dc or constant
component of x(f) and is given by eq. (3.39) with
k=0. That is,

I 3.40
a = [ x(oyt, (3.40)

_ 1 — Jnayt
a, = p ITx(t)e dt.



Example 3.4

Let T
x(1) =1+sin @ t +2cos w,t + cos(Za)Ot + Zj’

Which has fundamental frequency w,. As Example
3.3, we can again expand x(t) directly 1n terms of
complex exponentials, so that

X(t) =1+ 2L [ejwot . e—ja)ot- + [ejwot + e—jwot]+ % [ej(2w0t+7r/4) 4 e—j(2a)0t+7r/4)1
J i

Collecting terms, we obtain

x(t)=1+ 1+L e/ 4 l—i e_jw°t+(lej(”/4)jej2"’°t+ le—j(ﬂ/4) o2
2 2 2 2



Example 3.4

Thus, the Fourier series coefficients for this

example are

a, =1,

a, =£1+%]=1—%j,
J

a_, =£1—%j=1+%j,
J

1 . \2
a, =—e’ "M =221+ )),
275 A (1+ /)
1 \2
a,=—e /"M =22(1-)),

k2.



Example 3.4

| ag |

In Figure 3.5,
we show a bar
graph of the
magnitude and —  s=2-1 0123«
phase of a, .

X ag

Figure 3.5 Plots of the magnitude and phase of the Fourier coefficients of
the signal considered in Example 3.4.



3.4 Convergence of the Fourier Series

= Can any periodic signal x(t) be represented by

x(t)= ) ae™(3.38)
k

fk=—o0

a linear combination of a infinite number of
harmonically related complex exponentials?

Let us define xy(t) as a finite series of the form
S, 3.47)
xy (1) = Zake]kwot. (3.
k=—N



3.4 Convergence of the Fourier Series

N
Xy (@)=Y ae".
k=—N
Let ey(r) denote the approximation error; that is,
+N
ey ()= x(t)—x, () =x(t)— D a.e™"
= (3.48)

The quantitative measure of the approximation
error is defined by the energy in the error over
one period.:

2
(3.49) Ey = | lex (o] dt.



3.4 Convergence of the Fourier Series

()= 4" (3.47) E, =] ey (0] di(3.49)

k=—N

As shown in Problem 3.66, the particular choice
for the coefficients in eq. (3.47) that minimize
the energy in the error is

_ 1 — Jkayt
a, = P IT x(t)e dt. (3.50)

We consider x(t) has a valid Fourier series
representation if E is zero in the limit when

N— o0

When will this be true?



3.4 Convergence of the Fourier Series

One class of periodic signals that are
representable through the Fourier series is
those signals which have finite energy over a
single period, i.e., sighals for which
x(2)| dt < .
U | (3.91)

xy(t) be the approximation to x(t) obtained by
using these coefficients for K <n :

+N
ikt
xy(@) =D ae™™. (3.52)
k=—N



3.4 Convergence of the Fourier Series

1 ke
a, =—j x(t)e ' dt.
N—«<. That s, if we define -7

e(t) = x(t)— iZ: ae” ™, (3.53)
then -
[ et dr =o. (3.54)

Note signal x(t) and its Fourier series
representation are equal at all t

400
1l

= e jor all 1

k=—o0




3.4 Convergence of the Fourier Series
| lewa@[dt< ] le,@fdt for all N
ey(t)=x(1)- Zakejk%t ey (t)=x(t)— +§ ake]k%t

k=—N-1
](N+1)Q)0t

ey (D) =ey(t ) — a—N—le_](NH)W

j ej(k—n)a)otdt:{T, k=n
T 0,

k#n

— A€

J,

[ Jeatfdi< [ le@fdi< [ leyefdi< | [x(efdi<er

ey @ di=] le,Ofdi-T(a,, [ +|ay,F)




H

sHFHTEE (Dirichlet) &4

X(t) equals its Fourier Series representation,
except at isolated values of t for which x(t) is
discontinuous.

Condition 1. Over an period, x(t) must be
absolutely integrable; that is,

|| r(o)e(eo. 556,

forf 1 A s fal A - x (DA RSB AR 7y




[

AT ER (Dirichlet) fif

this guarantees that each Coeff|C|ent will be finite, since

‘ak‘ <— j ‘x(t)e_]kw‘)td j ‘x(t)‘dt
ol [ |x(je(ee.
then ‘ ak‘ (o0

A periodic signal that violates the first Dirichlet condition

IS 1

x(t)=-, 0<t<1;
[



3.4 Convergence of the Fourier Series

X(t)

(a)



~

b}

AT ER (Dirichlet) R

Condition 2. In any finite interval of time, x(1) is of
bounded variation; that is, there are no more than a
finite number of maxima and minima during any
single period of the signal.



s FI| T EE (Dirichlet) &

b}

A periodic signal that violates the second Dirichlet

condition is

as illustrated in Figure 3.8(b).
periodic with T=1,

x(t)

..ﬂ

ﬂ

2
{

x(t)= sin(—ﬂj, 0<t<],

(3.57)

For this function, which is

N |

|

2 t

Jx(yde <1,



b}

AT ER (Dirichlet) R

Condition 3. In any finite interval of time, there
are only a finite number of discontinuities.
Furthermore, each of these discontinuities is

finite.

8 16t

x(t1)

g

I
A= o=

(c)



3.4 Convergence of the Fourier Series

A square wave satisfied all 3 conditions.

Xn(t) Xn(t)

N




3.4 Convergence of the Fourier Series

xn(t) xn(t)

N=7 N=19




3.4 Convergence of the Fourier Series

Xn(t)

Figure 3.9 Convergence of the Fourier series representation of a square
wave: an illustration of the Gibbs phenomenon. Here, we have depicted the
finite series approximation xy(f) = ZL_N a, e/t for several values of N.



