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Logistics
= [nstructor

o Min Sun, Delta(& #EEE) 962, Tel: 035731058,
Office hour: Tue. 1:10pm-2:10pm

= TAs

o PAEH Chanwei Hu

o Office hour: Mon. 1:30pm-3:00pm
= Course website

o http://aliensunmin.github.10/teaching/ss2018/index
html

* Online discussion, lecture slides, and grading
o http://lms.nthu.edu.tw/course/33168
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Logistics
= Textbook

o Alan V. Oppenheim and Alan S. Willsky, with S.
Hamid Nawab, Signals and Systems, 2nd Ed.,
Pearson New International Ed., Eurasia Book Co. (

[ERER), 2014 or RERERRA are both fine.
= Grading

Y our final grade will be made up from

o 40% homework assignments

o 30% two midterms

o 30% final

o 5% quizzes Any other question?
o 5% extra credit



Course Overview

* What is a signal?

“A function that conveys information about the

behavior or attributes of some phenomenon™.
-Roland Priemer (1991). Introductory Signal Processing

cent

signal" includes, among others, audio, video,
speech, image, communication, geophysical, sonar,
radar, medical and musical signals.”

-The IEEE Transactions on Signal Processing



Example of signals

= A sound signal (1D signal) «:

Ah vowel sound
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Example of signals:Electrocardiography

i DBRER - iR

Q mx
Q. nEme
FOMEI05E

— - "
s X9 .
X 50 T1w0 =T 2 00 N 00 S
3 H b - & €
= 0 :5 50 s 0 :’ S0 3 e
e 3. %,
. -
50 0 hd 0 n
0
's of ol oy




Example of signals:gravitational wave
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Example of signals:Iimage/Visual

" An image signal (2D signal with RGB channels)

RGB color



Example of signals

= Signals from the web

Justin Bieber Miley Cyrus e

Singer-songwriter Singer-songwriter
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Example of signals

= Signals from the web
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Course Overview

* What is a system?

The things that interact with signals or process the
signals.
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Examples of systems: filter

Passive,first order low-pass RC filter

Figure 1.1 A simple RC circuit with source
voltage vs; and capacitor voltage v..
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Examples of systems: communication

>>>> sound out

sound i >>>>

sound| cell | E/M optic E/M | cell |sound
—_ » | tower— » |[tower > >
in |phone fiber phone| out
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Examples of systems: control
Input f, output v

6"

D pVv

Figure 1.2 An automobile responding to an
applied force f from the engine and to a re-
tarding frictional force pv proportional to the
automobile’s velocity v.
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Examples of systems: system identification

Resonance and pole of a system
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Goals

* Concepts and methods of signals and systems

* Analyze and solve problems involving signals and

systems
» Applications

= How to write codes to do the analysis or visualization?

o Python tutorial RSVP (TBA)
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Back to Signals
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1.1.1Examples and Mathematical
Representation

" Two basic types of signals
o Continuous-time signals (3£ 4& B fa] 2L5%)

* The independent variable is continuous, and thus these signals are
defined for a continuum of values of the independent variable.

BAERRB LG B AR FRUGIIE T S A S B
B (B Rl ) b 38 45 e B0 ME

o Discrete-time signals (&4 85 ] 3L5%)
= Fore these signals, the independent variable takes on only a discrete
set of values.

B BT A RS8R R AL BE ALY B R BE L ATAT &) — s Ry BE
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1.1.1Examples and Mathematical
Representation

* To distinguish between continuous-time and discrete-
time signals, we will use the symbol 7 to denote the
continuous-time mdependent variable and z to denote

the discrete-time independent variable.

BTHEAER » RAFIAHK R L 0T 6915 S8 3
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1.1.1Examples and Mathematical
Representation

» For continuous-time signals we will enclose the
independent variable in parentheses ( - ), whereas for
discrete-time signals we will use brackets| - ]

i 4F B Fa] @ 3RIR LU NS SR( - )RR o BE LA R Y
IR A BA P35I RO ]
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1.1.1Examples and Mathematical
Representation

30



1.1.1Examples and Mathematical
Representation

x[n]

x[0]

x[—1]} x[1]

;Tflii SIREEE

Figure 1.7 Graphical representations of (a) continuous-time and (b) discrete-
time signals.

~ -9
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1.2 Transformations of the Independent
Variable

* Elementary signal transformations

o Time shift
o Time reversal

o Time scaling
" Why?
o Introducing several basic properties of signals and
system.

o defining and characterizing far richer and

important classes of systems.
33



1.2.1 Time shift

x[n]

29990

1l

b,

x[n—ng)

51111118'

ovpo0
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Bl 1.8 A &8 1] SR IE 6% B M A5 4L o
Figure 1.8 Discrete-time signals
related by a time shift. In this figure
ny > 0, so that x[n — ny] is a delayed
verson of x[n] (i.e., each point in x[n]
occurs later in x[n — m]).
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1.2.1 Time shift

x(t)

NN

X(t‘to)

/\/\¥

l

to t
Figure 1.9 Continuous-time signals related
by a time shift. In this figure §, < 0, so that
x(t — 1) is an advanced version of x(1) (i.e.,
each point in x(f) occurs at an earlier time in

x(t = k)).

36



1.2.1 Time reversal

x[n]
S
70
|
111 0 n

(@)

x[—n]
11

0

“bm,rmm -

(b

Figure 1.10 (a) A discrete-time signal x[n]; (b) its reflec-
tion x[—n] about n = 0.



1.2.1 Time reversal

x(t)

__/

° %

(a)

x(—1)

\ = K

N\ °

Figure 1.11 (a) A continuous-time signal x(t); (b) its
reflection x(—t) about t = 0.

