
Chapter 3
Fourier series 

Representation of Periodic 
Signals
Min sun



3.0 Introduction
 In this chapter, we focus on the representation of 

continuous-time and discrete-time periodic signals 
referred to as the Fourier series. In Chapters 4 and 5, 
we extend the analysis to the Fourier transform 
representation of broad classes of aperiodic, finite 
energy signals.
本章將焦點置於連續時間與離散時間週期訊號的傅

立葉級數表示法，第4及5章再將它展至非週期訊號
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3.0 Introduction
 These representations provide one of the most 

powerful and important sets of tools and insights for 
analyzing, designing, and understanding signals and 
LTI systems, and we devote considerable attention in 
this and subsequent chapters to exploring the uses of 
Fourier methods.
這些表示法將是我們對訊號與LTI系統在分析、設
計和理解上極有用而重要的工具。
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3.1 A Historical Perspective
 We will see that if the input to an LTI system is expressed 

as a linear combination of periodic complex 
exponentials or sinusoids, the output can also be 
expressed in this form, with coefficients that are related in 
a straightforward way to those of the input.
若一個LTI系統的輸入可表為數個週期性的複指數或
弦波訊號的線性組合，則其(穩態)總輸出亦可利用各
輸入相對的輸出透過相同的係數組合。
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3.1 A Historical Perspective
179

1748 L. Euler studied 
“normal modes” of
Vibrating string.
Give any t f(t,x) is 
harmonically related
to sinusoidal function of x*
*a set of periodic function
with fundamental frequencies 
that are all multiples of a single 
positive frequency.



3.1 A Historical Perspective
179

Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
Frequencies (1807)



3.1 A Historical Perspective
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3.2 The Response of LTI Systems to 
Complex Exponentials

 It is advantageous in the study of LTI systems to represent 
signals as linear combinations of basic signals that possess 
the following two properties:

1. The set of basic signals can be used to construct a broad and useful class of 
signals.

2. The response of an LTI system to each signal should be simple enough in 
structure to provide us with a convenient representation for the response of the 
system to any signal constructed as a linear combination of the basic signals.
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3.2 The Response of LTI Systems to 
Complex Exponentials
 The importance of complex exponentials stems from 

the fact that the response of an LTI system to a 
complex exponential input is the same complex 
exponential with only a change in amplitude; that is,

continuous time: , (3.1)
discrete time:                           ,                (3.2)

where the complex amplitude factor H(s) or H(z) will in 
general be a function of the complex variable s or z.
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3.2 The Response of LTI Systems to 
Complex Exponentials
 To show that complex exponentials are indeed eigenfunctions

of LTI systems, let us consider a continuous-time LTI system 
with impulse response          . For an input         , we can 
determine the output through the use of the convolution 
integral, so that with
一個訊號對系統的輸出正好是此輸入訊號乘以某一常數，

則此訊號(函數)為系統的「特徵函數」，且振幅的因數為
系統的「特徵值」。
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3.2 The Response of LTI Systems to 
Complex Exponentials

(3.3)

(3.4)

Expressing            as           , and noting that       can 
be moved outside the integral
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3.2 The Response of LTI Systems to 
Complex Exponentials

The response to        is of the form
(3.5)

Where H(s) is a complex constant whose value 
depends on s ant which is related to the system 
impulse response by

(3.6)

183

ste
stesHty )()( =

H (s) = h( )es
¥
+¥ò d

y(t)= est h( )es
¥
+¥ò d .



3.2 The Response of LTI Systems to 
Complex Exponentials

Hence, we have shown that complex exponentials are 
eigenfunctions of LTI systems. The constant H(s) for 
a specific value of s is then the eigenvalue associated
With the eigenfunction        . 
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3.2 The Response of LTI Systems to 
Complex Exponentials

Suppose that ant LTI system with impulse response
has as its input the sequence                      (3.7)
Where z is a complex number. Then the output of the 
system can be determined from the convolution sum 
as

(3.8)
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3.2 The Response of LTI Systems to 
Complex Exponentials

The  output is the same complex exponential 
multiplied by a constant that depends on the value of 
z. That is,

(3.9)

where
(3.10)
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3.2 The Response of LTI Systems to 
Complex Exponentials

Consequently, as in the continuous-time case, 
complex exponentials are eigenfunctions of discrete-
time LTI systems.  The constant H(z) for a specified 
value of z is the eigenvalue associated with the 
eigenfunction      .
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3.2 The Response of LTI Systems to 
Complex Exponentials

Let x(t) correspond to a linear combination of three 
complex exponentials; that is,

(3.11)

From the eigenfunction property, the response to each 
separately is
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3.2 The Response of LTI Systems to 
Complex Exponentials

and from the superposition property the reponse to 
the sum is the sum of the responses, so that

(3.12)
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3.2 The Response of LTI Systems to 
Complex Exponentials

If the input to a continuous-time LTI system is 
represented as a linear combination of complex 
exponentials, that is, if 

(3.13)
then the output  will be

(3.14)
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3.2 The Response of LTI Systems to 
Complex Exponentials

