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Logistics
§ Instructor

� Min Sun, Delta(台達館) 962, Tel: 035731058, 
Office hour：Tue. 1:10pm-2:10pm

§ TAs
� 胡展維Chanwei Hu
� Office hour: Mon. 1:30pm-3:00pm

§ Course website
� http://aliensunmin.github.io/teaching/ss2018/index

.html
§ Online discussion, lecture slides, and grading

� http://lms.nthu.edu.tw/course/33168
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Logistics
§ Weekly 

homework
-Out Wed.
-Due next 
Wed. in 
class

§ Bi-weekly 
10-15 
minutes 
quiz in 
class

§ 2 midterms 
and 1 final

3
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5/16/2018

6/20/2018



Logistics
§ Textbook

� Alan V. Oppenheim and Alan S. Willsky, with S. 
Hamid Nawab, Signals and Systems, 2nd Ed., 
Pearson New International Ed., Eurasia Book Co. (
歐亞), 2014 or 東華代理版本 are both fine.

§ Grading
Your final grade will be made up from
� 40% homework assignments
� 30% two midterms
� 30% final
� 5% quizzes
� 5% extra credit 4

Any other question?



Course Overview

§ What is a signal?

“A function that conveys information about the 
behavior or attributes of some phenomenon”.
-Roland Priemer (1991). Introductory Signal Processing

“"signal" includes, among others, audio, video, 
speech, image, communication, geophysical, sonar, 
radar, medical and musical signals.”
-The IEEE Transactions on Signal Processing
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Example of signals

§ A sound signal (1D signal)
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Example of signals：Electrocardiography 
(ECG）

心跳速率、功率速度
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Example of signals：gravitational wave



Example of signals：Image/Visual

§ An image signal (2D signal with RGB channels)
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Example of signals
§ Signals from the web
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Example of signals
§ Signals from the web
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Course Overview

§ What is a system?

The things that interact with signals or process the 
signals.
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Examples of systems: filter
002
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Passive, first order low-pass RC filter
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Examples of systems: communication



Examples of systems: control
002
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Input f, output v
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Examples of systems: system identification
Resonance and pole of a system



Goals

§ Concepts and methods of signals and systems 

§ Analyze and solve problems involving signals and 
systems

§ Applications

§ How to write codes to do the analysis or visualization?
� Python tutorial RSVP (TBA) 

001
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Related Courses

18

EE3510 控制系統
EE4070 數值分析



Back to Signals

24



1.1.1Examples and Mathematical 
Representation

§ Two basic types of signals
� Continuous-time signals (連續時間訊號)

§ The independent variable is continuous, and thus these signals are 
defined for a continuum of values of the independent variable.
連續時間的獨立變數為連續的，所以訊號的定義是在獨立變數
軸(時間軸)上連續的數值

� Discrete-time signals (離散時間訊號)
§ Fore these signals, the independent variable takes on only a discrete 

set of values.
離散時間訊號只定義在離散的時間點上所得的一組離散的數值

003
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1.1.1Examples and Mathematical 
Representation

§ To distinguish between continuous-time and discrete-
time signals, we will use the symbol t to denote the 
continuous-time independent variable and n to denote 
the discrete-time independent variable.
為了有所區別，我們以t代表連續時間的獨立變數，

離散時間的獨立變數為n

004
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1.1.1Examples and Mathematical 
Representation

§ For continuous-time signals we will enclose the 
independent variable in parentheses (．), whereas for 
discrete-time signals we will use brackets[．]
連續時間的訊號以小括號(‧)表示；離散時間的
訊號則以中括號表示[‧] 

004
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1.1.1Examples and Mathematical 
Representation

005

30



1.1.1Examples and Mathematical 
Representation

005
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1.2 Transformations of the Independent 
Variable
§ Elementary signal transformations

� Time shift

� Time reversal

� Time scaling
§ Why?

� introducing several basic properties of signals and 
system.

� defining and characterizing far richer and 
important classes of systems.

007
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1.2.1 Time shift
008
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1.2.1 Time shift

009
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1.2.1 Time reversal
009
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1.2.1 Time reversal

009
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1.2.1 Time scaling

009
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Given the signal x(t) shown in Figure 1.13(a), the signal 
x(t+1) corresponds to an advance by one unit along the t 
axis as illustrated in Figure 1.13(b). 