(b)

38



1.2.1 Time scaling

x(t)

Figure 1.12 Continuous-time signals
related by time scaling.
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Example 1.1

t

|
|
|
|
1

2
Given the signal x(¢) shown 1n Figure 1.13(a), the signal

x(t+1) corresponds to an advance by one unit along the t

axi1s as 1llustrated in Figure 1.13(b).
1| x(t+1)

N

—1 0 1 2
For example, the value at # =1 1s found

in x(¢+1) at t=1-1=0 . Also, since x(?) 1s zero for ¢ <0,
we have x(#+1) zero for ¢+ <-1. Similarly, since x(?) 1s
zero for ¢t >2, x(¢+1) 1s zero for ¢ > 1

40



—1 0 1 2
Let us also consider the signal x(-#+1), which may be

obtained by replacing ¢ with — m x(#+1). That 1s, x(-
t+1) 1s the time reversed version of x(z+1). Thus, x(-
t+1) may be obtained graphically be reflecting x(z+1)
about the t axis as shown in Figure 1.13(c)

1| x(~t+1)
_/_l___ t

—1 0 1 41




Example 1.1 Scaling

X (t)

0 2/3

4/3
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Example 1.1

X(3 1)
0 5/3 4/3
(d)
x(3t+1) =x(3/2(t+2/3))
0 2/3

—2/3
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E X

X(t+1)

x(§t+1)

—2/3

0

2/3
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1.2.2 Periodic Signals

" A periodic continuous-time signal x(¢) has the
property that there 1s a positive value of 7 for which

x(t)= x(t+T) (1.11)

for all values of t. In other words, a periodic signal
has the property that 1t 1s unchanged by a time shift of
1. We say that x(?) 1s periodic with period T.

AR BRSO AL R —EEBTZT
HHE AT B B 97 45x0(F) = x(t+T) © 75 Bp 38 A 258 £ 05
el ey b A% A% TOF R HL IR 3 R4 - TH% A B A
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1.2.2 Periodic Signals

" We can readily deduce that 1f x(t) 1s periodic with
period 7, then x(?) = x(t+mT) for all t and for any

Integer m.

Thus, x(t) 1s also periodic with period 27,

The fundamental period 7, of x(7) 1s the

smallest positive value of 7 for which eq. (1.11)

holds.

Ex(t) B BEAE 0 KB AT > R $AEAT 8 R LA
{2 Z Xm0 x(t)=x(t+mT) ° FKANEEAT, 57T &
(1.11) R A 38 3N BT o
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1.2.2 Periodic Signals

x(t)

/\ /1\ / /:\ /1\ Figure 1.14 A continuous-time
-T 0

-2T T 2T t  periodic signal.

Fundamental period T
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1.2.2 Periodic Signals

» Periodic signals are defined analogously in discrete
time. Specifically, a discrete-time signal x[7] 1s
periodic with period N, where N 1s a positive integer,
if 1t 1s unchanged by a time shift of V, 1.¢e., 1f

x[n]=x[n+N] (1.12)
for all values of n.
BE BT Fa] B HA S [n] 0 BLBE A — B RN BH
FEATEF RN F > T 3% Bx[n]=x[n+N] ° RARBHN,
B T A8 (1.12) X AR AL )N IEEN e
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1.2.2 Periodic Signals

x[n]

L
[ ]

l l N riodic signal with fundamental period
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Example 1.4

The signal whose periodicity we wish to check
1s given by

| cos(r) ifr<O
) = { sin(f) ift = 0 (1.13)

We know that cos(#+2 7) = cos(¢) and sm(#+2 ) = sin(z).
Thus, consideringt >0 and t <0 separately, we see

that x(7) does repeat itself over every interval of length
2 T

50



| cos(r) ifr<O
) = { sin(r) if 1 = 0 (1.13)

X(t)
| ] | I
—61TT — 417 21T 0 27T 417 om t

However, as illustrated in Figure 1.16, x(#) also has

a discontinuity at the time origin that does not recur at
any other time. Since every feature in the shape of a
periodic signal must recur periodically, we conclude

that the signal x(#) 1s not periodic.
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1.2.3 Even and Odd Signals

In continuous time a signal i1s even 1f

x(—t)=x(t) (1.14)
while a discrete-time signal 1s even 1f
x[— n]=x[n] (1.15)

A signal 1s referred to as odd if

x(-1)==x(¢)  (1.16)
x[— n]= —x[n] (1.17)

52



1.2.3

Even and Odd Signals

x(t)

t
Figure 1.17 (a) An even con-
o) tinuous-time signal; (b) an odd

continuous-time signal.
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1.2.3 Even and Odd Signals

An important fact 1s that any signal can be broken
into a sum of two signals:

x(t)=Ev{x(t)}+0d{x(t)}
One is even EV{X(t)}
.and one is odd. Od{X(t)}

54



1.2.3 Even and Odd Signals

The even signal can be obtained as

1
Ev{x(t)} = E[X(l‘) + x(—t)]
The odd signal can be obtained as

1

0a (1)} = (1)~ (1)



Ev{x(t)} = %[x(t) + x(—t)]

Check if even Ev{x(—l‘)} = EV{X(I)}

Ev{x(- z)}——[ (=) +x(1)]

_ %[x(t)+x(—t)] - Ev{x()}



1

0a (1)} = L[x(1)-x(-1)
Check ifodd Od{x(=1)} = -Od{x(t)}

Od{x(~1)} = %[x(—t)—x(t)]

1 1

-5 [+ x(0]= =3 (0 - +(-1)]

=—0d{x(1)}



1.2.3 Even and Odd Signals
Checkif  Ev{x(#)}+O0d{x(t)} = x(1)

Ev{x(t)}+Od{x(t)}
1 1

() +x(=)]+ S [x(0)=x(-1)]



1.2.3 Even and Odd Signals

——————————

:
ln<o
2

8w{x[n]}= {1, n=0
-12-,n>0

33333333



1.2.3 Even and Odd Signals

- 15 n<o0
Od{x[n]} =< 0,n=0
]
2 n>0
le
a2t P[]
l 1 1 01 2 3 n Figure 1.18 Example of the even-
e, odd decomposition of a discrete-time
2 signal.
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1.1.2 Signal Energy and Power

* Sometime the signals we consider are directly related
to physical quantities capturing power and energy 1n a
physical system.

