Chapter 2
Linear Time-Invariant
Systems

Min Sun



2.1.1 The Representation of Discrete-
Time Signals in Terms of Impulses

Sample/Sifting X[-l]é[n+1]=<rx[-1]’ n=-1
0, n=-1
property i ; ;
x[ojefny= | "7
\O’ n=0
x[1], n=1
x[1oln-1]=1 =7

All signal x[n] can be represented by sum of
impulses with different magnitude.
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2.1.1 The Representation of Discrete-
Time Signals in Terms of Impulses
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2.1.1

= Siftin

The Representation of Discrete-
Time Signals in Terms of Impulses

g property:

x[n]=...+ x[— 3]5[71 + 3]+ x[— Z]é[n + 2]+ x[— l]é[n + 1]+
A0 B[n |+ 1lln -1+ x[210[n - 21+ x[3]6[n - 3] +... (2.1)
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(ExCIP

x[n] = x[k]o|n - k]. (2.2)
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2.1.2 The Discrete-Time Unit Impulse Response
and the Convolution-Sum Representation of LTI Systems

Impulse response /[n] denotes the response of a
linear system to the impulse o[n-k]

400

x[n] = Ex[k]é[n-k]. (2.2)

k=—o
Since every x[n] equals to the sum of all scaled
iImpulse J[n-k], using the linearity of the system, the
response of x[n] 1s the sum of all scaled 4« n] as
follows,

yln] = EX[k]h [n]. (2.3)

k=—o0



2.1.2 The Discrete-Time Unit Impulse Response
and the Convolution-Sum Representation of LTI Systems

* Time invariant system:

Since o[n-k] 1s a time-shifted version of o[n-0]=0[n],
the response /4,[n] 1s a time-shifted version of /[ n]

] = ol — k] (2.4)
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2.1.2 The Discrete-Time Unit Impulse Response
and the Convolution-Sum Representation of LTI Systems

we will drop the subscript on /,/[n] and define the
unit impulse response

hn]= hy[n] (2.5)

itho[n] & B AA [1]

yinl= 3 x[klh, [n]. 23)

k=_OO



2.1.2 The Discrete-Time Unit —
Impulse Response and the yln]= z x[k]h, [n](2.3)

Convolution-Sum k=—o0
Representation of LTI Systems  h [n]= h,[n - k] =h[n-k](2.4)

« Convolution

+00

y[n] = Ex[k]h[n -k] (2.6)

yln]=x[n]*h[n]. (2.7)
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Example 2.1

" Consider an LTI system hin]

with 1mpulse response I I I
h[n] and mput x[n], as e
illustrated in Figure

2.3(a). For this case, . [n]
since only x[0] and x[/] 0.

are nonzero, €q.(2.6)
simplifies to the @
expression

y[n] = {011 = O] + x[1]A[n 1] = 0.5k n] + 2h[n —1] (2.8)
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yin]=x[0]a[n-0]+ x[1]A[n-1]
Example 2.1 = 0.5h[n]+2h[n~1]

hin] 05 0.5h[n]
1 oo 111 *o—o
I I I 0 1 2 n
@ L 4 @ @
o 1 2 n 2 2h[n—1]
x[n] oO—O0—0 O
o 1 2 3 n
0.5
r (b)
-@ @ @ o —@&
o 1 n
2.5
(@) 2 yIn]
0.5T l
Figure 2.3 (a) The impulse response h[n] of an LTI system and an input ——@ 0 1 > 3 \d o

x[n] to the system; (b) the responses or “echoes,” 0.5h[n] and 2h[n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the
overall response y[n], which is the sum of the echos in (b). ()
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2.2.1 The Representation of Continuous-
Time Signals in Terms of Impulses

O (t)

1 1
—, 0=t <A 3

ROEITN (2.24)
0, otherwise
0 A t
then, since Ao ,(?) has unit amplitude, we have the
expression i
b )= Ylap, (- @25)
k=—

x(t)

kA t 13



2.2.1 The Representation of Continuous-
Time Signals in Terms of Impulses

= Sifting property:

+00

X[t =1im Y x(kA)d, (t-kA)A (2.26)
x(O= [ x(1)8(t-7) d7. (2.27)

ATLEREx (1) HY AR BT R AR 70K

+00

x[n] = Ex[k]é[n-k]. (2.2)

k=_00
16



2.2.1 The Representation of Continuous-
Time Signals in Terms of Impulses

We note that, for the specific example of x(¢) = u(?),
eq. (2.27) becomes

u(t) =f: u(r)é(t—r)dr =£O 5(t—7:)a’7:, (2.28)

since u(z7) =0 for 7 <0 and u(z) = 1 for > 0.
Equation (2.28) 1s 1dentical to eq.(1.75), derived 1n
Section 1.42
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2.2.2 The Continuous-Time Unit Impulse Response
and the Convolution Integral Representation of LTI Systems

Let’s define lAlkA () as the response of a linear system
to the input 8,(-4a). Then from eq.(2.25) and the
superposition property, for continuous-time linear
systems, we see that

%)= ) x(kA)o, (¢ - ka)a. (2.25)
() iy (DA, (2.29)
x(t)=1Ai£1(1) \ x(kA)S, (¢ = kA )A. (2.25)

1(t) = h, (A (2.30)
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2.2.2 The Continuous-Time Unit Impulse Response
and the Convolution Integral Representation of LTI Systems

+00

y(0) = lim (kA (DA (2.30)

=00

Therefore, if we let %) denote the response at time ¢
to a unit impulse s¢-7)located at time 7, then

y© = [ “x(h, (Hdr. (2.31)
hr(t) = hO(lL _T)
Assuming time mvariant and A(z) = (1) (2.32)
y(t)= [ x(Dh(t-7)dz. (2.33)

y(t)=x(t)*h(t). convolution (2.34)

24



Example 2.6

" Let x(?) be the input to an LTI system with unit

impulse response /(¢), where
h(r)

x(t)=eult), a>0

and




x(t)= e "ult) h(t) = u(l‘)
Example 2.6

y(t) = f: x(7)h(t -7)dr. (2.33)

From this figure, we see that for # < 0, the product of
x(7) and A(t — 7) 1s zero, and consequently, y(?) 1s zero.
For > 0.

hxi(r)7)
-“l
I NKO
Tt 0 m

x(7)h(t-7)=0;t<0

29



Example 2.6

y(t) = f” x(7)h(t -7)dr. (2.33)
For¢t>0
h&()r)
\»o
R 0 t - T

e T < T<t
otherwise

30



Example 2.6

Forz>0
- B e—a’r’ O < T<t
x(T)h(t — 7) = { 0, otherwise
y(t) = f 7 x(T)h(t-7)dT = f L T l(1 —e™)
o0 hi? a a

1

a




2.3 Properties Of Linear Time-Invariant
Systems

+00

y[n] = E x[k]h[n-k] = x[n]*h[n]  (2.39)

k=—OO

y®= [ x(T)h(t-T)dr =x()*h(t) (2.40)

 The output y of a LTIl system is the convolution
sum/integral of input x with unit impulse
response h.

 ALTI system can be completed determined by its
unit impulse response.

*This is true only for LTI system »



Example 29

* Consider a discrete-time system with unit impulse
response

Hn)=; 10l (2.41)

If the system 1s LTI, then eq. (2.41) completely
determines 1its input-output behavior.