3.4 Convergence of the Fourier Series

When N->1infinite, xy(t) at discontinuities should be
the average value of the discontinuities

We see from the figure that this 1s 1n fact the case,
since for any N, x,(¢) has exactly that value at the
discontinuities. Furthermore, for any other value of t,
say, t =t,, we are guaranteed that

Xn(D)

lim x, (,) = x(¢,).
N—©




3.5 Properties of Continuous-time Fourier
series

If the Fourier series coefficients of x(7) are denoted

by a, , we will use the notation

35

x(t)< >a,

to signify the pairing of a periodic signal with its

Fourier series coefficients.

S L T (O T 5% -




3.5.1 Linearity

Let x(t) and y(t) denote two periodic signals
with period T and which have Fourier Series
coefficients denoted by a, and b, , respectively.
That is,




3.5.1 Linearity

the Fourier series coefficients ¢, of the linear
combination of x(t) and y(t), z(t) =Ax(t) + By(t

2(t) = Ax(t) + By(t) <3¢, = Aa, + Bb,.

The proof of this follows directly from the
application of eq. (3.39). We also note that the
linearity property is easily extended to a linear
combination of an arbitrary number of signals
with period T.

a, :% [ x(e " dn(3.39)



3.5.2 Time Shifting

The fourier series coefficients b, of the resulting
signal y(#)=x(-£) may be expressed as

_ 1 — Jkayt
b= [ x(t=ty)e

Letting 7=7—¢, in the integral, and noting that
the new variable rwill also range over an interval
of duration T, we obtain

% J‘T x()e Jkay (e +t0) g _ o= ikento 1

—| x(0)e " dr
| r JT (3.60)
_ e—]ka)oto ak L e—]k(Zﬂ/T)tO

ko



3.5.2 Time Shifting

where 4, is the kth Fourier series coefficient of
x(t). Thatis, if

x() <> a,,

then
X(t _to)( 35 )e—jka)oto ak _ e—jk(Zﬂ/T)tO ak.
Frequency shifting

M x(H)—2>a,_,,,



3.5.3 Time Reversal x(t>=Zw)akef"”°’(3.38)

k=—o0

To determine the Fourier series coefficients of
y(t) = x(-t), let us consider the effect of time
reversal on the synthesis equation (3.38):

X(—t) _ ake—ijﬂt/T.
k:z—;o (3.61)

Making the substitution k = -m, we obtain

yO)=x(-t)= Y a ™. (362



3.5.3 Time Reversal

where the Fourier series coefficients are

by =a. (3.63)
That is, if

x(t) <> a,,

then

35
x(—t)¢«———a_,.

RF R



3.5.4 Time Scaling X(0)= Y a,"™ (3.38)

k=—0o0

If x(t) has the Fourier series representation in eq. (3.38),
then

+00
x(at)= ) ae”
k=—00

* the Fourier coefficients are the same, but the
fundamental frequency becomes 0[(00



3.5.5 Multiplication

Suppose that x(t) and y(t) are both periodic with
period T and that

x(t) «—>>a,,

(1) «—=-b,.
Since x(t)y(t) is also periodic with period T, we
can expand it in a Fourier series with Fourier

series coefficients h, expressed in terms of
those for x(t) and y(t). The result is

x(O)y()«———>h, = > ab,,. (3.64)

[=—0o0

Periodic convolution
| x(@y(-o)dr e Tap,




3.5.6 Conjugation and Conjugate
Symmetry

Taking the complex conjugate of a periodic
signal x(t) has the effect of complex
conjugation and time reversal on the

corresponding Fourier series coefficients.
That is, if

x(H)«<—=>a,,
then « ~ .
x (H)<—=>a,.

(3.69)
+00 | +00 | +00 |
x*(t) =( Z akefk“’ot )* — Z aZe‘J’“"Ot — Z aimejmwot

fe=—o0 k=—o0 m=—aoo



3.5.6 Conjugation and Conjugate
Symmetry

see from eq. (3.65) that the Fourier series
coefficients of a real signal x(t) will be
conjugate symmetric, i.e.,

kK
— 3.66
a_, =a,, (3.66)

For example, from eq. (3.66), we see that if x(1)
Is real, then @, is real and

‘ak‘ = ‘a—k‘°



3.5.6 Conjugation and Conjugate
Symmetry If X(t) is real and even

38
x(t)«——>aq,

*

Real x*(t)< S )Clik ad_p =g,
35 —
Even X(—t)( ra_, d, =dad_,,
Even
S
a, =d,



3.5.7 Parseval’s Relation for
Continuous-Time Periodic Signals

As shown n Problem 3.46, Parseval’s relation for
continuous-time periodic signals is

+00

% [ @[ dt =Y |ay
t

2
: (3.67)

k=—00

Average power

1 .

ka,t
_j‘akejwo
T T

is the average power in the k" harmonic component of

X(t)

Also, )

>

2 ] 2
dt =?L‘ak‘ dt = ‘ak

(3.68)



TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES # 3.1

4 M B

Property Section Periodic Signal Fourier Series Coefficients
x(#) | Periodic with period T and a
¥(r) | fundamental frequency wo = 2#/T by
Linearity 3:5.1 Ax(t) + By(D) Aa, + Bb,
Time Shifting 352 x(t — tg) ae kot = g, eI
Frequency Shifting eMut (1) = e/M@ATY x(1) Y
Conjugation 35.6 x(1) a’,
Time Reversal 353 x(—1) a_y
Time Scaling 354 x(at), @ > 0 (periodic with period T/a) a
Periodic Convolution I x(7)y(t — 7)dT Ta by
T
Multiplication 355 x(D)y(1) > aby
l=—u=
. dx(t . .2
Differentiation a’f: ) jhwoay = j x?ak
Integration f ¢ ) dr (finite valued and 1 iy 1 b
x _ = e
5 —= periodic only if a; = 0) Jkawq & jkQ@mwiT) 7"
a; = aik
Relai} = Rela_«}
Conjugate Symmetry for 356 x(t) real Imla,} = —9Imia_;}
Real Signals lax| = la_i
Lay = —da_;
Real and Even Signals 356 x(1) real and even ay real and even
Real and Odd Signals 3.5.6 x(¢) real and odd a, purely imaginary and odd

Even-Odd Decomposition
of Real Signals

{xe(t) = &v{x()} [x(¢)real]
x,(t) = Od{x(1)} [x(1) real]

Refar}
jﬂm{ak}

Parseval’s Relation for Periodic Signals

1 =
7 | ot = > i

k=—-o




Example 3.8

Let us examine some properties of the Fourier series
representation of a periodic train of impulses, or
impulse train. It will play an important role when we
discuss the topic of sampling in Chapter 7. The
impulse train with period 7' may be expressed as

x(t)= Y 6t —kT):; (3.75)
k=—o0

x(f)




Example 3.8

To determine the Fourier series coefficients g, ,
we use ed. (3.39) and select the interval of
integrationtobe —T/2<¢t<T /2, avoiding the
placement of impulses at the integration limits.
Within this interval, x(t) is the same as d(t), and
it follows that

L pr2 kot 5.
a=— j_ma(t)e dt=—. (376)

*constant (independent of k) Constant, real, even



The impulse train also has a straightforward
relationship to square-wave signals such as g(1).

aft)

1

1 1 I |
-T -T/2 T T /2 T t

The derivative of g(t) is the q(t) as the difference
of two shifted versions of the impulse train x(t).

q(t) =x(t+T))—x(t=T). (3.77)

1 1 1
l ~1/2 S, l T/2 T l t
-1



q(t) =x(t+1,)=x(t—1)).

3 IS —jkegty . _ _—jk(27/ T,
x(t—t,)< > e a, =e a,.

Using the properties of Fourier series, we can
now compute the Fourier series coefficients of
q(t) and g(t) without any further direct
evaluation of the Fourier series analysis
equation. First, from the time-shifting and
linearity properties, the Fourier series
coefficients & of g(t) may be expressed in
terms of the Fourier series coefficients @, of
x(1); that is,

kw,T; — jkoyT,
b, =e"""a, —e " ""a,, @=22/T



|
Example 3.8 a, = ?(3-76)

Using eq. (3.76), we then have
(ko T))
7 .

Finally, since ¢g(?) 1s the derivative of g(#), we can use
the differentiation property in Table 3.1 to write

b, = i[efkonl _e—jkaTl]: 2j sin
T

b, = jkw,c,, (3.78)
where the €, are the Fourier series coefficients of
g(t). Thus,

¢ = .bk _2j si.n(ka)OTl) _ sin(kay, 1) k=0
Jka, Jkao,T km (3.79)

w,=2r/T



_sin(ke, 7))

Example 3.8 ¢ P

k=0 (3.79)

Note that eq. (3.79) is valid for k£ # 0, since we cannot solve
for ¢, from eq. (3.78) with k= 0. However, since cOiS just
the average value of g(t) over one period, we can

2T
determine it by inspection from Figure 3.12(b): ¢, = —*.

T
*You can also double check the Fourier series

coefficients of the square wave derived in Example 3.5.

g(t)

1 1 | |
-T -T/2 ~T, T /2 T t



3.6.1 Linear Combinations of Harmonically
Related Complex Exponentials
As defined 1n Chapter 1, a discrete-time signal x/n/ 1s
periodic with period N if
x{n]=x{n+ N1 (3.84)
the set of all discrete-time complex exponential
signals that are periodic with period N 1s given by

g [n]=e""" =P =0,2112,.... (3.85)

All of these signals have fundamental
frequencies that are multiples of 217/N and thus
are harmonically related.



3.6.1 Linear Combinations of Harmonically
Related Complex Exponentials

§0k[ ] ]k(27z/N)n

This 1s a consequence of the fact that discrete-time
complex exponentials which differ in frequency by a
multiple of 217 are identical. Specifically,

dln]=gynldln]=9y.[n], and, in general,

D, [” = Grion [n] (3.86)




3.6.1 Linear Combinations of Harmonically
Related Complex Exponentials

Such a linear combination has the form

Zakgok Zak Jkaoyn _ Zake]k(Zﬂ/N)n (3 87)
(Dk [n] — ¢k+rN [n](386)
Z a,pln Z e = Z e
k=) =) k=) (3.88)
(NY=0,1,2,...,(N=1)or2,3,...,(N +1)



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

If we evaluate eq. (3.88) for N successive values of n
corresponding to one period of x[n], we obtain

(3.89)

x[N-1]= Z akej2zzk(N—1)/N.
We can solve for {a™ by given these linearly
equations, but these 1s an easy way.



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

We know that( shown in Problem 3.54) x[n]= kz%> g, e/

Z o K27/ N _ {N, kK=0EN 42N, (388
, otherwise (3.90)

Now consider the Fourier series representation of eq. (3.88).