If
(3.15)

then the output will be
(3.16)

184

[ ]
[ ] .)(

,

n
kk

k
k

n
k

k
k

zzHany

zanx

å
å

=

=



Example 3.1
As an illustration of Eqs. (3.5) and (3.6), consider an 
LTI system for which the input x(t) and output y(t)
are related by a time shift of 3,i.e., 

(3.17)

If the input to this system is the complex exponential 
signal                  , then, from eq.(3.17),
(3.18)
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Example 3.1
Equation (3.18) is in the form of eq. (3.5), as we would expect, 
since          is an eigenfunction.  The associated eigenvalue is 

.  It is straightforward to confirm eq. (3.6) for this 
example.  Specifically, from eq. (3.17), the impulse response 
of the system is . Substituting into eq. 
(3.6), we obtain
so that 
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Example 3.1
As a second example, in this case illustrating eqs. 
(3.11) and (3.12), consider the input signal 

.  From eq. (3.17), y(t) will of 
course be 

(3.19)
To see that this will also result from eq. (3.12), we 
first expand x(t) using Euler’s relation:

(3.20)

185

)7cos()4cos()( tttx +=

.2
1

2
1

2
1

2
1)(

)).3(7cos())3(4cos()(

7744 tjtjttj eeeetx

ttty

 +++=

+=

x(t) = a1es1t + a2es2t + a3es3t (3.11)
y(t) = a1H (s1)es1t + a2H (s2 )es2t + a3H (s3)es3t (3.12)
y(t) = x(t 3)(3.17)



Example 3.1

Given 
From eqs. (3.11) and (3.12),

or
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= cos(4(t 3))+ cos(7(t 3)). (3.19)

H (s) = e3s

x(t) = a1es1t + a2es2t + a3es3t (3.11)
y(t) = a1H (s1)es1t + a2H (s2 )es2t + a3H (s3)es3t (3.12)

x(t) = 1
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Example 3.1
In this case we can determine y(t) in eq. (3.19) by 
inspection rather than by employing eqs. (3.11) and  
(3.12) 
However, eqs. (3.11) and  (3.12) not only allows us 
to calculate the responses of more complex LTI 
systems, but also provides the basis for the 
frequency domain representation and analysis of 
LTI systems.

186y(t) = cos(4(t 3))+ cos(7(t 3))(3.19)
x(t) = a1es1t + a2es2t + a3es3t (3.11)
y(t) = a1H (s1)es1t + a2H (s2 )es2t + a3H (s3)es3t (3.12)



3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials

As defined in Chapter 1, a signal is periodic if, for 
some positive value of T,
(3.21)                                          for all t.                  

The fundamental period of x(t) is the minimum 
positive, nonzero value of T for which eq. (3.21) is 
satisfied, and the value                 is referred to as the 
fundamental frequency (基本頻率).
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials

Two basic periodic signals, the sinusoidal signal
弦波訊號 (3.22)

and the periodic complex exponential
週期複指數 (3.23)

Both of these signals are periodic with fundamental frequency      and fundamental period                   .  Associated with the signal in eq. (3.23) is the set of harmonically related complex exponentials*

*a set of periodic exponentials with fundamental frequencies that are all multiples of

x(t) = cos0t

x(t) = e j0t.
0 0/2 =T
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials
 Fourier series representation:   

A linear combination of harmonically related complex 
exponentials of the form

(3.25)

is also periodic with period T.  

In eq. (3.25), the term for k=0 is a constant.  The terms for k= 
+1 and k= -1 both have fundamental frequency equal to     and 
are collectively referred to as the fundamental components for 
the first harmonic components.
More generally, the components for k= +N and k= -N are 
referred to as the Nth harmonic components.

x(t) = ak
k=¥

+¥å e jk0t = ak
k=¥

+¥å e jk (2 /T )t
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Example 3.2
Consider a periodic signal x(t), with fundamental 
frequency 2π, that is expressed in the form of eq. (3.25) 
as

(3.26)
where
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Example 3.2
Rewriting eq. (3.26) and collecting each of the harmonic 
components which have the same fundamental 
frequency, we obtain

(3.27)

Equivalently, using Euler’s relation, we can write x(t) in 
the form

(3.28) 
* alternative form for Fourier Series of real periodic 
signal
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Example 3.2
In figure 3.4, we illustrate graphically how the signal x(t)
is built up from its harmonic components.
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Individual signal Combined signal



Example 3.2
In figure 3.4, we illustrate graphically how the signal x(t)
is built up from its harmonic components.
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials
 Alternative form for Fourier Series of real periodic 

signal
Suppose that x(t) is real and can be represented in the 
form of eq. (3.25).  Then, since                 , we obtain

Replacing k by – k in the summation, we have 

by comparison with eq. (3.25), requires that                , 
or equivalently, that

)()(* txtx =
x(t) = x*(t) = ak

*
k=¥

+¥å e jk0t.

x(t) = ak
*

k=¥
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*

kk aa =
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials

To derive the alternative forms of the Fourier series, we 
first rearrange the summation in eq. (3.25) as

Substituting         for         from eq. (3.29), we obtain
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials

Since the two terms inside the summation are complex conjugates of each other, this can be expressed as
(3.30)

If      is expressed in polar form as
then eq. (3.30) becomes
That is,

(3.31)
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3.3.1 Linear combinations of Harmonically 
Related Complex Exponentials

Another form is obtained by writing     in 
rectangular form as 

where      and      are both real.  With this 
expression for      , eq. (3.30) takes the form

(3.32)
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal
 Given x(t) and     , how to determine ak?