+00

y[n] = E x[k]h[n-k] = x[n]+ x[n-1]. (2.42)

k=—o0
33



Example 29
* Not for Nonlinear equation

For example, both of the following systems have the
same unit impulse response

Wn]-1; 0l (2.41)

otherwise

v ]= ]+ xln —1)2,
y[n] = max(x[n], x|n — l])

34



2.3.1 The Commutative (3x#21E) Property

x[n]*h[n]=h[n]*x[n]= i h[k]x[n-k], (2.43)

k=—OO

Proof: Set r= n-k, k=n-r

x[n]#h[n]= E x[k]h[n-k] = E x[n-r]h[r]

k=—c0 r=n—o

= i x[n-r]h[r] = i h(r]x[n-r] = A[n]* x[n]

Similarly,
x(t) *h(t) = h(t) * x(t) = f _+: h(T)x(t-7)dT. (2.44)

36



2.3.2 The Distributive (9F2 &) Property

1n discrete time

x[n]s#(hy[n]+h,[n]) = x[n]*h,[n]+x[n]*h,[n], (2.46)

and 1n continuous time

x(®)#[h,(0) +h, (0] = x(O*h, (O +x©O *h, (). (2.47)

37



2.3.2 The Distributive Property

X(t) =———m| (1) + hy(t)

y1(t)

—> hy(t -_l

—> (1)

Figure 2.23 Interpretation of the

distributive property of convolution
for a parallel interconnection of LTI

systems.



2.3.2 The Distributive Property

Also, as a consequence of both the commutative and
distributive properties, we have

[l + xynl s hlnl = xy[n] W) + x,[m)h[n] ~ (2.50)
and
[y (£) + 2, (€ )b e) = x, (£ )5 e )+, () e ), (2.51)

which simply state that the response of an LTI system
to the sum of two inputs must equal the sum of the
response to these signals individually.

41



Example 2.10

Let y[n] denote the convolution of the following two
sequences:

n

[](%) u[n]+ 27 [ n] (2.52)

h[n]=uln]. (2.53)

In particular, it we let x,[n]=1/2)"u[n] and x,[n]=2"u[-n] ,
1t follows that

An]=(qlnl+ xo[nd)xhlnl.  (2.54)

42



Example 210 y[n]= (xl[n]+x2[n])*h[n]. (2.54)

Using the distributive property of convolution, we
may rewrite eq.(2.54) as

yin] = y,[n]+ y,[n] (2.55)
viln] = x;[n]* hln] (2.56)
voln] = x,[n]=hln] (2.57)

Eq. 2.56 can be found in example 2.3
Eq. 2.57 can be found in example 2.5

43



2.3.3 The Association (455 %) Property

in discrete time
x[n]# (h [n]*h,[n]) = (X[n]*h,[n])+h,[n],  (2.58)
and 1n continuous time

X(t)#[h, (O *h, (O] =[x(@®) =h;(O]*h, ().  (2.59)

45



2.3.3 The Association Property

As a consequence to the associative property, the
expressions

] = x{n] s hy[n]* hy[n] (2.60)
and
Y(O) = x(t) %Iy (6) % By ¢) (2.61)

are unambiguous.

46



2.3.3 The Association Property

X[N)] e———

h4[n]

w(n]

(a)

ho[n]

—

X[N] —

h[n] = hy[n] ~ha[n]

—

(b)

y[n]

y[n]

47



2.3.3 The Association + Distributive Property

x[n] ——— h[n] = hyln] + h; [n] I——>y[n1
X[N] =———1 h,[N] ]-——> h4[n] I——> y[n]




2.3.4 LTI Systems with and without
Memory

Reall: In chapter 1, we define that a system 1s
memoryless if 1ts output for each value of the
independent variable at a given time 1s dependent on
the 1nput at only that same time.