Multiplying both sides by e~"**”and summing over N terms,
we obtain
Z x[n —jr(2z/N)n _ Z Z a.e ](k—r)(2 /N )n
k
n=(N) n=(N) k=(N) (3.91)

Interchanging the order of summation on the right-hand side,

we have Z —]r(27r/N)n Z ak Z e j(k—r)27m/N)n

=) =(f) =) R



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

The right-hand side of eq. (3.92) then reduces to aN
and we have

Z x[n]e—]r(Zn/N)n _ CII,N» ar T Zx[n —]r(27r/N)n
n={(N) n=(N) (3.93)
This provides a closed-form expression for obtaining

the Fourier series coefficients, and we have the
discrete-time Fourier series pair:

X[n] _ Z<:>akejka)0n _ Z;lkejk@ﬂ/N)n, (3.94)
‘ _ (3.95)

1 _ikoen 1 _jk(27/N)n
a, =— Y x[nle ™" =— > x[nle”’ :
¢ Nn:Z@:\q N :Zz:v



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

Referring to eq. (3.88), we see that 1f we take k& 1n the

range from 0 to N — 1, we have
x[n]=aypnl+agn]l+..+ay oy [n]
(3.96)
Similarly, 1f £ ranges from 1 to N, we obtain

x|n]=a@¢|n]+a,@,[n]+...+a,0,|n].
(3.97)

o.|n]=¢,..[nl (3.86)




3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

By letting k range over any set of N consecutive
integers and using eq. (3.86),

ad, =—d .
k k+N (3.98)

That 1s, 1f we consider more than N sequential values
of k, the values  repeat periodically with period N.

a,



Example 3.10

Consider the signal
x[n] = s w,n, (3.99)

Which 1s the discrete-time counterpart of the signal
x(t)= sinw,¢ of Example 3.3. x/n/ is periodic only if
211/ @, is an integer or a ratio of integers For the
case when 211/ g, is an integer N, that is, when

), = ——
0 )
N



Example 3.10  xn]= Y 4" (3.94)

k=(N)

x/n] 1s periodic with fundamental period N, and we
obtain a result that is exactly analogous to the

continuous-time case. Expanding the signal as a sum
of two complex exponenitals, we get

x[n]= L o/ 27NN _ L o~ /27 N0

2] 2j (3.100)

Comparing eq. (3.100) with eq.(3.94), we see by
inspection that
1 1

a_, =

_ b (3.101)
2j 2

a,



Example 3.10

And the remaining coefficients over the interval of
summation are zero. As described previously, these
coefficients repeat with period N; thus, @, 1s also
equal to (1/2j) and a@y_; equals (-1/2j). The Fourier
series coefficients for this example with N =35 are
illustrated in Figure 3.13.

2j

Figure 3.13 Fourier coefficients for x[n] = sin(2=/5)n.



Example 3.10

Consider now the case when 217/ &y is a ratio of

integers—that is , when
_ 27M

N

Assuming that M<N, and M and N do not have
any common factors, x/n] has fundamental
period of N. Again expanding x[n] as a sum of
two complex exponentials, we have

| |
x[n]:_e]M(Zﬂ/N)n e ]M(27Z/N)n,

2] 2]

o



Example 3.10

From which we can determine by inspection that a,,
(1/2j), 4-u = (-1/2j), and the remaining coefficients
over one period of length N are zero. The Fourier
coefficients for this example with M =3 and N=5
are in Figure 3.14. Again, we have indicated the
periodicity of the coefficients. For example, for N =
5, a,=a_ , whichin our example equals (-1/2)).

3 |
.
-2 —1

Ooe
l—k_![\)



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

= (Convergence

Assume that the period N 1s odd. In Figure 3.18, we
have depicted the signals

M
)Acn _ a ejk(Z;z/N)n
(3.106) ] ,;;4 ¢

approximating example of Figure 3.16 with N=9,
2 N, + 1 =135, and for several values of M. For M = 4,
the partial sum exactly equals x/n/. 1 sin(2Tk(N+1/2)/N)
N sin(zk/N)
_J for k#0,=N,£2N.,...
A =1 2N+
-N;© N, N Nfor k=0, N 2N
Figure 3.16 N T

9




3.6.2 Determination of the Fourier Series

Representation of a Periodic Signal

M .
.72'[”] _ Zake]k(27r/N)n
k=—M

A A
90 L

.

[ 1 sin(2 7k (N, +1/2)/N)

N sin( 7k/N)
for k#0,=N,£2N.,...
2N+l

9

N
for k=0,£N,£2N.,...




3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

x[n]

~18 —9 0
(©
X[N]

=78 =g 0

(d)

4
x[n]=x[n]= Z akejk(Z”/N)”

f=—4

9

M=4

18

n

ﬂ—T1 0 T "

1

Figure 3.18 Partial sums of eqgs.
(3.106) and (3.107) for the periodic
square wave of Figure 3.16 with
N=9and2M +1 =5 (a) M = 1;
D) M=2,(c) M =3, (d M= 4.



3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

If N1s odd and we take M = (N —1)/2 in eq. (3.106),
the sum includes exactly N terms, and consequently,
from the synthesis equations, we have X[r]=x[n] .
Similarly, 1f N 1s even and we let

M
)’Z[n]= E akejk(ZJt/N)n,

k=—M+1



3.7 Properties of Discrete-Time Fourier

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES 4 3.2

Series

A nE i oAb B MY

Property Periodic Signal Fourier Series Coefficients

x[n] } Periodic with period N and ay } Periodic with

v[n] | fundamental frequency wy = 27/N b, ) period N
Linearity Ax[n] + By[n] Aa, + Bb;
Time Shifting x[n — nyl aye k2N
Frequency Shifting IR | Ay
IConjugation x"[n] a’y
Time Reversal x[—n] a_;
Time Scaling o x[nfm], ?f n 13 a multiplc.of m —lw—a& vif:wed z?s periodic

0, if n is not a multiple of m m " \with period mN
(periodic with period mN)