For example, the value at t =1 is found 
in x(t+1) at t =1-1=0 . Also, since x(t) is zero for t＜0, 
we have x(t+1) zero for t＜-1. Similarly, since x(t) is  
zero for t＞2, x(t+1) is zero for t＞1

010

40

Example 1.1



Let us also consider the signal x(-t+1), which  may be 

obtained by replacing t with –t in x(t+1).  That is, x(-

t+1) is the time reversed version of  x(t+1). Thus, x(-

t+1) may be obtained graphically be reflecting x(t+1) 

about the t axis as shown in Figure 1.13(c)

010
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Example 1.1 Scaling

010

42



Example 1.1

010
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= x(3 / 2(t + 2 / 3))



Example 1.1 Scaling

010
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1.2.2 Periodic Signals

§ A periodic continuous-time signal x(t) has the 
property that there is a positive value of T for which

for all values of t. In other words, a periodic signal 
has the property that it is unchanged by a time shift of 
T. We say that x(t) is periodic with period T.
連續時間週期訊號可表示為在某一個正數T之下，
對任何時間t可得x(t) = x(t+T)。亦即週期訊號在時
間軸上移位T時間其波形均不變。T稱為週期

( ) ( ) (1.11)    Ttxtx +=

011
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1.2.2 Periodic Signals

§ We can readily deduce that if x(t) is periodic with 
period T, then x(t) = x(t+mT) for all t and for any 
integer m. Thus, x(t) is also periodic with period 2T, 
3T, 4T,….The fundamental period T0 of x(t) is the 
smallest positive value of T for which eq. (1.11) 
holds.
若x(t)為週期訊號，其週期為T，則對任何時間t及
任意整數m，x(t) = x(t+mT)。基本週期T0為可使
(1.11)式成立的最小正數T。

012
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1.2.2 Periodic Signals

012

Fundamental period T
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1.2.2 Periodic Signals

§ Periodic signals are defined analogously in discrete 
time. Specifically, a discrete-time signal x[n] is 
periodic with period N, where N is a positive integer, 
if it is unchanged by a time shift of N, i.e., if 

for all values of n.
離散時間週期訊x[n]，其週期為一正整數N，且對
任何時間n之下，可滿足x[n]=x[n+N]。基本週期N0
為可使(1.12)式成立最小正數N。

[ ] [ ] (1.12)       Nnxnx +=

012
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1.2.2 Periodic Signals

012

49



Example 1.4

The signal whose periodicity we wish to check 
is given by 

We know that cos(t+2 π) = cos(t) and sin(t+2 π) = sin(t). 
Thus, considering t ＞0 and t ＜0 separately, we see 
that x(t) does repeat itself over every interval of length 
2 π. 

(1.13)

012
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However, as illustrated in Figure 1.16, x(t) also has 
a discontinuity at the time origin that does not recur at 
any other time. Since every feature in the shape of a 
periodic signal must recur periodically, we conclude 
that the signal x(t) is not periodic.

012
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1.2.3 Even and Odd Signals

In continuous time a signal is even if 

while a discrete-time signal is even if

A signal is referred to as odd if

( ) ( ) (1.14)                      txtx =−

[ ] [ ] (1.15)                nxnx =−

( ) ( )
[ ] [ ] (1.17)        

(1.16)         
nxnx
txtx

−=−

−=−

013
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1.2.3 Even and Odd Signals

013
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1.2.3 Even and Odd Signals

An important fact is that any signal can be broken 
into a sum of two signals:

One is even 

,and one is odd.

x(t) = Ev{x(t)}+Od{x(t)}

014

Ev{x(t)}

Od{x(t)}
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1.2.3 Even and Odd Signals

The even signal can be obtained as

The odd signal can be obtained as

Ev{x(t)} = 1
2
x t( )+ x −t( )"# $%

Od x t( )}{ =
1
2
x t( )− x −t( )"# $%

014
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Check if even

Ev{x(−t)} = 1
2
x −t( )+ x t( )"# $%

=
1
2
x t( )+ x −t( )"# $%= Ev{x(t)}

014

Ev{x(−t)} = Ev{x(t)}

56

Ev{x(t)} = 1
2
x t( )+ x −t( )"# $%



Check if odd

Od{x(−t)} = 1
2
x −t( )− x t( )"# $%

= −
1
2
−x −t( )+ x t( )"# $%= −

1
2
x t( )− x −t( )"# $%

= −Od{x(t)}

014

Od{x(−t)} = −Od{x(t)}
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Od x t( )}{ =
1
2
x t( )− x −t( )"# $%



1.2.3 Even and Odd Signals

Check if 

Ev{x(t)}+Od{x(t)}

=
1
2
x t( )+ x −t( )"# $%+

1
2
x t( )− x −t( )"# $%

=
1
2
x t( )+ x t( )"# $%= x(t)

014

Ev{x(t)}+Od{x(t)} = x(t)
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1.2.3 Even and Odd Signals

014

59



1.2.3 Even and Odd Signals

014
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1.1.2 Signal Energy and Power

§ Sometime the signals we consider are directly related 
to physical quantities capturing power and energy in a 
physical system.

§ If v(t) and i(t) are, respectively, the voltage and 
current across a resistor with resistance R, then the 
instantaneous power is

( ) ( ) ( ) ( ) (1.1)                       1 2 tv
R

titvtp ==

005
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1.1.2 Signal Energy and Power

The total energy expended over the time interval               
is

and the average power over this time interval is 

21 ttt ≤≤

( ) ( )∫ ∫=
2

1

2

1

(1.2)                  1 2t

t

t

t
dttv

R
dttp

( ) ( )∫ ∫−
=

−
2

1

2

1

(1.3)                      111 2

1212

t

t

t

t
dttv

Rtt
dttp

tt

006
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1.1.2 Signal Energy and Power

The total energy over the time interval
in a continuous-time signal x(t) is defined as

where      denotes the magnitude of number x.
Dividing by the duration t2-t1 yields the average 
power over the duration. 