+00

y[n] = E x[k]h[n-k] = x[n]*h[n]  (2.39)

k=—OO

From Eq. 2.39, a system is memoryless only
if h[n] =0en n=Q

49



2.3.4 LTI Systems with and without
Memory

The impulse response has the form
h[n]=Kd[n], (2.62)

where K=/ [0] 1s a constant, and the convolution sum
reduces to the relation

yln]= Kx[n] (2.63)

50



2.3.4 LTI Systems with and without
Memory

Similarly, a continuous-time LTI system 1s
memoryless 1f 4(¢) = 0 for ¢ # 0, and such a
memoryless LTI system has the form

() =Kx(r)  (2.64)

h()=Ko(t)  (2.65)

51



2.3.5 Invertibility of LTI Systems

X(t) e

P

ht)

h4(t)

> w(t)=x(t)

Identity system
5(t)

> X(t)

(b)

If the impulse response of a LTI system is
impubg® response of its inverse system

h, (1)
h(f)* hy () = 6(¢)

satisfy

(2.66)

the
must

52



2.3.5 Invertibility of LTI Systems
h(t)# hy (£) = 8(¢). (2.66)

Similarly, the impulse response /4,[#n] of the inverse
system for an LTI system with impulse response A[n]
must satisty

h{n]=h [n] = é[n] (2.67)

54



Example 2.11

» Consider the LTI system consisting of a pure time
shift

y(t)=x(t-t,). (2.68)

The impulse response for the system can be obtained
from eq.(2.68) by taking the input equal to o(¥)

h(r) = 6(r-1,) (2.69)
From (2.68) and (2.69)

x(t-1y)=xlt) (-1, ) (2.70)

55



Example 2.11

The convolution of a signal with a shifted impulse
simply shifts the signal.

x(t—1y)=x(t)*=6(t—1,). (2.70)

x(t)=0(t-1,)=
fo;x(r)é(t—r—to)dr = x(t-1t,)

56



Example 2.11

= Inverse system h,(t):
We simply need to shift 1t back.

If we take h(t)=0le+2,)

then h(t)*h(t)= (5(t—t0)>1< §(t+t0)= (5(t)

57



2.3.6 Causality for LTI Systems

= Recall in chapter 1: A system is causal if the
output at any time depends on values of the input
at only the present and past times.

yln] only depends on x|[n-k]; where k>=0

y[n] = E W klx[n-k]= Eh[k]x[n —k]. (2.43)

k=—00

implies that hlk]=0 for k<O



2.3.6 Causality for LTI Systems

* The impulse response of a causal discrete-time LTI
system satisfy the condition

hin]=0 forn<0 (2.77)
-
y[n]= E x[k1h[n—k] = S x[k1h[n - k], (2.78)

yln] = i hlklx[n-k]= oo%h[k]x[n - k]. (2.79)

k=—OO

59



2.3.6 Causality for LTI Systems

Similarly, a continuous-time LTI system 1s causal 1f

h(it)=0 for t<0 (2.80)

F3E S —EERAVGEERELTIR G m E E P
Bt<0, h(H)=0

and the convolution integral 1s given by

() =ﬁ e (e - 1)dr = £' W Wxlt -7 ). (2.81)

60



2.3.7 Stability for LTI Systems

= Recall in chapter 1, a system is stable if every
bounded input produces a bounded output.

x[n]| <B for all (2.82)

» Consider the condition where LTI system is
stable.

We obtain an expression for the magnitude of the
output: —

Z Wkl n - k]

n]| = . (2.83)

62



2.3.7 Stability for LTI Systems

‘x[n]| <B for all n (2.82)

» Since the magnitude of the sum of a set of numbers 1s
no larger than the sum of the magnitudes of the
numbers

+00

yinl= Y |Alk]||xin-k]. (2.84)
k=—c0
y[n]|<B i |Alk]| for all n (2.85)

k=—00

63



2.3.7 Stability for LTI Systems

we can conclude that 1f the impulse response 1s
absolutely summable. That is, 1f

W |lk] < o (2.86)

The output is bounded.

‘y[n]‘ <B E ‘h[k]‘ < 00

k=—OO

Hence, the system is stable.
(This is also a necessary condition)

64



2.3.7 Stability for LTI Systems

Similarly, the system 1s stable 1f the impulse response
is absolutely integrable

f_+ Iz )z < (2.87)

65



Example 2.13

» Consider a system that 1s a pure time shift in either
continuous time or discrete time. Then, 1n discrete
time

+00

2|h[n]| . E|§[n —ny] =1 (2.88)

Nn=-—00 —00

while 1n continuous time

f+oo|h(7:] dt =f+oo|5(r —1, 1d7: =1. (2.89)

We conclude both systems are stable.