Periodic Convolution > xlrlyln -1 Naib,

=N
Multiplication x[n]y[n] > abi

F={N}
First Difference x[n] — x[n — 1] (1 — e+,
; 4 finite valued and periodic only 1
Running Sum kZ:x x[] (if - ) (m )a’*
ag = aT k
QRefai} = Refai}

Conjugate Symmetry for x[n] real Im{a,) = —9Imia_,}

Real Signals

[Real and Even Signals
Real and Odd Signals

Even-0Odd Decomposition
of Real Signals

x[n] real and even

x[n] real and odd

[L{n] = &v{x[n]} [x[n] real]
x,[n] = Od{x[n]} [x[n] real]

[ac] = la_4
{ﬂk = _{ﬂ_k
ay, real and even
a; purely imaginary and odd
Refar}
jImia}

Parseval’s Relation for Periodic Signals

v > WP = S

n={N} k=(N}




3.7 Properties of Discrete-Time Fourier
Series

If x/n/ 1s a periodic signal with period N and
with Fourier series coefficients denoted by &4, ,
then we will write

FS
x| n]< >d, .




3.7.1 Multiplication

The product of two periodic signals with period N
results in a periodic signal with period N whose
sequence of Fourier series coefficients 1s the periodic
convolution of the sequences of Fourier series
coefficients of the two signals being multiplied.

x[n]«"—>a, and - ypl«tE b,

This 1s shown 1n Problem 3.57, 1ts Fourier
coefficients, {d,}, are given by

nly[n]«2>d, = Y ab,
I=(N) (3.108)



3.7.1 Multiplication

Equation (3.108) 1s analogous to the definition
of convolution, except that the summation
variable is now restricted to an interval of NV
consecutive samples.

(3.108)  x[nlyn]«—>d, = > ab,,

I=(N)

Z x[r]y[n—r]«<—>>Na,b, Periodic convolution
r:<N>



3.7.2 First Difference
yln]=x[n]-x[n-1]
If x/n] 1s periodic with period N, then so 1s y/n/, since
shifting x/n/ or linearly combining x/n/ with another
periodic signal whose period 1s N always results 1n a
periodic signal with period N. Also, 1f

x[n]«"—>a,

then the Fourier coefficients corresponding to the first
difference of x/n/ may be expressed as

- 11, FS — k(27 N)
x[n]—x[n—1]< >(1—e™ Ya, (3.109)

- 1 —jk(2 /N
x[n—-1]«L—>aqe "




3.7.3 Parseval’'s Relation for Discrete-Time
Periodic Signals

As shown 1n Problem 3.57, Perseval’s relation for
discrete-time periodic signals is given by

LS in = Ya,f (3.110)
N =)

k=(N) ,

where the a, are the Fourier series coefficients of
x/n/ of N 1s the period.

k(2 7/N
x[n]= Z a e’
k=<N>

Z o K7 N _ {N, k=0.£N.£2N.,....

0, otherwise
n=(N)



Example 3.13 )

* ¢ ¢ x[n]
Let us consider the 1 l l I I ' - l | I .
problem of finding the o5 0 5 .
Fourier series coefficients @, ?
of the sequence x/n/ 1 i
shown 1n Figure 3.19(a). — L] M ! I ! o L] "

This sequence has a
fundamental period of 5. 1 ol
We observe that x/n] may - EEEREEE I EEEERE
be viewed as the sum of B
the square wave x,[r] 1n

Figure 3.19(b) and the dc

sequence x,[#] in Figure

3.19(¢).




Example 3.13

Denoting the Fourier series coefficients of ul?] by b,
and those of *[”] by Ci , we use the linearity
property of Table 3.2 to conclude that

a, =b, +¢,. (3.111)

“ IIIHII]HIIIH

AN 8 B B 8 B A A e

*~—eo—
n

¢ lILIITTIIIILTIL™-




1 sin(2 7k (N,+1/2)/N)
N sin( 7k/N')
for k#0,=N,£2N.,...
—18 =i -N1 0 N1 QN 18 n 2]37\1’_'_1
Figure 3.16

ak:<

9

for k=0,£N,£2N.,...

From Example 3.12 (with N, =1 and N= 5), the

Fourier series coefficients corresponding to X, [n]
can be expressed as

e .
1smBaI3) o kz0.45.210....
b ) 5 sin(Ak/S)
k = <

3 : (3.112)

-, for  k=0,£5,%10,...
| S

The sequence X,[#] has only a dc value, which is
captured by 1ts zeroth Fourier series coefficient:

1 4
COZEZxZ[n]:L (3.113)
n=0



Example 3.13

Since the discrete-time Fourier series coefficients are
periodic, it follows that ¢,= 1 whenever k 1s an
integer multiple of 5. The remaining coefficients of

x,[n] must be zero, because x,[r] contains only a dc
component. We can now substitute the expressions
for b, and ¢, into eq. (3.111) to obtain

_1sin(37k/5)
“75 sin(ak/5)
%, for  k=0,45.+10....

for  k#0,15,%£10,...
(3.114)

.