21 ttt ≤≤

( ) (1.4)           
2

2

1

dttx
t

t∫
x

006
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1.1.2 Signal Energy and Power

The total energy in a discrete-time signal x[n] over 
the time interval                 is defined as

and dividing by the number of points in the 
interval,               , yields the average power over the 
interval.

21 nnn ≤≤

[ ] (1.5)          
2

1

2∑
=

n

nn
nx

112 +−nn

006
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1.1.2 Signal Energy and Power

We define the total energy as limits of eqs.(1.4) and 
(1.5) as the time interval increases without bound. In 
continuous time, 

and in discrete time,

( ) ( )∫ ∫−

+∞

∞−∞→
∞ ==

T

TT
dttxdttxE (1.6)          lim 22△

[ ] [ ] (1.7)            lim 22∑ ∑
+

−=

+∞

−∞=
∞→

∞ ==
N

Nn nN
nxnxE

△
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1.1.2 Signal Energy and Power

In an analogous fashion, we can define the time-
averaged power over an infinite interval as

and

( )∫−∞→
∞ =

T

TT
dttx

T
p (1.8)             

2
1lim 2△

[ ] (1.9)            
12

1lim 2∑
+

−=
∞→

∞ +
=

N

NnN
nx

N
p △

007
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1.1.2 Signal Energy and Power

We see from eq.(1.8) that if E∞ is finite

An example of finite-energy signal is a signal that 
takes on the value 1 for               and 0 otherwise. In 
this case, 

(1.10)        0
2

lim == ∞

∞→
∞ T

Ep
T

10 ≤≤ t

.0 and 1 == ∞∞ PE

007
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p∞ = lim
T→∞

1
2T

x t( )  
2
dt  (1.8)

−T

T
∫△

E∞ = limT→∞
x t( )

2
dt(1.6)

−T

T
∫

△



Abstraction: from samples to a signal

§ Lumping all of the (possibly infinite) samples into a 
single object —the signal — simplifies its 
manipulation.

§ This lumping is an abstraction that is analogous to
� representing coordinates in three-space as points
� representing lists of numbers as vectors in linear 

algebra
� creating an object in Python
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1.3.1 Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ The continuous-time complex exponential signal is of 
the form

where C and a are, in general, complex numbers.

( ) (1.20)            atCetx =

015
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ Real Exponential Signals

If C and a are real [ in which case x(t) is called a real 
exponential]

� If a is positive, then as t increase |x(t)| is a growing 
exponential

� If a is negative, then |x(t)| is a decaying 
exponential

� a=0, x(t) is constant

015
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( ) (1.20)            atCetx =



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

015

72



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ Periodic Complex Exponential:
A second important class of complex exponential is 
obtained by constraining a=jw0 to be purely 
imaginary.

( ) (1.21)               0tωjetx =

016
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

Property: it is periodic

it follows that for periodicity, we must have

( )
(1.22)               00 Ttωjtωj ee +=

( ) TωjtωjTtωj eee 000 =+

(1.23)             10 =Tωje

016

74



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ If            , then x(t) = 1, which is periodic for any 
value of T. If           , then the fundamental period T0
of x(t) is

Thus, the signals         and            have the same 
fundamental period.

00 =ω
00 ≠ω

(1.24)               2

0
0 ω

πT =

tωje 0 tωje 0−

016

75

(1.23)             10 =Tωje



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

A signal closely related to the periodic complex 
exponential is the sinusoidal signal

with seconds as the units of t, the units of φ and      
are radians and radians per second. It is also common 
to write                , where f0 has the units of cycles per 
second, or hertz (Hz).

( ) ( ) (1.25)          cos 0 φtωAtx +=

0ω

00  2 fπω =

016
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

016
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

By using Euler’s relation, the complex exponential in 
eq.(1.21) can be written in terms of sinusoidal 
signals, again with the same fundamental period:

(1.26)          sin cos 00
0 tωjtωe tωj +=

017
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( ) ( ) (1.25)          cos 0 φtωAtx +=



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

the sinusoidal signal of eq. (1.25) can be written in 
terms of periodic complex exponentials

( ) (1.27)              
22

cos 00
0

tωjφjtωjφj eeAeeAφtωA −−+=+

017
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( ) ( ) (1.25)          cos 0 φtωAtx +=



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

we can express a sinusoid in terms of a complex 
exponential signal as

where, if c is a complex number,          denotes its real 
part. We will also use the notation           for the 
imaginary part of c, so that, for example,

( ) ( )}{ (1.28)                cos 0
0

φtωjeeAφtωA +=+ R

{ }ceR
{ }cJm

( ) ( ){ } (1.29)             sin 0
0

φtωjeAφtωA +=+ Jm

017

80



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ We see that the fundamental period T0 of a 
continuous-time sinusoidal signal or a periodic 
complex exponential is inversely proportional to        , 
which we will refer to as the fundamental frequency.