» [fv(¢) and i(?) are, respectively, the voltage and
current across a resistor with resistance R, then the
Instantaneous power 1s

ple)=vleile) = —v*(r) (1.1)
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1.1.2 Signal Energy and Power

The total energy expended over the time mterval
IS t, <t=<t,

"~ ple ) =ﬁ2%v2(z‘)dt (1.2)

and the average power over this time interval 1s

| " ||
dt =— [ —v°|¢)d 1.3
J; ples = [ v (1.3)

tz _tl
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1.1.2 Signal Energy and Power

The total energy over the time mnterval ¢, <¢ <t,
in a continuous-time signal x(¢) 1s defined as

ﬁl |x(e) \2dt (1.4)

where |x| denotes the magnitude of number x.

Dividing by the duration t,-t; yields the average
power over the duration.
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1.1.2 Signal Energy and Power

The total energy 1n a discrete-time signal x[n] over
the time intervaln, =n <n, is defined as

nzz‘x[n]‘z (1.5)

and dividing by the number of points 1n the

interval, n, —n, +1, yields the average power over the
interval.

65



1.1.2 Signal Energy and Power

We define the total energy as limits of eqs.(1.4) and
(1.5) as the time 1nterval increases without bound. In
continuous time,

= hmjj ‘x
T —0o0

and 1n discrete time,

_jlvlg}o 2 ‘x = i‘x[n]‘z (1.7)

fdt (1.6)
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1.1.2 Signal Energy and Power

In an analogous fashion, we can define the time-
averaged power over an infinite interval as

. ‘%E%ﬁ]] x(¢) (1.8)
and
p. = lim E\x (1.9)

N=x)DN +1, 4,
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1.1.2 Signal Energy and Power

—hm—f ‘x ‘2dt (18) E_ é}imf ‘X ‘ dt(l 6)

r—= QT
We see from eq.(1.8) that if E_, 1s finite
E_
=lm—==0 1.10
p.=lm— (1.10)

An example of finite-energy signal 1s a signal that
takes on the value 1 for g<s<1 and O otherwise. In
this case,

E_=land P =0.

68



Abstraction: from samples to a signal

* Lumping all of the (possibly infinite) samples into a
single object —the signal — simplifies its
manipulation.

* This lumping 1s an abstraction that 1s analogous to
o representing coordinates 1 three-space as points

o representing lists of numbers as vectors 1n linear
algebra

o creating an object in Python

69



1.3.1 Continuous-Time Complex Exponential
and Sinusoidal Signals

» The continuous-time complex exponential signal 1s of
the form

x(¢)= Ce” (1.20)

where C and a are, 1n general, complex numbers.

70



1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals
x(¢) = Ce” (1.20)
= Real Exponential Signals
If C and a are real [ in which case x(7) 1s called a real

exponential ]

o If a 1s positive, then as t increase |x(2)| 1s a growing
exponential
o If a 1s negative, then |x(7)| 1s a decaying

exponential

o a=0, x(t) 1s constant
71



1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

x(t)

(a)

x(t)

Figure 1.19 Continuous-time real
exponential x(tf) = Ce*: (a) a > 0;
(b) (b) a< 0.
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

= Periodic Complex Exponential:
A second important class of complex exponential 1s
obtained by constraining a=jw, to be purely
imaginary.

x(¢)= ™ (1.21)
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

Property: 1t 1s periodic

eja)ot _ eja)o (t+T) (1.22)

eja)o(“'T) _ ejwofejon

it follows that for periodicity, we must have

e/ =1 (1.23)
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1.3.1Continuous-Time Complex Exponential

mathematical constant e

and Sinusoidal Signals LT —

. T / sin ¢
e’ =1 (1.23) \/ -

" [f w,=0 ,then x(?) = 1, which is periodic tor any
value of T. If o, = 0, then the fundamental period T,
of x(7) 1s

1, =— (1.24)
‘WO‘

Jwot

Thus, the signals e’ and €’ have the same

fundamental period.
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

A signal closely related to the periodic complex
exponential 1s the sinusoidal signal

x(t) =4 cos(a)Ot + go) (1.25)

with seconds as the units of t, the units of ¢ and @,
are radians and radians per second. It 1s also common

to write w, = 27 f, , where f, has the units of cycles per
second, or hertz (Hz).
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

X(t) = A cos (wgt + )

N\ /\
VRAVAR

_ 2T

Figure 1.20 Continuous-time sinu-
soidal signal.
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

mathematical constant e

Im‘i

; e'’=cosp+ising

x(t) = A cos(a) t+ go) (1.25) / .
O N

By using Euler’s relation, the complex exponential in
eq.(1.21) can be written 1n terms of sinusoidal
signals, again with the same fundamental period:

Jt

e’ =cosw,t + jsinw,t (1.26)
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

x(t) = 4 cos(a)ot + gﬂ) (1.25)

the sinusoidal signal of eq. (1.25) can be written 1n
terms of periodic complex exponentials