3.8 Fourier Series and LTI Systems

In continuous time, if x(?) = e* is the input to a
continuous-time LTI system, then the output 1s given

by y(t) =H (s)e”, where, from eq. (3.6),

H(s) = f:h(r)e‘”d T, (3.119)

in which /(%) 1s the impulse respose of the LTI system



3.8 Fourier Series and LTI Systems

Similarly, 1f x/n/ =z" 1s the input to a discrete-time
LTI system, then the output is given by y/n] =H (z)z
where, from eq. (3.10),
H(z)= Z Wk)z*, (3.120)
k=—o0

in which A(n) 1s the impulse response of the LTI
system



3.8 Fourier Series and LTI Systems

The system function of the form s = jow—i.e., H(jw)
viewed as a function of w—is referred to as the
frequency response of the system and 1s given by

H(jo)=[ hoye’™dr. "

LB (] R SR B B PN B



3.8 Fourier Series and LTI Systems

Then the system function H(z) for z restricted to the
form z =e’® is referred to as the frequency
response of the system and 1s given by

H(e’) = Z h[nle .
PSR [ 2R LY *E R PR

(3.122)



x(t)=e"
W(t)=H(s)e"

Consider first the continuous-time case, and let x(z) be
a periodic signal with a Fourier series representation
given by o

x(t) = Zakejka’ot. (3.123)

3.8 Fourier Series and LTI Systems

Suppose we apply x(t) as the mput to an LTI system
with impulse response h(t)

In eq. (3.13) with s, = jkw, , it follows that the output
1S

()= a,H(jka,)e™ ™. (3.124)
k=—0o0



3.8 Fourier Series and LTI Systems
y(@)= D a.H(jka,)e™ ™.
k=—o0

Thus, y(?) 1s also periodic with the same
fundamental frequency as x(?). Furthermore, 1f {ak}
1s the set of Fourier series coefficients for the input
x(1), then {a, H(jka,)} is the set of coefficients for
the output y(?).



Example 3.16

Suppose that the periodic signal x(t) discussed
in Example 3.2 is the input signal to an LTI
system with impulse response

h(t)=e 'u(?).

+3 |
x(t)= 2 a "
k==3




h(t) =e 'u(t).
Example 3.16 H(jw)= jj:h(t)e_jwtdl‘.

To calculate the Fourier series coefficients
of the output y(t), we first compute the
frequency response:

H(jw)= IOOO e ‘e’ dr
1
_1+jw
1
_1+jw°

o0

> (3.125)

—-T _—jar

e e




Example 3.16 ¥(0= 2 a,H(jko,)e"" (3.124)
H(jw,)=1/(1+ jo)3.125)
x(1) = 2 ae’"

Therefore, using eqgs. (3.124) and (3.125),
together with the fact that @, =27 in this
example, we obtain

+3
_ k2t (3.126)
y(t) B Zbke] o
k=-3

where b, =a, H(jk2r)



H(jw,)=1/(1+ jo) % ="

Example 3.16 1
p (3125) ad, =da_, :Za

with b, =a,H(jk27)  so that 1
a,=a_,=—,

by =1, 2

1

b _Z[sz;zj’ b _Z[l—jZﬂ} e 3

b;g( 1 ] , :1( ! ] (3.127)
2\ 1+jan ) 2 2\1-j4n )

11 , 11
3l 1+ j6r ) = 3\1-j6x )




a, = A e’%,  xt)=a,+2> 4, costkm,t +6,)(3.31)

k=1

a4 = Bk ‘|‘jCk, x(t)=a, +2Z[Bk coska,t — C, sinkw,t](3.32)
k=1

Note that y(t) must be a real-valued signal, since
it is the convolution of x(t) and h(t), which are
both real. This can be verified by examining eq.
(3.127) and observing that 5, =5, . Therefore,
y(t) can also be expressed in either of the forms
given in egs. (3.31) and (3.31);that is,

y(t) =1+ 2ka cos(27kt +6,), (3.128)

or k;
y(t)=1+2) |E, cos27kt — F, sin2zkt],  (3.129)

k=1



bl:%[l 1'2 j blzi[l 12 j
+ j27 —Jet
Example 3.16
1 1 , 1 1
*2\1+jan ) 2 o2\1-j4n )
b?’:l 1 0 b_?’:l 1 .
3\ 1+ j6r1 3\1-j6r
where

b,=De* =E +jF,, k=123. (3130

These coefficients can be evaluated directly from
eq.(3.127). For example,

D1_|b1|_4 1as? 0 =z b =—tan"' (27),

1 T
E, =Relb, |= =MD, § = - -
= Nelb 41+47%)" ) 2(1+47?%)



3.8 Fourier Series and LTI Systems

y[n]=) a,H(z,)z(3.16)

nl=z"

ynl=H(z)z"

let x[n] be a periodic signal with Fourier series

representation given by

x[n] = Zakejk(Zn/N)n.
k=(N)

If we apply this signal as the mput to an LTI system
with impulse response /#/n/, then, as in eq. (3.16)

with z, =e™®" the output is

y[n] _ ZakH(ejZﬂk/N)ejk(2ﬂ'/N)n.

k=(N)



3.9 Filtering

(Linear) Filtering can be conveniently accomplished
through the use of LTI systems with an
appropriately chose frequency response, and
frequency-domain methods provide us with the ideal
tools to examine this very important class of
applications. In this and the following two sections,
we take a first look at filtering through a few
examples.

RN ) BRI R T R ) E IR IRIE SO R -
FH DA ARG ARV L TLAR SRR | SRR R
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3.9.1 Frequency-Shaping Filters

One application in which frequency-shaping filters are
often encountered 1s audio systems.
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3.9.1 Frequency-Shaping Filters
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3.9.1

Response (dB)

Frequency-Shaping Filters
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Figure 3.22 Magnitudes of the frequency responses of the equalizer
circuits for one particular series of audio speakers, shown on a scale of
20 logqo |H(jw)|, which is referred to as a decibel (or dB) scale. (a) Low-
frequency filter controlled by a two-position switch; (b) upper and lower
frequency limits on a continuously adjustable shaping filter; (c) fixed
frequency response of the equalizer stage.