§ . We mentioned earlier, x(t) is constant and 
therefore is periodic with period T for any positive 
value of T.

0ω

00 =ω

017
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(1.24)               2

0
0 ω

πT =



1.3.1 Check Yourself

018

T1 < T2
ω1 ?ω2
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

(1.30)                  1          0

0
0

0 0

0

2

period

∫

∫
=⋅=

=

T

T tωj

Tdt

dteE

(1.31)              11
period

0
period == E

T
P

017
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

It has infinite energy:

It has infinite average power equal to 

P∞ = lim
T→∞

1
2T

e jω0t
2
dt =1             (1.32)

−T

T
∫

019

E∞ = lim
T→∞

e jω0t
2
dt = lim

T→∞
2T =∞             

−T

T
∫
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

a necessary condition for a complex exponential       
to be periodic with period T0 is that

which implies that         is a multiple of 2π,i.e.,

if we define

tωje

(1.33)               10 =Tωje
0Tω

(1.34)         ,....2,1,0          ,20 ±±== kkπTω

(1.35)            2

0
0 T

πω =

019
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ω =ω0k



1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

Harmonically related set of complex exponentials is 
a set of periodic exponentials with fundamental 
frequencies that are all multiples of a single positive 
frequency       :0ω

( ) (1.36)               ,....2,1,0           ,0 ±±== ketφ tωjk
k

019
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

For                   is a constant, 
while for any other of                     

is periodic with 
fundamental frequency         
and fundamental period

( )tφk k ,0=

( )tφk k ,

0ωk

(1.37)                     2 0

0 k
T

ωk
π

=

019
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( ) (1.36)               ,....2,1,0           ,0 ±±== ketφ tωjk
k

They can be 
superimposed into 
a rich set of period 

signals (see Chap. 3)



Announcement

§ 1st quiz on March 2, 2016
� 15 minutes
� Related to Chapter 1
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

§ General Complex Exponential Signals

Using Euler’s relation, we can expand this further as

θjeCC =

0ωjra +=

( ) ( )
(1.42)               00 θtωjrttωjrθjat eeCeeCCe ++ ==

( ) ( ) (1.43)            sincos 00 θtωeCjθtωeCCe rtrtat +++=

020
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1.3.1Continuous-Time Complex Exponential 
and Sinusoidal Signals

021
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1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

As in continuous time, an important signal in discrete 
time is the complex exponential signal or sequence, 
defined by 

Where C and α are, in general, complex numbers. This 
could alternatively be expressed in the form

Where 

[ ] (1.44)              nαCnx =

[ ] (1.45)                nβCenx =

βeα =

021
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x t( ) =Ceat (1.20)



1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals
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1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

023

98



1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

§ Sinusoidal-related complex exponential

As in the continuous-time case, this signal is closely 
related to the sinusoidal signal

[ ] (1.46)               0nωjenx =

[ ] ( ) (1.47)               cos 0 φnωAnx +=

022
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[ ] (1.45)                nβCenx =



1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

As before, Euler’s relation allows us to relate 
complex exponentials and sinusoids:

and

(1.48)           sincos 00
0 nωjnωe nωj +=

( ) (1.49)        
22

cos 00
0

nωjφjnωjφj eeAeeAφnωA −−+=+

022
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Are they periodic?



1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

024
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1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

024
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1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

§ General Complex Exponential Signals

θjeCC =

0ωjeαα =

( ) ( ) (1.50)      0sin0cos θnω
n
αCjθnω

n
αCnαC +++=

025
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1.3.2 Discrete-Time Complex 
Exponential and Sinusoidal Signals

025

( ) ( ) (1.50)      0sin0cos θnω
n
αCjθnω

n
αCnαC +++=

α ?1

α ?1
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

§ Recall in Sec. 1.3.1, we identified the two properties 

of its continuous-time counterpart           :

1. The larger the magnitude of       , the higher is the 

rate of oscillation in the signal

2. is periodic for any value of       .

0ω

0ωtωje 0

026

tωje 0
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

§ The first difference:

We see that the exponential at frequency               is 
the same as that at frequency      .
§ Distinct Discrete-time Complex Exponentials

Any interval of length 2 π will do, on most occasions 
we will use the interval                  or the interval

( )
(1.51)           000 22 nωjnωjnπjnπωj eeee ==+

πω 20 +

0ω

πω 20 0 ≤≤ πωπ ≤≤− 0

026
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

( ) ( ) (1.52)            1 nnπjnπj ee −==

πω 20 0 ≤≤
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

§ The second difference:
In order for the signal          to be periodic with 
period N＞0, we must have

Or equivalently,

nωje 0

( )
(1.53)                00 nωjNnωj ee =+

)54.1(          10 =Nωje

026
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

must be a multiple of 2π. That is, there must be 
integer m such that

or equivalently, 

Nω0

(1.55)            20 mπNω =

(1.56)            
2

0

N
m

π
ω

=

026

must be a rational number
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Periodic