60



Example 2.13

An unstable system can also be seen from the fact
that 1ts impulse response u[n] 1s not absolutely
summable:

» consider the acumulator

yinl= Y xlnl; xlnl=dlnl; hlnl="Y dln]=uln]

E|u[n]| = Zou[n] = 0,

n=—0 n

= consider the integrator, the continuous-time
counterpart of the accumulator:

W(f) = Lo x(z . (2.90)

07



Example 2.13

response for the integrator can be found by letting,
x(r)=6(r) 1n which case

h(t) = f ) 8(z)dt = u(r)
and
fm‘u(r)dr =j;20r = 0

Since the impulse response 1s not absolutely
integrable, the system 1s not stable.



2.3.8 The Unit Step Response of an LTI
System

Unit step response s[n] is defined as the system’s
respond of x[n]=u[n]

*Relation to h[n
yln]= x[n]*h[n]; s[n]=u[n]*h[n]

Commutative properties: s[n]= h[n]*u[n]
Example 2.13: s[n]= Eh[k] (2.91)
k=—0

hn]=s[n]-s[n-1]. (2.92)

69



2.3.8 The Unit Step Response of an LTI
System

Similarly, for continuous signal, we can derive

s(t)= [ hlz)dr (2.93)

h(t) = = s'(¢) (2.94)

Conclusions:

*Unit step response can characterize an LTI

system

70



2.4.1 Linear Constant-Coefficient Differential
Equations

= Systems specified by linear constant-coefficient
differential equations (e.g., Example 1.8), let us
consider a first-order differential equation as 1n eq.
(1.85), viz.,

dy(t)
dt

+2y(¢) = x(¢) (2.95)

* An implicit specification of the system (not a explicit
one as y(t)=F(x(t)) )

71
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2.4.1 Linear Constant-Coefficient Differential
Equations

Insights

"[mplicit specification need auxiliary conditions to
reach explicit specification

E.g., to solve for V (1), | R
A———
We need to solve
d 1 1 i
L 0= ) oL

given initial capacitor

VOltage Figure 1.1 A simple RC circuit with source

voltage vs; and capacitor voltage v,.
73



Example 2.14

dy(t)
dt

+2y(7) = x(¢) (2.95)

Consider the solution of €q.(2.95) when the input
signal 1s
x(t)= Ke*u(t) (2.96)

where K 1s a real number.

74



Example 2.14

The complete solution to €q.(2.96) y(t) consists of the
sum of a particular solution, y,(¢), and a
homogeneous solution (natural responses), y,(7)

y(t) =y, () +y,(?) (2.97)
where y (t) 1s one solution to

dy(t)

. 29(¢) = x(¢) (2.95)

and y,(t) 1s the solution to

dz (;) +2(t) =0 (2.98)

75



df{(tf) v 25() = x(0) (2.95)

x(t) = Ke>'u(?) (2.96)

Example 2.14

Given the form of input  x{¢)= ke*
we hypothesize a solution for 7 > 0 of the form
(1) =Ye" (2.99)

where Y 1s a number that we must determine.

Substituting eqs: (2.96) and (2.99) into eq.(2.95) for
t >0 yields

3Ye +2Ye = Ke™. (2.100)

76



Example 2.14

Canceling the factor ¢’ from both sides of eq.(2.100),
we obtain

3V +2Y =K (2.101)
y- X (2.102)
5
v, (1) =5e3’, t> 0 (2.103)

77



Example 2.14 242,010 (2.98)

In order to determine y,(#), we hypothesize a solution
of the form

v, (1) = Ae™ (2.104)
substituting Eq. (2.104) into (2.98)
Ase’ +24e" = 4e” (s +2)=0 (2.105)
we get s=-2 and A can be any choice.

we find that the solution of the differential equation
fort>0 1s
y(t) = Ae™ + §e3t, t>0. (2.106)



Example 2.14

= How to solve A? We need an auxiliary condition.