A A
Acos(a) t+go)= el y /eI (1.27)
’ 2 2
_ eim e-ia:
cost = Re{e'"} = +2
eim . e-im

sinz = Im{e"*} = 5;
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

we can express a sinusoid 1n terms of a complex
exponential signal as

Acos(wyt +¢) = ARe{ej(wotW)} (1.28)

where, 1f ¢ 1s a complex number, g,{.l denotes 1ts real
part. We will also use the notation Jm[c} for the
imaginary part of ¢, so that, for example,

Asin(w,t + @) = AJm{ej (wo”‘”)} (1.29)
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1.3.1Continuous-Time Complex Exponential

and Sinusoidal Signals 2

1, = (1.24)

@,
" We see that the fundamental period T, of a
continuous-time sinusoidal signal or a periodic

complex exponential 1s inversely proportional to ‘a)o

b

which we will refer to as the fundamental frequency.

" @, =0 .We mentioned earlier, x(?) 1s constant and
therefore 1s periodic with period T for any positive

value of 7'
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1.3.1 Check Yourself

i

= COS w4t

\

i

A

!

r1\/

!

(@)
X5(t) = cos wyt
T |

\/t 1, <1,

w, !,

VIV




1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

E =j]0 eja)ot 2dt
period 0
=jym=n (1.30)
|
P — (1.31)

84



1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

It has mfinite energy:
T

dt =11im2T =

T —>00

E_ =lim

‘ ]a)ot
T —>c0 -T

It has infinite average power equal to

N
P =lim— ‘e
T —c0 2T -T

Jwyt

dr =1 (1.32)
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

a necessary condition for a complex exponential g¢”/**

to be periodic with period 7 1s that

e/l =1 (1.33)

which implies that T, 1s a multiple of 2m,1.¢.,

wT, =27k, k=0x1%2... (1.34)
if we define )
w, =— (1.35)
1y

W = W,k
86



1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

Harmonically related set of complex exponentials 1s
a set of periodic exponentials with fundamental

frequencies that are all multiples of a single positive
frequency @, :

Dy (t)

e/ " k=0,+1%2,.... (1.36)
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

0, (t) = /"', k=0,x21,£2,.... (1.36)

N ARE ,
They can be
superimposed into
a rich set of period
signals (see Chap. 3)

T

2 1,

— = — (1.37)
koo, |k




Announcement

" [stquiz on March 2, 2016
o 15 minutes

o Related to Chapter 1
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

* General Complex Exponential Signals
C =|Cle”
a=r+jw,

/ 6
¢ e/ 0+0) (1.42)

Ceat _ ‘C‘ejé’e(r+ja)o )t _ ‘C

Using Euler’s relation, we can expand this further as

Ce” =|C ¢ sin(wyt +6) (1.43)

e" cos(myt +0)+ j|C
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1.3.1Continuous-Time Complex Exponential
and Sinusoidal Signals

x(t)

e G . U 1/\\//\\//\\//\

(@)
x(t)

) .
\/ \./ V e 23(a) & 3 3R (> 0) o
e B 1.23(b) A& 2 GZHEGRIE (r<0) ©

- Figure 1.23 (a) Growing sinusoidal
v - signal x(t) = Ce" cos (wpt + 6),
N r > 0; (b) decaying sinusoid x(t) =
’ (b) Ce cos (wpt + 6), r < 0.
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1.3.2 Discrete-Time Complex  x(¢)=Ce"(1.20)
Exponential and Sinusoidal Signals

As 1n continuous time, an important signal in discrete
time 1s the complex exponential signal or sequence,
defined by

x[n] = Ca" (1.44)
Where C and a are, 1n general, complex numbers. This
could alternatively be expressed in the form
Where x[n] = Ce” (1.45)

OC=€5
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1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

®

?
o]
']
’
#9991???7!”1]1]]‘[]”]
(@) "
)
o Figure 1.24 The real exponential
o signal x[n] = Ca™
o @a=1bD0<a<T,
| ) - 1<a<0(da<-1.

o

”““”H(anm,..u_.%
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1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

l]“ltrslg‘,‘,‘.‘.‘,rn
[

(©)

Il
FTTT l I I

5

* Figure 1.24 The real exponential
signal x[n] = Ca":

)| @a=1b0<a<t,

(d) ) -1<a<0(d)a<-1.
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1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

x[n] = Ce™ (1.45)
= Sinusoidal-related complex exponential
x[n] = /™" (1.46)

As 1n the continuous-time case, this signal 1s closely
related to the sinusoidal signal

x[n] =4 cos(a)on + gﬂ) (1.47)

99



1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

As before, Euler’s relation allows us to relate
complex exponentials and sinusoids:

e’ =cosw,n+ jsin w,n (1.48)
and
A .. A ..
Acos(a) n+ go) =—¢e/%e/"  —e /e /" (1.49)
’ 2 2

Are they periodic?
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1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

I

I

-

. Il.




1.3.2

?e

¢

9

Discrete-Time Complex
Exponential and Sinusoidal Signals

Ii

x[n] = cos (n/6)

[ -

[,
111[

o

=

[¢]
o de°

()

Figure 1.25 Discrete-time sinusoidal signals.
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1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

* General Complex Exponential Signals

C =|Cle”

oL = ‘a‘e]a")

co” =|dl|" coslewgn +0)+ 1c|d sinlwgn+0) 50

103



1.3.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

Sl e

‘\
~
~
~
-~
-~
-~
-
-
.o I -

B i T— Civeso |21

1lml"‘-~ L

(b)

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying
discrete-time sinusoid.