Multiplying both sides of eq. (3.25) by             , 
we obtain

Integrating both sides from 0 to                 , we 
have

T is the fundamental period of x(t),

tjne 0
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

Interchanging the order of integration and 
summation yields

(3.34)      
Rewriting this integral using Euler’s formula, we 
obtain

(3.35)

x(t)e jn0t
0
Tò dt = ak e j (kn)0t dt0
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

For k ≠ n,                       and                         are 
periodic sinusoids with fundamental period (T/︱
k-n︱).  Therefore, eq. (3.35) equals zero.  For k 
= n, the integrand on the left-hand side of eq. 
(3.35) equals 1, and thus, the integral equals T.  
In sum, we then have

tnk 0)cos(  tnk 0)sin( 

e j (kn)0t
0
Tò dt = 0,k¹n

T ,k=n
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

the right-hand side of eq. (3.34) reduces to
Therefore,

(3.36) ,)(1
0

0 dtetxTa T tjn
n ò = 

nTa

191

x(t)e jn0t
0
Tò dt = ak e j (kn)0t dt0

Tòéëê ùûúk=¥

+¥å = akT[k  n]
k=¥

+¥å
e j (kn)0t

0
Tò dt = 0,k¹n

T ,k=n



3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

if we denote integration over any interval of 
length T by     , we have

and consequently,

(3.37)                                                      
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

defines the Fourier series of a periodic 
continuous-time signal:

(3.38) 

(3.39)

: Fourier coefficients 
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3.3.2 Determination of the Fourier Series 
Representation of a Continuous-time Periodic Signal

The set of coefficients        are often called the 
Fourier series coefficients or the spectral 
coefficients of x(t).
The coefficient      is the dc or constant 
component of x(t) and is given by eq. (3.39) with 
k = 0.  That is,

(3.40)
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Example 3.4
Let 

Which has fundamental frequency     .  As Example 
3.3, we can again expand x(t) directly in terms of 
complex exponentials, so that

Collecting terms, we obtain
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Example 3.4
Thus, the Fourier series coefficients for this 
example are
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Example 3.4
In Figure 3.5, 
we show a bar 
graph of the 
magnitude and 
phase of      .ka
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3.4  Convergence of the Fourier Series
 Can any periodic signal x(t) be represented by

a linear combination of a infinite number of 
harmonically related complex exponentials?
Let us define xN(t) as a finite series of the form

(3.47).)( 0tjkN
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3.4  Convergence of the Fourier Series

Let        denote the approximation error; that is,

(3.48)
The quantitative measure of the approximation 
error is defined by the energy in the error over 
one period:

(3.49)
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3.4  Convergence of the Fourier Series

As shown in Problem 3.66, the particular choice 
for the coefficients in eq. (3.47) that minimize 
the energy in the error is

(3.50)

We consider x(t) has a valid Fourier series 
representation if EN is zero in the limit when 
N→∞
When will this be true?

EN = eN (t)Tò 2dt(3.49)

.)(1 0 dtetxTa T
tjk

k ò = 
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xN (t)= ak
k=N

Nå e jk0t (3.47)



3.4  Convergence of the Fourier Series
One class of periodic signals that are representable through the Fourier series is those signals which have finite energy over a single period, i.e., signals for which

(3.51)
be the approximation to x(t) obtained by using these coefficients for         : 

(3.52)

x(t)Tò 2dt <¥.
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3.4  Convergence of the Fourier Series
N→∞.  That is, if we define

(3.53) 
then

(3.54)    
Note signal x(t) and its Fourier series 
representation are equal at all t

.0)(

.)()(

2

0

=

=

ò
å+=

dtte

eatxte

T

tjkN

Nk
k



x(t) = ak
k=¥

+¥å e jk0t for all t
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3.4  Convergence of the Fourier Series
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eN+1(t)Tò 2dt  eN (t)Tò 2dt for all N
eN (t) = x(t) ak

k=N

+Nå e jk0t;eN+1(t) = x(t) ak
k=N1

+N+1å e jk0t;
eN+1(t) = eN (t) aN1e j (N+1)0t  aN+1e j (N+1)0t

eN+1(t)Tò 2dt = eN (t)Tò 2dt T (| aN1 |2 + | aN+1 |2 )
eN+1(t)Tò 2dt  eN (t)Tò 2dt  e0 (t)Tò 2dt  x(t)Tò 2dt <¥

e j (kn)0t
Tò dt = 0, k¹n

T , k=n



迪利斯雷(Dirichlet)條件：
x(t) equals its Fourier Series representation, 
except at isolated values of t for which x(t) is 
discontinuous.