» For causal LTI system, typically we take the
condition of 1nitial rest.

= Initial rest: if x(t)=0 for t<t,,then y(t) must equal O for

t<t,
» For x(t)=Ke u(t) t,=0, we need to ensure y(0)=0
y(t) = Ae™' + §e3t
0= A+£ A= —5 )’(f)=§(e3t—e_2t)u(t) (2.108)

79



2.4.1 Linear Constant-Coefficient Differential
Equations

= Higher order differential equations:

A general N"-order linear constant-coefficient
differential equation 1s given by

N

d'y0) <, dx)
a =V (2.109)
; ©art ; ©art

Note we name it Nt'-order but not Mt-order

Hence below is an example of 0"-order

l < dkx(t)
y@)=— HM> (2.110)
20 ¢

a) f= dfk



2.4.1 Linear Constant-Coefficient Differential
Equations

" Solution consists of a particular solution and a

homogenous solution
N

k
Zak 4N _y 2.111)
e

The solutions to this equation referred to as the
natural responses of the system.

= Initial rest condition:

if x(t)=0 for t<t,,then y(t) must equal 0 for t<t,

dy(ty) d"'y(t, )
t‘ _—— == s+ = — O 2-112
W) == gtV (112)




2.4.2 Linear Constant-Coefficient Difference
Equations

The discrete-time counterpart of €q.(2.109) is the Nth-
order linear constant-coefficient difference equation

N M

;aky[n—k]=2bkx[n—k] (2.113)

Similarly, solution consists of a particular solution

and a homogenous solution
N

Zaky[n—k]=0 (2.114)
=0

Initial rest condition:

if X[n]=0 for n<=n,,then y[n] must equal 0 for n<=n,



2.4.2 Linear Constant-Coefficient Difference
Equations

= Special solution for difference equations:
Eq.(2.113) can be rearranged in the form

e N
y[n] = a{;bkx[n—k]—z%y[n—k]} (2.115)

It 1s called a recursive equation, since it specifies a
recursive procedure for determining the output in
terms of the input and previous outputs.

yln—k] for k=1:N auxiliary conditions



2.4.2 Linear Constant-Coefficient Difference
Equations

In the special case when N =0, eq.(2.115) reduces to
M
yln] = (b—k}x[n—k] (2.116)

Eq.(2.116) describes and LTI system, and by direct
computation, the impulse response of this system 1s
found to be

b—”, Osn=M.
Hn] =] o (2.117)

otherwise

No auxiliary conditions are needed.



2.4.2 Linear Constant-Coefficient Difference
Equations

b—”, O<n=M.

h[n]=q¢" (2.117)

otherwise

-

The impulse response for 1t has finite duration
(0<=n<=M); that 1s, 1t 1s nonzero only over a finite
time interval. Because of this property, the system
specified by eq.(2.116) is often called a finite
impulse response (FIR) system.



Example 2.15

= Consider the difference equation
Wil-2otn-=xin] (2118
Eq.(2.118) can also be expressed in the form
y[n] = x{n] +% yn-1] (2.119)

highlighting the fact that we need the previous value
of the output, y[n-1], to calculate the current value.
Thus, to begin the recursion, we need an initial
condition.