Ca” = ‘CH(x‘n cos(a)on + 9)+ j‘C‘ o sin(a)on + 9) (1.50),




1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

= Recall n Sec. 1.3.1, we 1dentified the two properties

of its continuous-time counterpart g/®o’ :

1. The larger the magnitude of w, , the higher is the

rate of oscillation 1n the signal

Jjot .

2. e is periodic for any value of Wy .
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

= The first difference:

e j (a)o +27r)n j2mn _ jogn Jjwyn

=/ =¢ (1.51)
We see that the exponential at frequency @, + 27 is

the same as that at frequency @, .
* Distinct Discrete-time Complex Exponentials

Any mterval of length 2 © will do, on most occasions

we will use the interval 0= w, <2z or the interval —z<w, <x
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

Osw, =27




1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

= The second difference:

In order for the signal /" to be periodic with
period N> 0, we must have

/N _ gron (1.53)
Or equivalently,

JooN 1

e (1.54)
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

w,N must be a multiple of 2x. That 1s, there must be
integer m such that

w,N =2mwm (1.55)

or equivalently,

w, m
— = — (1.56)
2t N

must be a rational number
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Q)
— (1.56)
Periodic 27




Aperiodic (not periodic)

9

®

I

w, m
27

N

x[n] = cos (n/6)

[ -

(1.56)

lo
xlll

o

°
(c)

|

[l“tl

Figure 1.25 Discrete-time sinusoidal signals.
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

We find that the fundamental frequency of the periodic
signal g/@o 1s
2w,
N m

(1.57)

Note that the fundamental period can also be written as

N = m(2_7r) (1.58)
@

*assumes N and m has no factor in common
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

TABLE 1.1 Comparison of the signals e/’ and e/«”. & 1.1 e L gon &Y &4 it

e jwy! ej'-"()"

Distinct signals for distinct values of @,  Identical signals for values of w,
separated by multiples of 27

Periodic for any choice of w Periodic only if w, = 27rm/N for some integers N > 0 and m.
Fundamental frequency w, Fundamental frequency® wy/m
Fundamental period Fundamental period’

wy = 0: undefined wo = 0: undefined

(0(;#023)—: wu#O:m(i—:)

‘Assumes that m and N do not have any factors in common.
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N =m 2—” (1.58)
Example 1.6 (%)

Suppose that we wish to determine the fundamental
period of the discrete-time signal

x[n]=ej(27t/3)n+ej(37r/4)n (1.59)
Sketch:

1. Find each terms N; 2 compute least common multiple
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1.3.3 Periodicity Properties of Discrete-
Time Complex Exponentials

* Harmonically related complex exponential

plnl=e™Mr k=02l 0w
Dy N[ﬂ]: ej(k+N)(27r/N)n
= e/ - Pk [n] (L.61)

¢O[n]= 1,0, [n]= eﬂ”"/N,goz[n]= e/ N ¢N_1[n]= g/ TNy (1.62)
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

One of the stmplest discrete-time signals 1s the unit
impulse, which 1s defined as

5[n]= !% ::8 (1.63)

5[n]

]
._._._._._._,_,_]_,_._,_._._._._._ Figure 1.28 Discrete-time unit im-

0 n  pulse (sample).
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

A second basic discrete-time signal is the discrete-time
unit step, denoted by u[#n] and defined by

[] ’ = (1.64)
=0

u[n]

1] I I I ] I ]
—eeeeeoeeeeee LI Figure 1.29 Discrete-time unit step

N sequence.

How are they related?
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

In particular, the discrete-time unit impulse 1s the first
difference of the discrete-time step

5[11] = u[n]— u[n — 1] (1.63)

Conversely, the discrete-time unit step 1s the running
sum of the unit sample. That 1s,

u[n]= " olm] (L65)

nm=-0C0
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

n
Interval of Eummation‘ M[n] — E 5[7’}’1] (1.66)
""""""""" ! d[m] M =—00
—Fvvv—Q—vF—v—vﬁ([*—v—Hv—v—v—v—rn
(@)
Interval of summation
o ¥m] :
0 n M Figure 1.30 Running sum of
(b) eq. (1.66): (a) n < 0; (b) n> 0.
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

We find that the discrete-time unit step can also be

written 1n terms of the unit sample as

uln]= _E o[ m] ‘ u[n]=;ooc3[n—k]
Or equivalently,

u[n]=25[n—k] (1.67)
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

Interval of summation

______________

| d[n—Kk]

0 n K : o .
Figure 1.31 Relationship given in

(b) eq. (1.67): (@) n < 0; (b) n> 0.
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1.4.1 The Discrete-Time Unit Impulse
and Unit Step Sequences

Sampling property:
In particular, since 5[,2] 1s nonzero only for n =0, 1t
follows that

x[n]§[n] = x[O]ﬁ[n] (1.68)

More generally, 1f we consider a unit impulse 5[,2 _ no]
at n=n, . then

x[n]é[n — 1, ] = x[no ]é[n — no] (1.69)
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

Slnluln]= 5, u@) ?
The continuous-time unit step function u(t) 1s defined in

a manner similar to 1ts discrete-time counterpart.
Specifically,

u(t) = <r% ;:g (1.70)

Discontinuity, u(0) is undefined!