Condition 1.   Over an period, x(t) must be 
absolutely integrable; that is,

(3.56)

條件1:在任何時間區間上，x(t)必須為絕對可積分。

197
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迪利斯雷(Dirichlet)條件：
this guarantees that each coefficient will be finite, since

So if 

then
A periodic signal that violates the first Dirichlet condition 
is

.)(1)(1 0 dttxTdtetxTa TT
tjk

k òò =  

,)( ¥ò dttxT

.¥ka

x(t) = 1
t , 0 < t 1;
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3.4  Convergence of the Fourier Series
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迪利斯雷(Dirichlet)條件：
Condition 2.  In any finite interval of time, x(t) is of bounded variation; that is, there are no more than a finite number of maxima and minima during any single period of the signal.

198



迪利斯雷(Dirichlet)條件：
A periodic signal that violates the second Dirichlet condition is

(3.57)
as illustrated in Figure 3.8(b).  For this function, which is periodic with T=1,

x(t) = sin 2
t





, 0 < t 1,

x(t)0
1ò dt <1.
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迪利斯雷(Dirichlet)條件：
Condition 3.  In any finite interval of time, there 
are only a finite number of discontinuities.  
Furthermore, each of these discontinuities is 
finite.
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3.4  Convergence of the Fourier Series
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A square wave satisfied all 3 conditions.



3.4  Convergence of the Fourier Series
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3.4  Convergence of the Fourier Series
201



3.4  Convergence of the Fourier Series
When N->infinite, xN(t) at discontinuities should be 
the average value of the discontinuities 
We see from the figure that this is in fact the case, 
since for any N,          has exactly that value at the 
discontinuities.  Furthermore, for any other value of t, 
say,         , we are guaranteed that 
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3.5  Properties of Continuous-time Fourier 
series

If the Fourier series coefficients of x(t) are denoted 
by       , we will use the notation

to signify the pairing of a periodic signal with its 
Fourier series coefficients.
訊號與其傅立葉係數相互對應的記號。
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3.5.1  Linearity
Let x(t) and y(t) denote two periodic signals 
with period T and which have Fourier Series 
coefficients denoted by     and      , respectively.  
That is, kk ba

.)(
,)(

k
S

k
S

bty
atx





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3.5.1  Linearity
the Fourier series coefficients ck of the linear combination of x(t) and y(t), z(t) =Ax(t) + By(t)

The proof of this follows directly from the application of eq. (3.39).  We also note that the linearity property is easily extended to a linear combination of an arbitrary number of signals with period T.

.)()()( kkk
S BbAactBytAxtz +=+= 

202

ak = 1
T Tò x(t)e jk0tdt(3.39)



3.5.2  Time Shifting
The fourier series coefficients    of the resulting 
signal                         may be expressed as

Letting                in the integral, and noting that 
the new variable   will also range over an interval 
of duration T, we obtain

(3.60)

)()( 0ttxty = kb

.)(1 00 dtettxTb tjk
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3.5.2  Time Shifting
where      is the kth Fourier series coefficient of 
x(t). That is, if

then

Frequency shifting

ka

x(t) S  ak,
.)( 000 )/2(

0 k
tTjk

k
tjkS aeaettx   =
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3.5.3   Time Reversal
To determine the Fourier series coefficients of 
y(t) = x(-t), let us consider the effect of time 
reversal on the synthesis equation (3.38):

(3.61)
Making the substitution k = -m, we obtain

(3.62)

.)( /2 Ttjk
k

keatx ¥

¥=å=

.)()( /2 Ttjm
m

meatxty å¥¥= ==
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x(t) = ak
k=¥

+¥å e jk0t (3.38)



3.5.3   Time Reversal
where the Fourier series coefficients        are 

(3.63)
That is, if

then

時間倒轉性質

.kk ab =
,)( k

S atx 

.)( k
S atx 
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3.5.4   Time Scaling
if x(t) has the Fourier series representation in eq. (3.38), 
then

* the Fourier coefficients are the same, but the 
fundamental frequency becomes  

204

tjk
k

keatx )( 0)(  å+¥¥=
=

0

x(t) = ak
k=¥

+¥å e jk0t (3.38)



3.5.5   Multiplication
Suppose that x(t) and y(t) are both periodic with period T and that 

Since x(t)y(t) is also periodic with period T, we can expand it in a Fourier series with Fourier series coefficients hk expressed in terms of those for x(t) and y(t). The result is
(3.64)

Periodic convolution

.)(
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3.5.6   Conjugation and Conjugate 
Symmetry

Taking the complex conjugate of a periodic 
signal x(t) has the effect of complex 
conjugation and time reversal on the 
corresponding Fourier series coefficients.  
That is, if 

then
(3.65)

204

x(t) S  ak,
x*(t) S  ak

* .
x*(t) = ( ak

k=¥

+¥å e jk0t )* = a*
k

k=¥

+¥å e jk0t = a*m
m=¥

+¥å e jm0t



3.5.6   Conjugation and Conjugate 
Symmetry

see from eq. (3.65) that the Fourier series 
coefficients of a real signal x(t) will be 
conjugate symmetric, i.e.,