024

110

(1.56)            
2

0

N
m

π
ω

=



Aperiodic (not periodic)

024
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(1.56)            
2

0

N
m

π
ω

=



1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

We find that the fundamental frequency of the periodic 
signal         is

Note that the fundamental period can also be written as

nωje 0

2π
N

=
ω0

m
             (1.57)

(1.58)             2

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ω
πmN

028

*assumes N and m has no factor in common 
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

028
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Example 1.6
Suppose that we wish to determine the fundamental 
period of the discrete-time signal

Sketch:
1. Find each terms N; 2 compute least common multiple

[ ] ( ) ( )
(1.59)                 4/33/2 nπjnπj eenx +=

029
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(1.58)             2

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ω
πmN



1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

[ ] ( )
(1.60)          ,....1,0          ,/2 ±== kenφ nNπjk

k

[ ] ( )( )

( ) [ ] (1.61)                          2/2

/2

nφee
enφ

k
nπjnNπjk

nNπNkj
Nk

==

= +
+

[ ] [ ] [ ] [ ] ( )
(1.62)      ,...,,,1

/12
1

/4
2

/2
10

NnNπj
N

NnπjNnπj enφenφenφnφ
−

− ====

029

• Harmonically related complex exponential

118



1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

One of the simplest discrete-time signals is the unit 
impulse, which is defined as

[ ] (1.63)               0     ,0
0     ,1⎩⎨

⎧ ≠
=

= n
nnδ

030
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1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

A second basic discrete-time signal is the discrete-time 
unit step, denoted by u[n] and defined by

[ ] (1.64)               0        ,0
0     ,1⎩⎨

⎧
≥

= n
nnu ＜

030
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How are they related?



1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

In particular, the discrete-time unit impulse is the first 
difference of the discrete-time step

Conversely, the discrete-time unit step is the running 
sum of the unit sample. That is, 

[ ] [ ] [ ] (1.65)                1−−= nununδ

[ ] [ ]∑
−∞=

=
n

m
mδnu (1.66)               

031

123



1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

031
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[ ] [ ]∑
−∞=

=
n

m
mδnu (1.66)               



1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

We find that the discrete-time unit step can also be 
written in terms of the unit sample as

Or equivalently,

u n[ ] = δ n− k[ ]
k=∞

0

∑

u n[ ] = δ n− k[ ]
k=0

∞

∑                (1.67)

031

u n[ ] = δ m[ ]
m=−∞

n

∑
m = n− k
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1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

032
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u n[ ] = δ n− k[ ]
k=0

∞

∑                (1.67)



1.4.1 The Discrete-Time Unit Impulse 
and Unit Step Sequences

Sampling	property:
In particular, since        is nonzero only for n = 0, it 
follows that

More generally, if we consider a unit impulse               
at            , then 

[ ]nδ

[ ] [ ] [ ] [ ] (1.68)           0 nδxnδnx =

[ ]0nnδ −
0nn =

[ ] [ ] [ ] [ ] (1.69)             000 nnδnxnnδnx −=−
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

The continuous-time unit step function u(t) is defined in 
a manner similar to its discrete-time counterpart. 
Specifically,

( ) (1.70)                 0         ,0
0         ,1⎩⎨

⎧= t
ttu
＜

＞
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Discontinuity, u(0) is undefined!

[ ] [ ] ?)(),(t, tunun δδ ⇒



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

033
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[ ] [ ]∑
−∞=

=
n

m
mδnu (1.66)               )71.1()()( ττδ

τ

dtu
t

∫
−∞=

=

( ) (1.70)                 0         ,0
0         ,1⎩⎨

⎧= t
ttu
＜

＞



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

033
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u t( ) = lim
Δ→0

uΔ t( )             (1.74)

[ ] [ ]∑
−∞=

=
n

m
mδnu (1.66)               )71.1()()( ττδ

τ

dtu
t

∫
−∞=

=



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

In particular, it follows from eq.(1.71) that the 
continuous-time unit impulse can be thought of as the 
first derivative of the continuous-time step:

( ) ( )
(1.72)              

dt
tdutδ =

( ) ( )
(1.73)                 

dt
tdutδ =△

△

033
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−∞=

=
n

m
mδnu (1.66)               )71.1()()( ττδ

τ

dtu
t

∫
−∞=

=



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

033
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Area = 1 = (1/Δ)*Δ

( ) ( )
(1.73)                 

dt
tdutδ =△

△



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

Note that δ∆(t) is a short 
pulse, of duration ∆ and 
with unit area for any value 
of ∆. As ∆ →0, δ∆(t) 
becomes narrower and 
higher, maintaining its 
unit area. 