3.9.1 Frequency-Shaping Filters

Another class of frequency-shaping filters often

encountered 1s that for which the filter output 1s the

derivative of the filter input, 1.e., y(¢) = dx(t)/dt. With
Jjot

x(1) of the form x(®) =€ y(t) will be Y() = jwe™
from which it follows that the frequency response 1s

H(jo)= jo. (3.137)

| H(jw) | I H(jw)

Nl

I
N3



3.9.1 Frequency-Shaping Filters

First difference: h[n]z%(é{n]—é{n—l])

(b)

Figure 3.24 Effect of a differentiating filter on an image: (a) two original images;
(b) the result of processing the original images with a differentiating filter.



3.9.1 Frequency-Shaping Filters

As one example of a simple discrete-time filter,
consider an LTI system that successively takes a two-
point average of the imnput values:

y[n]=§(x[n]+x[n—1]). (3.138)



3.9.1 Frequency-Shaping Filters

In the case i[n] =1(5[n]+5[n—1]), and from eq. (3.122),
we see that the frequency response of the system 1s

H(e™) = %[1 re =7 cos(w/2).  (3.139)

H(”)= i h[nle”’"(3.122)

n=—a0



3.9.1 Frequency-Shaping Filters

if the input to this system 1s constant—i.e., a zero-
frequency complex exponential x[n]=Ke””" =K —then
the output will be

y[n]=H(e’*)Ke'*"" = K = x[n].

On the other hand, 1f the input is the high-frequency
signal xn]=Ke™ =K(=1)" | then the output will be

y[n]=H(e’")Ke'™" = 0.



3.9.1 Frequency-Shaping Filters

- [0, —jo/2
e H(e)=¢e"""cos(w/?2).
;
g = 0 —
(@)
L H(el)
-FTr/2
b 0 n: "
/2 Figure 3.25 (a) Magnitude and
T (b) phase for the frequency response

of the discrete-time LTI system
(b) y[n] = 12(x[n] + x[n — 1]).



3.9.2 Frequency-Selective Filters

Frequency-selective filters are a class of filters
specifically intended to accurately or
approximately select some bands of frequencies and
reject others. It 1s used a lot in systems such as
communication systems.

PRSI R a s I RERTURER ~ RN &0 (40
AMZ) -




3.9.2 Frequency-Selective Filters

A lowpass filter 1s a filter that passes low
frequencies—i.e., frequencies around o = 0—and
attenuates or rejects higher frequencies.

A highpass filter 1s a filter that passes high
frequencies and attentuates or rejects low ones.

A bandpass filter 1s a filter that passes a band of
frequencies and attenuates frequencies both higher
and lower than those in the band that 1s passed.

Cutoff frequencies are the frequencies defining the
boundaries between frequencies that passed and
rejected.



3.9.2 Frequency-Selective Filters

The frequency response of a continuous-time ideal

lowpass filter 1s .
P (i) 1, ‘a)‘ <o,
H(jw) =+ :
0, |wpw (3.140)
L ¢
Cutoff-frequency H(jw)
\ ;
J
— g 0 W ®
«~— Stopband—»|«~— Passband—»|<~—Stopband—  Figure 3.26  Frequency response of
an ideal lowpass filter.




3.9.2 Frequency-Selective Filters

—Weo

—We1

Figure 3.27 (a) Frequency re-
sponse of an ideal highpass filter;
(b) frequency response of an ideal
bandpass filter.



3.9.2 Frequency-Selective Filters

/ Highest frequency

H(el*)
1
| | |
=2 s -0, 0 o, 21 o
(@)
H(el)
| | |
-2 - 21w
(b)
H(el®)
| I l
-2 —Tr

o o Figure 3.28 Discrete-time ideal
frequency-selective filters: (a) lowpass;
(b) highpass; (c) bandpass.



3.9.2 Frequency-Selective Filters

Idea filter are quite useful in describing 1dealized
system configurations for variety of applications.
However, 1n practice, they should be approximated

in order to be realized.

-You will learn a bit more about this in the future,

and other course such as communication.



3.10 Examples of Continuous-Time Filters
Described by Differentail Equations

In many applications, frequency-selective
filtering is accomplished through the use of LTI
systems described by linear constant-
coefficient differential or difference equations.

= Many physical systems are characterized by
these equations (suspension system in Ch.6)

= These equations can be implemented using
either analog or digital hardware.

* There equations are flexible to describe a large

range of filters (e.g., they can well approximate
ideal lowpass filter)



3.10.1 A Simple RC Lowpass Filter

In this case, the output voltage is related to the
input voltage through the linear constant-
coefficient differential equation

dv (¢
RCYD L iy =v (1),
dt (3.141)
+Vr(t)_
R
vs(t) C —"J:' Ve (t)

I Figure 3.29 First-order RC filter.




3.10.1 A Simple RC Lowpass Filter

In order to determine its frequency response H(jw),

we note that, by definition, with input voltage

, we must.ftawe’the output voltage
v.(t) = H(jw)e™ (3.142)

RCdi[H(ja))ej”th H(jw)e'" =e’”,

or t

| | | (3.143)
RCjoH (jw)e’” + H(jw)e'™ =e’”,



3.10.1 A Simple RC Lowpass Filter

(not ideal)
From which it follows directly that
. 1 .
H(jw)e'” = — e/,
I+RGw (3.144)
or
. 1 (3.145)
H(jw)= —
1+ RCw

= w=0, [Hjo)|=I
= When w is large,

H(jw)| becomes smaller

IH(w)l

__/\

[ [l
~1/RC 0 1/RC ®




3.10.1 A Simple RC Lowpass Filter

To provide a first glimps
filter design, let us brief]
behavior of the circuit.
response of the system ¢

1

e at the trade-offs involved in
'y consider the time-domain

In particular, the impulse

escribed by eq. (3.141) 1s

h(t)=—e"*u(r),

RC

and the step response 1s

(3.147)
where = R(C

(3.146)




3.10.2 A Simple RC Highpass Filter

v (t) -

We can use the same RC circuit AAAA
but use the voltage across the o
resistor v,(t) as output.