(3.66)

For example, from eq. (3.66), we see that if x(t)
is real, then      is real and

,*
kk aa =

.kk aa =
0a
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x(t) S  ak
x*(t) S  ak

*

3.5.6   Conjugation and Conjugate 
Symmetry

Real

Even     

,*
kk aa =

205

x(t) S  ak ak = ak,
ak = ak

*, Even

Real

If x(t) is real and even



3.5.7   Parseval’s Relation for 
Continuous-Time Periodic Signals

As shown n Problem 3.46, Parseval’s relation for 
continuous-time periodic signals is

(3.67)

Also, 

is the average power in the kth harmonic component of 
x(t)

(3.68)

,)(1 22 åò +¥

¥=
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k
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Example 3.8
Let us examine some properties of the Fourier series 
representation of a periodic train of impulses, or 
impulse train.  It will play an important role when we 
discuss the topic of sampling in Chapter 7.  The 
impulse train with period T may be expressed as

(3.75)

208

å¥¥=
=

k
kTttx );()( 



Example 3.8
To determine the Fourier series coefficients     , 
we use eq. (3.39) and select the interval of 
integration to be                            , avoiding the 
placement of impulses at the integration limits.  
Within this interval, x(t) is the same as δ(t), and 
it follows that

(3.76)

2/2/ TtT 
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The impulse train also has a straightforward 
relationship to square-wave signals such as g(t).

The derivative of g(t) is the q(t) as the difference 
of two shifted versions of the impulse train x(t).

(3.77)).()()( 11 TtxTtxtq +=

208



Using the properties of Fourier series, we can 
now compute the Fourier series coefficients of 
q(t) and g(t) without any further direct 
evaluation of the Fourier series analysis 
equation.  First, from the time-shifting and 
linearity properties, the Fourier series 
coefficients     of q(t) may be expressed in 
terms of the Fourier series coefficients     of 
x(t); that is,

,1010 k
Tjk

k
Tjk

k aeaeb  =
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ka
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Example 3.8
Using eq. (3.76), we then have

Finally, since q(t) is the derivative of g(t), we can use 
the differentiation property in Table 3.1 to write

(3.78)
where the       are the Fourier series coefficients of 
g(t). Thus,

(3.79)
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T/20  =

ak = 1
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Example 3.8
Note that eq. (3.79) is valid for k ≠ 0, since we cannot solve 
for     from eq. (3.78) with k = 0.  However, since     is just 
the average value of g(t) over one period, we can 
determine it by inspection from Figure 3.12(b):
*You can also double check the Fourier series 
coefficients of the square wave derived in Example 3.5.
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0c0c
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Tc =

ck = sin(k0T1)
k , k ¹ 0 (3.79)



3.6.1 Linear Combinations of Harmonically 
Related Complex Exponentials

As defined in Chapter 1, a discrete-time signal x[n] is 
periodic with period N if 

(3.84)
the set of all discrete-time complex exponential 
signals that are periodic with period N is given by

(3.85)
All of these signals have fundamental 
frequencies that are multiples of 2π/N and thus 
are harmonically related.
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3.6.1 Linear Combinations of Harmonically 
Related Complex Exponentials

This is a consequence of the fact that discrete-time 
complex exponentials which differ in frequency by a 
multiple of 2π are identical.  Specifically,

, and, in general, 

(3.86)
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3.6.1 Linear Combinations of Harmonically 
Related Complex Exponentials

Such a linear combination has the form
(3.87)

(3.88)

212

x[n]= ak
k
å jk[n]= ak

k
å e jk0n = ak

k
å e jk(2 /N )n.

x[n]= ak
k= N
å jk[n]= ak

k= N
å e jk0n = ak

k= N
å e jk (2 /N )n.

jk n[ ] =jk+rN n[ ].(3.86)

N = 0,1, 2,..., (N 1)or2,3,..., (N +1)



3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

If we evaluate eq. (3.88) for N successive values of n
corresponding to one period of x[n], we obtain

(3.89)

We can solve for {ak} by given these linearly 
equations, but these is an easy way.
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

We know that( shown in Problem 3.54)

(3.90)
Now consider the Fourier series representation of eq. (3.88). 
Multiplying both sides by               and summing over N terms, 
we obtain

(3.91)
Interchanging the order of summation on the right-hand side, 
we have

(3.92)
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n= N
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x[n]= ak
k= N
å e jk(2 /N )n
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

The right-hand side of eq. (3.92) then reduces to         , 
and we have

(3.93) 
This provides a closed-form expression for obtaining 
the Fourier series coefficients, and we have the 
discrete-time Fourier series pair:

(3.94)
(3.95)
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

Referring to eq. (3.88), we see that if we take k in the 
range from 0 to N – 1, we have

(3.96)
Similarly, if k ranges from 1 to N, we obtain

(3.97)
(3.86)
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

By letting k range over any set of  N consecutive 
integers and using eq. (3.86), 

(3.98)
That is, if we consider more than N sequential values 
of k, the values      repeat periodically with period N.
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Example 3.10
Consider the signal