Its limiting form,

( ) ( ) (1.74)            lim Δ0Δ
tδtδ

→
=

034
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

034

Area:
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

The continuous-time 
unit step is also the 
running integral of the 
unit impulse.

u t( ) = δ τ( )
−∞

t
∫ dτ   (1.71)

032
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( ) ( )
(1.72)              

dt
tdutδ =



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

Changing the variable of integration from τ to σ = t – τ:

Or equivalently,

( ) ( ) ( )( )σdσtδτdτδtu
t

−−== ∫∫ ∞∞−

0

( ) ( ) (1.75)                
0

σdσtδtu ∫
∞

−=

034
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

035
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u t( ) = δ t −σ( )
0

∞

∫ dσ  (1.75)



1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

Sampling property:
For ∆ sufficiently small so that x(t) is approximately 
constant over this interval,

Since δ(t) is the limit as ∆→0 of δ∆(t), it follows that

( ) ( ) ( ) ( )tδxtδtx ΔΔ 0≈

( ) ( ) ( ) ( ) (1.76)              0 tδxtδtx =

035
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1.4.2 The Continuous-Time Unit Step 
and Unit Impulse Functions

By the same argument, we have an analogous 
expression for an impulse concentrated at an arbitrary 
point, say, t0. That is, 

( ) ( ) ( ) ( )000 ttδtxttδtx −=−

035
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Example 1.7

Consider the discontinuous signal x(t) depicted in 
Figure 1.40(a). Because of the relationship between the 
continuous-time unit impulse and unit step, we can 
readily calculate and graph the derivative of this signal.
Specifically, the derivative of x(t) is clearly 0, except at 
the discontinuities. 
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In the case of the unit step, we have seen [eq.(1.72)] that 
differentiation gives rise to a unit impulse located at the 
point of discontinuity. Furthermore, by multiplying both 
sides of eq.(1.72) by any number k, we see that the 
derivative of a unit step with a discontinuity of size k gives 
rise to an impulse of area k at the point of discontinuity.

( ) ( )
(1.72)              

dt
tdutδ =

Example 1.7

kδ t( ) =
dku t( )
dt

 =k
du t( )
dt
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This rule also holds for any other signal with a jump 
discontinuity, such as x(t) in Figure 1.40(a). Consequently, 
we can sketch its derivative x(t), as in Figure 1.40(b), where 
an impulse is placed at each discontinuity of x(t), with area 
equal to the size of the discontinuity. 

Example 1.7

144



Example 1.7
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1.5 Continuous-Time and Discrete-Time 
System
§ In signal processing and communications to 

electromechanical motors, automotive vehicles, and 
chemical-processing plants, and many more, a system 
can be viewed as a process in which input signals are 
transformed by the system or cause the system to 
respond, resulting in other signals as outputs.
� Verbal description: blah blah blah…
� Math description: equations
� Graphical description: block diagram

038
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1.5 Continuous-Time and Discrete-Time 
System

§ A continuous-time system is a system in which 
continuous-time input signals are applied and result in 
continuous-time output signals.

§ We will often represent the input-output relation of a 
continuous-time system by the notation.

( ) ( ) )78.1(                     tytx →

038
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1.5 Continuous-Time and Discrete-Time 
System

§ A discrete-time system – that is, a system that 
transforms discrete-time inputs into discrete-time 
output – will be depicted as in Figure 1.41(b) and will 
sometimes by represented symbolically as

[ ] [ ] (1.79)                 nynx →

039
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Example 1.8

We can use Ohm’s law to establish the relation between 
i(t) and vs(t)-vc(t)

039

i t( ) =
vs t( )− vc t( )

R
       (1.80)
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Example 1.8

We can relate i(t) to the rate of change with time of the 
voltage across the capacitor:

i t( ) =C
dvc t( )
dt

               (1.81)

039
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Example 1.8

Equating the right-hand sides of eq.(1.80) and (1.81), 
we obtain a differential equation describing the 
relationship between the input       and the output        :( )tvs ( )tvc

039

( ) ( ) ( ) (1.82)         11 tv
RC

tv
RCdt

tdv
sc

c =+
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i t( ) =
vs t( )− vc t( )

R
  (1.80) i t( ) =C

dvc t( )
dt

  (1.81)



1.5 Continuous-Time and Discrete-Time 
System

§ First-order linear differential equation (one class of 
system)

Where x(t) is the input, y(t) is the output, and a and b
are constants.

Example 1.9 also has 
the same form.

( ) ( ) ( ) (1.85)            tbxtay
dt
tdy

=+

040
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( ) ( ) ( ) (1.82)         11 tv
RC

tv
RCdt

tdv
sc

c =+



1.5 Continuous-Time and Discrete-Time 
System

§ Identifying classes of systems that have two 
important characteristics:
1. The systems in this class have properties and 

structures that we can exploit to gain insight into 
their behavior and to develop effective tools for 
their analysis.

2. Many systems of practical importance can be 
accurately modeled using systems in this class.
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1.5.2 Interconnections of Systems
From small system to big system

§ A series or cascade interconnection 

� Diagrams such as this are referred to as block 
diagrams. Here, the output of System 1 is the input 
to System 2, and the overall system transforms an 
input by processing it first by System 1 and then 
by System 2.
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1.5.2 Interconnections of Systems

§ A parallel interconnection 

� The same input signal is applied to System 1 and 

2. The output of the parallel interconnection is the 

sum of the outputs of System 1 and 2.