+
In this case, the differential  v%® CD C == vl
equation relating input and T

output 1s

N,y y=reDD.
di di

RC

(3.148)



3.10.2 A Simple RC Highpass Filter
(not ideal)
Find the frequency response G(jw) of this system in

exactly the same way we did in the previous case:
v ()= e’ then we must have v (1) = G(jw)e’™

G(jw) = JwRC
/ 1+ joRC

(3.149)

|G(jo)

il

N

~1/RC 0 1/RC &




3.10.2 A Simple RC Highpass Filter
V(6)=| 1" Ju(o),

From Figure 3.29, we see that v,.(1) =v,(t)-v.(?) .
Thus, if v,(®)=u(),v.(t) must be given by eq.
(3.147).

v, (1) =e """ u(?), (3.150)

— — — ——

= 1

| ——  Figure 3.33 Step response of the
RC t  first-order RC highpass filter with
7 = RC.




3.11 Examples of Discrete-Time Filters
Described by Difference Equations

Discrete-time linear constant coefficient difference
equations can represent two types of filters:

o IIR system: recursive and have Infinite-length
Impulse Response

o FIR system: nonrecursive and have finite-length
Impulse Response



3.11.1 First-Order Recursive Discrete-Time
Filters

yn]-ayln—1]=x{n]

it x[n]=¢’" | then y[n]=H(e’*)e’™ , where H(e’")is
the frequency response of the system.

H(e’*)e!™ —aH (e’*)e’" ™" = /™", (3.152)
or

[l—ae_j“’]H(ej“’)ej“’” =e/”, (3.153)



3.11.1 First-Order Recursive Discrete-Time

Filters 1—ae ™ |H(e)e™ =",
Sothat  py(ei*y=— L
l—ae™” (3.154)

The frequency response of system in Eq. (3.151)

When 0 <a <1, itis an approx. lowpass filter.

- 1 1
| ()| H(e’ O) — —

_]O

l—ae l—a
\/L H(ej”): : = 1 .
T l—ae’” 14+a

g = a=0.6




3.11.2 Nonrecursive Discrete-Time Filters

When -1 <a <0, itis an approx. highpass filter.

| H(el*) |

o4
- 1
H(e'") =
T (€™ 1—ae

— T v

w

H(e’)=

a=-0.6

L
0 g
1
T 1+4a



3.11.2 Nonrecursive Discrete-Time Filters

The general form of an FIR nonrecursive difference

equation 1s

M
nl= > b x[n—-klj.
3. 157>y[ | ,;N '

An only slightly more complex example 1s the three-
point movin%—average filter, which 1s of the form

yln]= 3 (x[n — 1]+ x[n]+ x[n + 1]),
(3.158)



3.11.2 Nonrecurswe Discrete-Time Filters
H()= Z h[nle 7" (3.122)

N=—00

so that each output y[n] 1s the average of three
consecutive mput values. In this case, impulse
response (finite-length)

h[n]=%[§:n+1]+§[n]+5[n—l]],

and thus, from eq. (3.122), the corresponding
frequency response 1s

H(ej“’):%ej“’+1+e‘j‘”]:%(l+2cosa)). (3.159)



3.11.2 Nonrecursive Discrete-Time Filters

H(e'”) :%[ej“’ +1+ej“’]=%(l+2cosa)).

(™) H(e")=

W — W=
|

H(e™)=

wi—=

Figure 3.35 Magnitude of the fre-

quency response of a three-point
moving-average lowpass filter.



3.11.2 Nonrecursive Discrete-Time Filters

H(e') :% e’” +1+e‘j”]:%(1+2cosa)).

From (3.159), we can see the filter has no parameter
to adjust the cutoff frequency

To overcome this, consider averaging over N + M + 1
neighboring points—that is, using a difference

equation of the form 1 M
y[n]= N1 xn=kl. (3.160)
The filter’s frequency response 1s
. 1 M
jo | _ —]a)k
Hle™)= e (3.161)

N+M+1,=,



3.11.2 Nonrecursive Discrete-Time Filters

The summation 1n eq.(3.161) can be evaluated by
performing calculations similar to those in Example
3.12, yielding

v-iy2) Sin[@(M + N +1)/2]

1 o/l

H(e’”) = ,
N+M+1 sin(@/2)

(3.162)

[HE")l
- r 4 |

—7/2 0 w2 T -7 —m/2 0 1r/l2
(a) (b)

M=N=16 M=N=32



3.11.2 Nonrecursive Discrete-Time Filters

Nonrecursive filters can also be used to perform
highpass filtering operations. To illustrate this, again
with a simple example, consider the difference
equation

Mn]—xin—1] (3.163)

2

yn]=

In this case, An) = {8Tn1-8n -1} (finite-length) ., so that

direct application of eq. (3.122) yields
(3.164)

H(e'?) = %[l—e_j”: = je’*? sin(w/ 2).



3.11.2 Nonrecursive Discrete-Time Filters

H(e'™) = %[1 —e7”|= je" sin(w/ 2).

| Hee)| | H(e’*)H e’ |sin(0/2)=0.
| H(e'™) |5 e |sin(x/2)=1.

B » Figure 3.37 Fre_quency response of
0 a simple highpass filter.




3.12 Summary

* History of Fourier Series (FS)

* Motivation of using FS: complex exponential are
eignfunctions of LTI system &% — y(£)= H(s)e"

" Any periodic signal of practical usage can be
represented by FS (convergence)

* How to obtain Fourier coefficient
» Properties of FS: linearity, time-shifting, etc.
* Frequency response of a LTI system

» Filtering of signals using LTI system: frequency-
shaping, frequency-selective