(3.99)
Which is the discrete-time counterpart of the signal 
x(t)=               of Example 3.3. x[n] is periodic only if 
2π/      is an integer or a ratio of integers  For the 
case when 2π/     is an integer N, that is, when
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Example 3.10
x[n] is periodic with fundamental period N, and we 
obtain a result that is exactly analogous to the 
continuous-time case.  Expanding the signal as a sum 
of two complex exponenitals, we get

(3.100)
Comparing eq. (3.100) with eq.(3.94), we see by 
inspection that 

(3.101)
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Example 3.10
And the remaining coefficients over the interval of 
summation are zero.  As described previously, these 
coefficients repeat with period N; thus,          is also 
equal to (1/2j) and           equals (-1/2j).  The Fourier 
series coefficients for this example with N = 5 are 
illustrated in Figure 3.13.  
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Example 3.10
Consider now the case when 2π/      is a ratio of 
integers—that is , when

Assuming that M<N, and M and N do not have 
any common factors, x[n] has fundamental 
period of N.  Again expanding x[n] as a sum of 
two complex exponentials, we have 
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Example 3.10
From which we can determine by inspection that     = 
(1/2j),        = (-1/2j), and the remaining coefficients 
over one period of length N are zero.  The Fourier 
coefficients for this example with M = 3 and N = 5 
are in Figure 3.14.  Again, we have indicated the 
periodicity of the coefficients.  For example, for N = 
5,                , which in our example equals (-1/2j).  
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal
 Convergence

Assume that the period N is odd.  In Figure 3.18, we 
have depicted the signals
(3.106)
approximating example of Figure 3.16 with N = 9,    
2      + 1 = 5, and for several values of M.  For M = 4, 
the partial sum exactly equals x[n].
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal
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3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

220

x[n]= x̂[n]= ak
k=4

4å e jk(2 /N )n



3.6.2  Determination of the Fourier Series 
Representation of a Periodic Signal

If N is odd and we take M = (N – 1)/2 in eq. (3.106), 
the sum includes exactly N terms, and consequently, 
from the synthesis equations, we have                 .  
Similarly, if N is even and we let 
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3.7 Properties of Discrete-Time Fourier 
Series

221



3.7 Properties of Discrete-Time Fourier 
Series

If x[n] is a periodic signal with period N and 
with Fourier series coefficients denoted by      , 
then we will write
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3.7.1  Multiplication
The product of two periodic signals with period N
results in a periodic signal with period N whose 
sequence of Fourier series coefficients is the periodic
convolution of the sequences of Fourier series 
coefficients of the two signals being multiplied.

and
This is shown in Problem 3.57, its Fourier 
coefficients,  {dk}, are given by

(3.108)
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3.7.1  Multiplication
Equation (3.108) is analogous to the definition 
of convolution, except that the summation 
variable is now restricted to an interval of N
consecutive samples.
(3.108)

222

lk
Nl

lk
FS badnynx =å=][][

x[r]y[n r]
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3.7.2  First Difference 
If x[n] is periodic with period N, then so is y[n], since 
shifting x[n] or linearly combining x[n] with another 
periodic signal whose period is N always results in a 
periodic signal with period N.  Also, if

then the Fourier coefficients corresponding to the first 
difference of x[n] may be expressed as

(3.109)
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3.7.3  Parseval’s Relation for Discrete-Time 
Periodic Signals

As shown in Problem 3.57, Perseval’s relation for 
discrete-time periodic signals is given by

(3.110)

where the      are the Fourier series coefficients of 
x[n] of N is the period.
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Example 3.13
Let us consider the 
problem of finding the 
Fourier series coefficients       
of the sequence x[n]
shown in Figure 3.19(a).  
This sequence has a 
fundamental period of 5.  
We observe that x[n] may 
be viewed as the sum of 
the square wave            in 
Figure 3.19(b) and the dc 
sequence         in Figure 
3.19(c).

224

][1 nx

ka

][2 nx



Example 3.13
Denoting the Fourier series coefficients of           by     
and those of              by        , we use the linearity 
property of Table 3.2 to conclude that 

(3.111)
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From Example 3.12 (with      = 1 and N = 5), the 
Fourier series coefficients corresponding to x1[n]             
can be expressed as

(3.112)

The sequence            has only a dc value, which is 
captured by its zeroth Fourier series coefficient:

(3.113)
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Example 3.13
Since the discrete-time Fourier series coefficients are 
periodic, it follows that      = 1 whenever k is an 
integer multiple of 5. The remaining coefficients of 

must be zero, because           contains only a dc 
component.  We can now substitute the expressions 
for       and      into eq. (3.111) to obtain

(3.114)
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3.8  Fourier Series and LTI Systems
In continuous time, if x(t) =      is the input to a 
continuous-time LTI system, then the output is given 
by y(t) =             , where, from eq. (3.6),

(3.119)

in which h(t) is the impulse respose of the LTI system
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3.8  Fourier Series and LTI Systems
Similarly, if x[n] =     is the input to a discrete-time 
LTI system, then the output is given by y[n] =           , 
where, from eq. (3.10),