042
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1.5.2 Interconnections of Systems

§ Feedback interconnection

� The output of System 1 is the input to System 2, 
while the output of System 2 is fed back and added 
to the external input to produce the actual input to 
System 1.

043
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1.5.2 Interconnections of Systems
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1.6.1 System properties: 
Systems With and Without Memory

§ A system is said to be memoryless if its output for 
each value of the independent variable at a given time 
is dependent on the input at only that same time.

無記憶系統為系統的輸出只與當時的輸入值有關

[ ] [ ] [ ]( ) (1.90)               2 22 nxnxny −=
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1.6.1 Systems With and Without 
Memory

A resistor is a memoryless system; with the input x(t)
taken as the current and with the voltage taken as the 
output y(t), the input-output relationship of a resistor is

Where R is the resistance.

( ) ( ) (1.91)                tRxty =
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1.6.1 Systems With and Without 
Memory

An example of discrete-time system with memory is an 
accumulator or summer

and a second example is a delay

[ ] [ ] (1.92)               ∑
−∞=

=
n

k
kxny

044
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[ ] [ ] (1.93)               1−= nxny



1.6.1 Systems With and Without 
Memory

§ The relationship between the input and output of an 
accumulator can be described as

or equivalently,

[ ] [ ] [ ] (1.95)           
1

∑
−

−∞=

+=
n

k
nxkxny

y n[ ] = y n−1[ ]+ x n[ ]     (1.96)

045
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[ ] [ ] (1.92)               ∑
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=
n

k
kxny



1.6.1 Systems With and Without 
Memory

A capacitor is an example of a continuous-time system 
with memory, since if the input is taken to be the 
current and the output is the voltage, then 

where C is the capacitance.

( ) ( ) (1.94)              1 τdτx
C

ty
t

∫ ∞−=
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1.6.2 Invertibility and Inverse System

§ An example of an invertible continuous-time system 
is

for which the inverse system is
( ) ( ) (1.97)               2 txty =

( ) ( ) (1.98)                
2
1 tytw =

045
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1.6.2 Invertibility and Inverse System

The inverse system of 

is

[ ] [ ] [ ] (1.99)            1−−= nynynw

045

y[n]= x[k]
k=−∞

n

∑
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[ ] [ ] [ ] (1.96)                1 nxnyny +−=



1.6.2 Invertibility and Inverse System

Examples of noninvertible systems are

That is, the system that produces the zero output 
sequence for any input sequence, and

If y(t)=1, who knows x(t)=1 or -1?

[ ] (1.100)               0=ny

( ) ( ) (1.101)                2 txty =

046
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1.6.3 Causality

§ A system is causal if the output at any time depends 

on values of the input at only the present and past

times.

若一系統的輸出只與當時和過去的輸入有關，則

稱為「因果系統」
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1.6.3 Causal system

047

[ ] [ ] (1.92)               ∑
−∞=

=
n

k
kxny

[ ] [ ] (1.93)               1−= nxny

( ) ( ) (1.94)              1 τdτx
C

ty
t

∫ ∞−=
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1.6.3 None causal system

[ ] [ ] [ ] (1.102)                 1+−= nxnxny

( ) ( ) (1.103)            1+= txty

[ ] [ ]∑
+

−=

−
+

=
M

Mk
knx

M
ny (1.104)               

12
1
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Example 1.12

The first system is defined by

In particular, for n＜0, e.g.n = -4, we see that 
y[-4] = x[4], so that the output at this time depends on a 
future value of the input.

[ ] [ ] (1.105)              nxny −=

047
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Example 1.12

In this system, the output at any time t equals the input 
at that same multiplied by a number that varies with 
time.

Where g(t) is a time-varying function, namely 
g(t) = cos(t+1).

( ) ( ) ( )tgtxty =

048

( ) ( ) ( ) (1.106)                   1cos += ttxty
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1.6.4 Stability

§ The preceding examples provide us with an intuitive 
understanding of the concept of stability. More 
formally, if the input to a stable system is bounded, 
then the output must also be bounded and therefore 
cannot diverge. Bounded Input, Bounded Output 
(BIBO)

「穩定性」的定義為當一個穩定系統的輸入為有

界時，其輸出亦必為有界(不發散)
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1.6.4 Stability

Example:

If x[k] is u[k]

y[n] grows without bound while u[n] is a bounded input

[ ] [ ] ( ) [ ]∑
−∞=

+==
n

k
nunkuny 1
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[ ] [ ] (1.92)               ∑
−∞=

=
n

k
kxny
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Example 1.13

( ) ( ) (1.109)             1 ttxtyS =：

For system S1 in eq.(1.109), a constant input x(t) = 1 
yields y(t) = t, which is unbounded, since no matter 
what finite constant we pick, │y(t)│will exceed that
constant for some T. We conclude that system S1 is
unstable.
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Example 1.13

For system S2, which happens to be stable, we would be
unable to find a bounded input that results in an
unbounded output. Specifically, let B be an arbitrary
positive number, and let x(t) be an arbitrary signal
bounded by B; that is, we are making no assumption
about x(t), except that

│x(t)│＜B (1.111)

-B＜x(t) ＜B,                  (1.112)

050

( ) ( )
(1.110)                  2

txetyS =：
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Example 1.13

For all t. Using the definition of S2 in eq. (1.110), we 
then see that if x(t) satisfies eq.(1.111), then y(t) must 
satisfy

We conclude that if any input to S2 is bounded by an 
arbitrary positive number B, the corresponding output is 
guaranteed to be bounded by eB. Thus, S2 is stable.