Figure 1.32 Continuous-time unit

0 t  step function. 128



1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

uln|= ié[m] 160 u(f) = j'(S(r)dr (1.71)

T=-—00

u(t)= <r% tt:(g) (1.70)

Figure 1.32 Continuous-time unit

0 t  step function.
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

uln|= ié[m] 160 u(f) = j'(S(r)dr (1.71)

T=-—00

u (t) u(t) = lAiE(} U, (t) (1.74)
1
_/—
0 A t

Figure 1.33 Continuous approximation to
the unit step, ua(t).
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

u[n]= ié[m] (1.66) u(t) = ]é(r)dr (1.71)

T =—00

In particular, 1t follows from eq.(1.71) that the
continuous-time unit impulse can be thought of as the

first derivative of the continuous-time step:

5(t)= du(t)

dt
B du (t)

0, (t) = (1.73)

(1.72)
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

u,(t)

OA(t)

1= -
1
A

I

0 A t M(t)_duﬁ(f)

Figure 1.34 Derivative of
Ur(f).  Area=1=(1/a)A
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functic S, (t)

Note that 0,(¢) 1s a short
pulse, of duration A and
with unit area for any value

of A. As A —0, 5,(¢)

1
A

becomes narrower and 0 A
higher, maintaining its o(t)
unit area.

Its limiting form,

ot) = limd, (¢) (1.74




1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

ko(t)

Area: k

0 t

Figure 1.36 Scaled im-
pulse.
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1.4.2

The Continuous-Time Unit Step

and Unit Impulse Functions

The continuous-time
unit step 1s also the
running integral of the
unit impulse.

u(t)=f_:o5(7:)dr (1.71)

(1.72)

Interval of integration

- e o o e e e e e ey

(b)

Figure 1.37 Running integral given in eq. (1.71):
(@) t<0;(b)t=0.
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

Changing the variable of integration from tto 6 =t — 1:

u(t) =jjoo 5(1)511 =ji)5(t — 0)(— a’a)
Or equivalently,

u(t)=ﬁw5(t—aﬁa (1.75)
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

Interval of integration

I S— O — u(t)=fooo(5(t—0)d0 (1.75)

(a)

Interval of integration

(b)

Figure 1.38 Relationship given in eq. (1.75):
(@) t<0;(b) t=0.
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

Sampling property:
For A sufficiently small so that x(?) 1s approximately

constant over this interval,

x(¢)0, (1) = x(0)3, ()

Since o(?) 1s the limit as A—0 of 0,(7), 1t follows that

(B0)=x000)  ae
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1.4.2 The Continuous-Time Unit Step
and Unit Impulse Functions

By the same argument, we have an analogous

expression for an impulse concentrated at an arbitrary
point, say, t,. That 1s,

x(e)o(e — 2, ) = x(t, )o(r ~ 2,)
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Example 1.7

(@)

Consider the discontinuous signal x(#) depicted in
Figure 1.40(a). Because of the relationship between the
continuous-time unit impulse and unit step, we can
readily calculate and graph the derivative of this signal.
Specifically, the derivative of x(?) 1s clearly 0, except at

the discontinuities.
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Example 1.7

du (t)
0 (t) » (1.72)
In the case of the unit step, we have seen [eq.(1.72)] that
differentiation gives rise to a unit impulse located at the
point of discontinuity. Furthermore, by multiplying both
sides of eq.(1.72) by any number k, we see that the
derivative of a unit step with a discontinuity of size k gives

rise to an impulse of area k at the point of discontinuity.

_ dku(t) _ du(t)

ko
(1) dt dt
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x(t)

Example 1.7 BE S E————

=

This rule also holds for any other signal with a jump
discontinuity, such as x(z) in Figure 1.40(a). Consequently,
we can sketch 1ts derivative x(z), as i Figure 1.40(b), where
an 1mpulse 1s placed at each discontinuity of x(?), with area
equal to the size of the discontinuity.

x(t)

2 -
2 3
t (b)
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Example 1.7

As a check of our result, we can verify that we can recover x(¢) from x(¢). Specif-
ically, since x(¢) and x(¢) are both zero for r = 0, we need only check that for ¢t > 0,

t
x(t) = f x(T)dr. (1.77)
0
Interval of integration
/—\ x(t)
2 -
1,
! 2 3
¢ 1 T4
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1.5 Continuous-Time and Discrete-Time
System

" In signal processing and communications to
electromechanical motors, automotive vehicles, and
chemical-processing plants, and many more, a system
can be viewed as a process in which mput signals are
transformed by the system or cause the system to
respond, resulting 1 other signals as outputs.

o Verbal description: blah blah blah...
o Math description: equations
o Graphical description: block diagram
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1.5 Continuous-Time and Discrete-Time
System

" A continuous-time system is a system in which
continuous-time mput signals are applied and result in
continuous-time output signals.

* We will often represent the imnput-output relation of a
continuous-time system by the notation.

x(t) —> y(t) (1.78)

Continuous-time

X(t) ————
system

-

(@)
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1.5 Continuous-Time and Discrete-Time
System

" A discrete-time system — that is, a system that
transforms discrete-time mputs into discrete-time
output — will be depicted as 1n Figure 1.41(b) and will
sometimes by represented symbolically as

dn]— ] 79

Discrete-time

x[n] i system

pred Y/ [1]

Figure 1.41 (a) Continuous-time
(b) system; (b) discrete-time system.
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Example 1.8

Figure 1.1 A simple RC circuit with source
voltage vs and capacitor voltage v,.

We can use Ohm’s law to establish the relation between
i(1) and v (t)-v (1)
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Example 1.8

Figure 1.1 A simple RC circuit with source
voltage vs and capacitor voltage v,.