(3.120)

in which h(n) is the impulse response of the LTI 
system
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3.8  Fourier Series and LTI Systems
The system function of the form s = jω—i.e., H(jω)
viewed as a function of ω—is referred to as the 
frequency response of the system and is given by 

(3.121)

連續時間系統的頻率響應函數
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3.8  Fourier Series and LTI Systems
Then the system function H(z) for z restricted to the 
form               is referred to as the frequency 
response of the system and is given by 

(3.122)

離散時間系統的頻率響應函數
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3.8  Fourier Series and LTI Systems
Consider first the continuous-time case, and let x(t) be 
a periodic signal with a Fourier series representation 
given by

(3.123)

Suppose we apply x(t) as the input to an LTI system 
with impulse response h(t)   
In eq. (3.13) with                 , it follows that the output 
is 

(3.124)
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3.8  Fourier Series and LTI Systems

Thus, y(t) is also periodic with the same 
fundamental frequency as x(t). Furthermore, if        
is the set of Fourier series coefficients for the input 
x(t), then                     is the set of coefficients for 
the output y(t).
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Example 3.16
Suppose that the periodic signal x(t) discussed 
in Example 3.2 is the input signal to an LTI 
system with impulse response
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Example 3.16
To calculate the Fourier series coefficients 
of the output y(t), we first compute the 
frequency response:

(3.125)
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Example 3.16

Therefore, using eqs. (3.124) and (3.125), 
together with the fact that              in this 
example, we obtain

(3.126)
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Example 3.16
with                      , so that 

(3.127)
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Note that y(t) must be a real-valued signal, since 
it is the convolution of x(t) and h(t), which are 
both real.  This can be verified by examining eq. 
(3.127) and observing that            .  Therefore, 
y(t) can also be expressed in either of the forms 
given in eqs. (3.31) and (3.31);that is,

(3.128)
or

(3.129)
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Example 3.16

where
(3.130)

These coefficients can be evaluated directly from 
eq.(3.127).  For example,
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3.8  Fourier Series and LTI Systems

let x[n] be a periodic signal with Fourier series 
representation given by

If we apply this signal as the input to an LTI system 
with impulse response h[n], then, as in eq. (3.16) 
with                  , the output is  
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3.9    Filtering
(Linear) Filtering can be conveniently accomplished 
through the use of LTI systems with an 
appropriately chose frequency response, and 
frequency-domain methods provide us with the ideal 
tools to examine this very important class of 
applications.  In this and the following two sections, 
we take a first look at filtering through a few 
examples.
「濾波」即在對於訊號中某些頻率分量改變振幅或消除。
用以改變訊號的頻譜形狀的LTI系統稱為「頻率整形濾波
器」。用以在不失真之外通過某些頻率，或大大地縮減或
消除其它頻率成分的，稱為「頻率選擇濾波器」。
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3.9.1  Frequency-Shaping Filters
One application in which frequency-shaping filters are 
often encountered is audio systems.
頻率整形濾波器常應用於音訊系統。
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3.9.1  Frequency-Shaping Filters
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3.9.1  Frequency-Shaping Filters
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3.9.1  Frequency-Shaping Filters
Another class of frequency-shaping filters often 
encountered is that for which the filter output is the 
derivative of the filter input, i.e., y(t) = dx(t)/dt.  With 
x(t) of the form                , y(t) will be                    , 
from which it follows that the frequency response is 

(3.137)
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3.9.1  Frequency-Shaping Filters
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3.9.1  Frequency-Shaping Filters
As one example of a simple discrete-time filter, 
consider an LTI system that successively takes a two-
point average of the input values:

(3.138)
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3.9.1  Frequency-Shaping Filters
In the case                             , and from eq. (3.122), 
we see that the frequency response of the system is

(3.139)
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3.9.1  Frequency-Shaping Filters
if the input to this system is constant—i.e., a zero-
frequency complex exponential                          –then 
the output will be 

On the other hand, if the input is the high-frequency 
signal                                 , then the output will be
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3.9.1  Frequency-Shaping Filters
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3.9.2  Frequency-Selective Filters
Frequency-selective filters are a class of filters 
specifically intended to accurately or 
approximately select some bands of frequencies and 
reject others. It is used a lot in systems such as 
communication systems.

頻率選擇濾波器常用於雜訊消除、通訊系統(如
AM等)。
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3.9.2  Frequency-Selective Filters
 A lowpass filter is a filter that passes low 

frequencies—i.e., frequencies around ω = 0—and 
attenuates or rejects higher frequencies.  

 A highpass filter is a filter that passes high 
frequencies and attentuates or rejects low ones.

 A bandpass filter is a filter that passes a band of 
frequencies and attenuates frequencies both higher 
and lower than those in the band that is passed.