( ) (1.113)                       BB etye− ＜＜
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1.6.5 Time Invariance

§ [Concept] a system is time invariant if the behavior 
and characteristics of the system are fixed over time.
若系統的表現和特性在時間上是固定不變的，則
稱為「非時變系統」

§ [Signal & system] a system is time invariant if a time 
shift in the input signal results in an identical time 
shift in the output signal
若系統的輸入訊號有時間移位時，其輸出訊號亦
有相同的時間移位，則系統為非時變
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1.6.5 Time Invariance

§ If y[n] is the output of a discrete-time, time-invariant 

system when x[n] is the input, then y[n-n0] is the 

output when x[n-n0] is applied. In continuous time 

with y(t) the output corresponding to the input x(t), a 

time-invariant system will have y(t-t0) as the output 

when x(t-t0) is the input.
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Example 1.14

let x1(t) be an arbitrary input to this system , and let

Be the corresponding output. Then consider a second 
input obtained by shifting x1(t) in time:

( ) ( )[ ] (1.114)                 sin txty =

( ) ( )[ ] (1.115)                  sin 11 txty =

( ) ( ) (1.116)                         012 ttxtx −=
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Example 1.14

The output corresponding to this input is

Similarly, from eq.(1.115) 

Comparing eqs. (1.117) and (1.118), we see that
, and therefore, this system is time 

invariant

( ) ( )[ ] ( )[ ] (1.117)                sinsin 0122 ttxtxty −==

( ) ( )[ ] (1.118)                    sin 0101 ttxtty −=−

( ) ( )012 ttyty −=
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( ) ( )[ ] (1.115)                  sin 11 txty =



Example 1.16

052

y t( ) = x 2t( )
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Example 1.16

052

≠
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1.6.6 Linearity

§ A linear system, in continuous time or discrete time, 

is a system that possesses the important property of 

superposition: If an input consists of the weighted 

sum of several signals, then the output is the 

superposition – that is, the weighted sum – of the 

responses of the system to each of those signals.
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1.6.6 Linearity

§ The system is linear if
1. (Additivity) The response to 
2. (Homogeneity) The response to                        , 

where a is any complex constant.
§ The two properties defining a linear system can be 

combined into a single statement;

( ) ( ) ( ) ( ). is 2121 tytytxtx ++

( ) ( )taytax 11  is 

( ) ( ) ( ) ( ) (1.121)              : timecontinous 2121 tbytaytbxtax +→+

[ ] [ ] [ ] [ ] (1.122)            : timediscrete 2121 nbynaynbxnax +→+
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1.6.6 Linearity

Is

if x[n]→y[n], then the homogeneity property tells us
that

[ ] [ ] [ ] [ ] [ ]∑ +++==
k

kk nxanxanxanxanx (1.123)       ...332211

[ ] [ ] [ ] [ ] [ ]∑ +++==
k

kk nyanyanyanyany (1.124)       ...332211

[ ] [ ] (1.125)                    0000 =⋅→⋅= nynx
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Example 1.17

Consider a system S whose input x(t) and output y(t) are
related by

To determine whether or not S is linear, we consider
two arbitrary inputs x1(t) and x2(t).

( ) ( )ttxty =

( ) ( ) ( )
( ) ( ) ( )ttxtytx

ttxtytx

222

111

=→

=→
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Example 1.17

Let x3(t) be a linear combination of x1(t) and x2(t).
That is

Where a and b are arbitrary scalars. If x3(t) is the input
to S, then the corresponding output may be expressed as

So S is linear.

( ) ( ) ( )tbxtaxtx 213 +=

( ) ( )
( ) ( )( )
( ) ( )
( ) ( )tbytay

tbtxtatx
tbxtaxt

ttxty

21

21

21

33

        
        
        

+=

+=

+=

=
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1.7 Summary

§ Signal:

� Notation	of	continuous	and	discrete	signals

� Transformation

� Periodic	signal

� Even	and	odd	signal

� Energy	and	power

� Complex	exponential	&	sinusoidal	signals

� Unit	and	step	functions
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1.7 Summary

§ System:

� Block	diagram	of	system

� Interconnection	of	systems

� Feed-forward	and	Feed-back

� Memory	&	memoryless

� Invertibility	and	inverse	systems

� Causality

� Stability

� Time	invariant

� Linearity
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