Example 2.15

suppose that we impose the condition of initial rest
and consider the mnput

Anl=Kdln|  (2.120)
1

y[0] = x[0] + Ey[—l] =K, (2.121)

y[1]=x[1]+%y[0] =%K (2.122)
2

y[2]=x[2]+ % 1] = (%) K (2.123)

n

1 1
y[n]=x[n]+§y[n—1]=(z) K (2.124)



Example 2.15

Setting K = 1, we see that the impulse response for
the system considered in this example 1s

h[n] = (l)nu[n] (2.125)

Such systems are commonly referred to as infinite
impulse response (IIR) systems
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

Linear constant-coefficient difference/differential
equations can be represented by block diagram

" A pictorial representation for understanding the
behavior and properties of the system

» Valuable for simulation or implementation of the
system

Here we only focus on first-order system.
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

We begin with the discrete-time case and, 1n
particular, the causal system described by the first-
order difference equation

V[n]+ay[n—1] = bx|n] (2.126)

rewrite this equation in the form that directly suggests
a recursive algorithm for computing successive
values of the output y[#]

V[n] = —ay[n—1]+ bx[n] (2.127)
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

xeln] y[n] =-ay[n-1]+bx{n] (2.127)
x4[n] ‘—'—’é_V X4[n] + xo[N]
(@
x[n] i ax[n]

(b)

Figure 2.27 Basic elements for
the block diagram representation
Xn =——> D [——Xx[n—1] of the causal system described by
eq. (2.126): (a) an adder; (b) multi-
plication by a coefficient; (c) a unit
(©) delay.
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

V[n] = —ay[n—1]+ bx[n] (2.127)

b
x[n]—b-—><+P I—> y[n]
Require a memory element

D k—" and an initial condition
Figure 2.28 Block diagram repre-
—-a I sentation for the causal discrete-time
yln—1] system described by eq. (2.126).

A feedback system
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

Consider next the causal continuous-time system
described by a first-order differential equation:

dfi (tt ) 4 ay(t) = bx(0) (2.128)

rewrite it as

() = —1M+2x(l‘) (2.129)
a dt a
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

Xo(t)

| y(y= -~ D00

y —x(7)
2T O S x,(t)—»@-—» x4(t) + Xo(t) a ! a
A=) 2

S DU S ——
(K

Figure 2.29 One possible set of

dx(t) basic elements for the block diagram
>~ O / Xt)=—— D > 5t representation of the continuous-time
ﬁﬂ"j}}% E,\] f}u&’ﬁ‘ system described by eq. (2.'1 28):

(a) an adder; (b) multiplication by a
(c) coefficient; (c) a differentiator.



2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

y(y= -~ D00

b/a —
1 (0 — a dt a
A

D Figure 2.30 Block diagram
representation for the system in
egs. (2.128) and (2.129), using adders,
—1/a dy(t) multiplications by coefficients, and

< dt differentiators.

x(t)

However, differentiator is difficult to implement
and sensitive to noise and errors.
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

dz (; )+ av(t) = bx(t) (2.128)

An alternative way

d)jT(;) = bx(t)— ay(t) (2.130)

Consequently, we obtain the equation

v = [ [bxte)-arle)bie (2131)

t
X(t) = f — j: X dr Figure 2.31  Pictorial representation
of an integrator.
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

X(t) —> ? > f > y()

Figure 2.32 Block diagram rep-
resentation for the system in eqgs.
(2.128) and (2.131), using adders,
—a multiplications by coefficients, and in-
< tegrators.

An integrator can be implemented using
an operational amplifier.
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2.4.3 Block Diagram Representation of First-Order
Systems Described by Differential and Difference Equations

y0 = [ [bxe)-arlrlbie (2131)

This 1s perhaps more readily seen 1f we consider
integrating eq.(2.130) from a finite point in time t,,,
resulting 1n the expression

y(0) = t9) + [ [ox(c) - vl e (2.132)

Lo

We need initial condition (1.e., y(t,)) to solve for y(t)
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2.6 Summary

Impulse representation for both discrete and
continuous signals

Unit impulse/step response for LTI system

Use convolution sum/integral for output of LTI
system

Properties of convolution
Properties of LTI: memory, causality, etc.

Linear Constant-Coefficient Differential/
Difference Equations: particular/homogenous
solution, auxiliary condition, block diagram, etc.
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