 Cutoff frequencies are the frequencies defining the 
boundaries between frequencies that passed and 
rejected.
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3.9.2  Frequency-Selective Filters
The frequency response of a continuous-time ideal
lowpass filter is 

(3.140)

237

,,0
,1)( ïî

ïíì 
=

c

cjH 


Cutoff-frequency



3.9.2  Frequency-Selective Filters
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3.9.2  Frequency-Selective Filters
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3.9.2  Frequency-Selective Filters
Idea  filter are quite useful in describing idealized 
system configurations for variety of applications. 
However, in practice, they should be approximated
in order to be realized.
-You will learn a bit more about this in the future, 
and other course such as communication.
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3.10  Examples of Continuous-Time Filters 
Described by Differentail Equations

In many applications, frequency-selective filtering is accomplished through the use of LTI systems described by linear constant-coefficient differential or difference equations.
 Many physical systems are characterized by these equations (suspension system in Ch.6)
 These equations can be implemented using either analog or digital hardware.
 There equations are flexible to describe a large range of filters (e.g., they can well approximate ideal lowpass filter)
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3.10.1  A Simple RC Lowpass Filter
In this case, the output voltage is related to the 
input voltage through the linear constant-
coefficient differential equation

(3.141)).()()( tvtvdt
tdvRC scc =+
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3.10.1  A Simple RC Lowpass Filter
In order to determine its frequency response H(jω),
we note that, by definition, with input voltage                 
, we must have the output voltage                      .

(3.142)

or
(3.143)
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3.10.1  A Simple RC Lowpass Filter 
(not ideal)

From which it follows directly that

(3.144)
or

(3.145)

 ω = 0, 
 When ω is large,           becomes smaller
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3.10.1  A Simple RC Lowpass Filter
To provide a first glimpse at the trade-offs involved in 
filter design, let us briefly consider the time-domain
behavior of the circuit.  In particular, the impulse 
response of the system described by eq. (3.141) is

(3.146)  
and the step response is

(3.147)
where
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3.10.2  A Simple RC Highpass Filter
We can use the same RC circuit 
but use the voltage across the 
resistor  vr(t) as output.   
In this case, the differential 
equation relating input and 
output is

(3.148)  
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3.10.2  A Simple RC Highpass Filter
(not ideal)
Find the frequency response G(jω) of this system in 
exactly the same way we did in the previous case: 
If                   , then we must have

(3.149)
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3.10.2  A Simple RC Highpass Filter

From  Figure 3.29, we see that                         .  
Thus, if                       must be given by eq. 
(3.147).

(3.150)
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3.11 Examples of Discrete-Time Filters 
Described by Difference Equations

Discrete-time linear constant coefficient difference 
equations can represent two types of filters:

 IIR system: recursive and have Infinite-length 
Impulse Response

 FIR system: nonrecursive and have finite-length 
Impulse Response
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3.11.1  First-Order Recursive Discrete-Time 
Filters

if                  , then                          , where            is 
the frequency response of the system.

(3.152)
or 

(3.153)
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3.11.1  First-Order Recursive Discrete-Time 
Filters
So that

(3.154)
The frequency response of system in Eq. (3.151)
When 0＜a＜1, it is an approx. lowpass filter.
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When -1＜a＜0, it is an approx. highpass filter.

3.11.2  Nonrecursive Discrete-Time Filters
246
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3.11.2  Nonrecursive Discrete-Time Filters
The general form of an FIR nonrecursive difference 
equation is

(3.157)

An only slightly more complex example is the three-
point moving-average filter, which is of the form

(3.158)
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3.11.2  Nonrecursive Discrete-Time Filters

so that each output y[n] is the average of three 
consecutive input values.  In this case, impulse 
response (finite-length)

and thus, from eq. (3.122), the corresponding 
frequency response is

(3.159)
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3.11.2  Nonrecursive Discrete-Time Filters
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3.11.2  Nonrecursive Discrete-Time Filters

From (3.159), we can see the filter has no parameter 
to adjust the cutoff frequency
To overcome this, consider averaging over N + M + 1 
neighboring points—that is, using a difference 
equation of the form

(3.160)
The filter’s frequency response is

(3.161)
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3.11.2  Nonrecursive Discrete-Time Filters
The summation in eq.(3.161) can be evaluated by 
performing calculations similar to those in Example 
3.12, yielding

(3.162)
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3.11.2  Nonrecursive Discrete-Time Filters
Nonrecursive filters can also be used to perform 
highpass filtering operations.  To illustrate this, again 
with a simple example, consider the difference 
equation

(3.163)

In this case,                               (finite-length) , so that 
direct application of eq. (3.122) yields

(3.164)
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3.11.2  Nonrecursive Discrete-Time Filters
249

[ ] ).2/sin(12
1)( 2/  jjj jeeeH == 

| H (e j 0 ) |=| e j 0/2 | sin(0 / 2) = 0.
| H (e j ) |=| e j /2 | sin( / 2) =1.



3.12  Summary
 History of Fourier Series (FS)
 Motivation of using FS: complex exponential are 

eignfunctions of LTI system
 Any periodic signal of practical usage can be 

represented by FS (convergence)
 How to obtain Fourier coefficient
 Properties of FS: linearity, time-shifting, etc.
 Frequency response of a LTI system
 Filtering of signals using LTI system: frequency-

shaping, frequency-selective
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