We can relate i(z) to the rate of change with time of the
voltage across the capacitor:

(1.81)
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Example 1.8 i(t)=vs(t);€v"(t) (1.80) i(t)=C ”

Equating the right-hand sides of eq.(1.80) and (1.81),
we obtain a differential equation describing the

relationship between the inputyv (¢)and the outputv (¢) :

), 1 el as

=—V
dt RC RC °
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1.5 Continuous-Time and Discrete-Time

t
Sys em dy, (t) + 1 V. (t) — LVS (t) (1.82)
dt  RC RC

» First-order linear differential equation (one class of
system)

dy(t) ray(t)=bx(r) (1.85)

Where x(?) 1s the mput, y(?) 1s the output, and a and b
are constants.
o
©
Example 1.9 also has ~
the same form. Figure 1.2 An automobile responding to an
applied force f from the engine and to a re-

tarding frictional force pv proportional to the
automobile’s velocity v. 153




1.5 Continuous-Time and Discrete-Time
System

* [dentifying classes of systems that have two
important characteristics:

1. The systems in this class have properties and
structures that we can exploit to gain insight into
their behavior and to develop effective tools for
their analysis.

2. Many systems of practical importance can be
accurately modeled using systems 1in this class.
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1.5.2 Interconnections of Systems
From small system to big system

= A series or cascade interconnection

o Diagrams such as this are referred to as block
diagrams. Here, the output of System 1 1s the mput
to System 2, and the overall system transforms an
input by processing it first by System 1 and then
by System 2.

Input ==———3~1 System 1 p=———————d{ System 2 =3 Qutput

(a) 155



1.5.2 Interconnections of Systems

" A parallel interconnection

o The same input signal 1s applied to System 1 and

2. The output of the parallel interconnection 1s the

sum of the outputs of System 1 and 2.

System 1

Input ——>[

System 2

%—’ Output
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1.5.2 Interconnections of Systems

= Feedback interconnection

o The output of System 1 1s the input to System 2,
while the output of System 2 is fed back and added

to the external input to produce the actual input to
System 1.

INpuUt  =—— System 1 -t » Output

R E1RE &

System 2 [e— Figure 1.43 Feedback interconnec-
tion.
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1.5.2 Interconnections of Systems

) 4 4
N
iy () 1 ig(t)l
C)Ti(t) =+ C g R v(t)
< - .

Capacitor

i(t) + iy (t) 1 vt
s @ > v(t)=6ffxi,(7)d'r R

i, (1) Resistor Figure 1.44 (a) Simple electrical
2 | v(t) | e— circuit; (b) block diagram in which the
() == circuit is depicted as the feedback inter-
connection of two circuit elements.
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1.6.1 System properties:
Systems With and Without Memory

= A system is said to be memoryless if its output for
each value of the independent variable at a given time

1s dependent on the input at only that same time.

BT RSB F R I R TR I R A B

y[n] = (Zx[n]— xz[n])2 (1.90)
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1.6.1 Systems With and Without
Memory

A resistor 1s a memoryless system; with the input x(7)
taken as the current and with the voltage taken as the

output y(?), the mput-output relationship of a resistor 1s

y(t] = Rx(t) (1.91)

Where R 1s the resistance.
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1.6.1 Systems With and Without
Memory

An example of discrete-time system with memory is an

accumulator or summer

n

y[n] = 2 x[k] (1.92)

k=—OO

and a second example 1s a delay

y[n] = x[n — 1] (1.93)
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1.6.1 Systems With and Without
Memory

n

y[n] = E x[k] (1.92)

k=—00
» The relationship between the mput and output of an

accumulator can be described as

n-1

nl= Falklealn] as i e

k=—OO

X(n1—( > V()
or equivalently, | J
D

y[n]=y[n-1]+x[n] a6 1)
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1.6.1 Systems With and Without
Memory

A capacitor 1s an example of a continuous-time system
with memory, since if the mput 1s taken to be the
current and the output 1s the voltage, then

y(t) = %ﬁw X(Tﬁ‘[ (1.94)

where C 1s the capacitance.
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1.6.2

Invertibility and Inverse System

X [N] s—

n
System | yin]

Inverse
system

e W[N] = X[N]

" An example of an invertible continuous-time system

)= 2x(r)

for which the inverse system 1s

1S

X (1) e—

(1.97)

(1.98)

. y(t)
y(t) = 2X(t) [r—

w(t) = Zy(t)

e\ [t] = X(t)

167



1.6.2 Invertibility and Inverse System

The inverse system of

inl= Y xik] mp ofn]= -1} ]

k=—0o0
1S

x[n]—>J y[n] =k ~§ ) x[K] ﬂ» w[n] = y[n] — y[n — 1] = w[n] = x[n]
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1.6.2 Invertibility and Inverse System

Examples of noninvertible systems are

y[n] =0 (1.100)
That 1s, the system that produces the zero output

sequence for any mput sequence, and

y(t)= xz(t) (1.101)
If y(t)=1, who knows x(t)=1 or -1?
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1.6.3 Causality

" A system is causal if the output at any time depends
on values of the input at only the present and past

times.

RS0 i R g B e i R agey A B 0 A
wmAas AR ARH
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1.6.3

Causal system

(1.92)

(1.93)

(1.94)
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1.6.3 None causal system

y[n] = x[n]— x[n + 1] (1.102)

y[n] : % x[n - k] (1.104)
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Example 1.12

The first system 1s defined by
y[n] = x[— n] (1.105)
In particular, for n <0, e.g.n= -4, we see that
y[-4] = x[4], so that the output at this time depends on a
future value of the input.

Not causal
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Example 1.12

y(t) = x(t)cos(t + 1) (1.106)

In this system, the output at any time t equals the input
at that same multiplied by a number that varies with

)= xr)gle)

Where g(t) 1s a time-varying function, namely
g(t) = cos(t+1).

time.

Causal
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164  Stability

" The preceding examples provide us with an intuitive
understanding of the concept of stability. More
formally, 1f the input to a stable system 1s bounded,
then the output must also be bounded and therefore
cannot diverge. Bounded Input, Bounded Output
(BIBO)

RN R AAE —EBEAROBALY
R o L R B A ROR A2
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164  Stability

Example: y[n]= Ex[k] (1.92)
If x[k] is u[K]

n

nl= 3 ulk]=(n+1)uln]

k=—OO

y[n] grows without bound while u[n] 1s a bounded input
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Example 1.13

S y(z‘) = tx(t) (1.109)

For system S| 1n eq.(1.109), a constant input x(?) = 1
yields y(?) = ¢, which 1s unbounded, since no matter
what finite constant we pick, ‘ y(t) ‘ will exceed that
constant for some 7. We conclude that system S| 1s

unstable.
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Example 1.13 S23 y(t)= ex(t) (1.110)

For system S,, which happens to be stable, we would be
unable to find a bounded input that results in an
unbounded output. Specifically, let B be an arbitrary
positive number, and let x(z) be an arbitrary signal
bounded by B; that 1s, we are making no assumption
about x(7), except that

| x@) | <B (1.111)

-B <x(t) <B, (1.112)
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Example 1.13

For all t. Using the definition of S, in eq. (1.110), we
then see that 1f x(?) satisfies eq.(1.111), then y(?) must
satisty

B

e’ ‘y(t) < e (1.113)

We conclude that if any nput to S, 1s bounded by an
arbitrary positive number B, the corresponding output 1s
guaranteed to be bounded by e?. Thus, S, is stable.
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1.6.5 Time Invariance

= [Concept] a system 1s time invariant if the behavior
and characteristics of the system are ﬁxed over time.
5 & %é’ﬁziﬁ%ﬂ% P A B Fe] BT Bl R RS e 0 R
A IR A%

" [Signal & system] a system is time invariant if a time
shift in the input signal results in an 1dentical time
shift in the output signal
ARSI AGIIRA B RIS ALET o Hody i SRR R
A AR B By BT RIS AL 0 R & %i%ﬁlfﬂn“”
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1.6.5 Time Invariance

" [fy[n] 1s the output of a discrete-time, time-invariant
system when x[#] 1s the input, then y[n-n,] 1s the
output when x[n-n,] 1s applied. In continuous time
with y(?) the output corresponding to the input x(?), a
time-1nvariant system will have y(#-¢,) as the output

when x(#-1,) 1s the mput.
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Example 1.14

) =sin|x(r)] (1.114)
let x,(2) be an arbitrary input to this system, and let
M (t ) = sin[xl (f )] (1.115)

Be the corresponding output. Then consider a second
input obtained by shifting x,(?) in time:

x2(1)=xl(t—t0) (1.116)
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Example 1.14 Y1(t)=3in[x1(t)] (1.115)
The output corresponding to this mput is

Y (t) = sin[x2 (t)] = Sin[xl (t — 1y )] (1.117)
Similarly, from eq.(1.115)

y1(t_to)= Sin[xl(t_to ) (1.118)
Comparing eqgs. (1.117) and (1.118), we see that

¥, (t) =, (t — tO) , and therefore, this system 1s time

Invariant
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Example 1.16 (1) = x(2¢)
X1(t) y1(t)
1] ]
-2 2 t -1 1 t
(@) (b)
Xo(t) = x¢(t—2) ya(t)
1 1
0 4t 0 2 t

(c) (d)
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Example 1.16

y1(t—2)

I_I =

(€) (d)

yalt)

Figure 1.47 (a) The input x;(f) to the system in Example 1.16; (b) the
output y4(f) corresponding to x;(f); (c) the shifted input x(f) = x (t — 2);
(d) the output y»(t) corresponding to x»(%); (e) the shifted signal y;(t — 2).
Note that y»(tf) # y;(t — 2), showing that the system is not time invariant.
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1.6.0 Linearity

" A linear system, in continuous time or discrete time,
1s a system that possesses the important property of
superposition: If an input consists of the weighted
sum of several signals, then the output 1s the
superposition — that 1s, the weighted sum — of the

responses of the system to each of those signals.
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1.6.6 Linearity

" The system 1s linear 1f
. (Additivity) The response to x,(¢)+x,(¢)is y,(¢)+ v, (¢).

2. (Homogeneity) The response to ax, (t)is ay, (t) :
where a 1s any complex constant.

* The two properties defining a linear system can be
combined 1nto a single statement;

continous time : ax, (t) + bx, (t) — ay, (t) +by, (t) (1.121)

discrete time: ax, [n]+ bx, [n] — ay, [n]+ by, [n] (1.122)

189



1.6.0 Linearity

x[n] = Z a,.x, [n] =a,X, [n]+ a,x, [n]+ a X, [n]+ (1.123)
Is

Y[n] = Z akyk[n] = a4\ [n]+ az)’z[n]"' Vs [n]"' e (1124
if x[n]—y[n], then the homogeneity property tells us

that . x[n]—=a-y[n homogeneity

O=O-x[n]%0-y:n]=0 (1.125)
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Example 1.17

Consider a system S whose input x(7) and output y(?) are
related by

e)=nalr)

To determine whether or not S is linear, we consider

two arbitrary inputs x;(?) and x,(?).

xl(t)%%(t): txl(t)
xz(t)% yz(t)= txz(t)
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Example 1.17

Let x5(2) be a linear combination of x,(?) and x,(?).
That 1s

xs(t)= axl(t)+bx2(t)
Where a and b are arbitrary scalars. If x;3(7) 1s the input

to S, then the corresponding output may be expressed as

y;(e) =3, ()
= t(ax, (1) + bx, (1))
= atx, (t)+ bix, (¢)

= ayl(l‘)+by2(l‘)

So S 1s linear. -



1.7 Summary

= Signal:
o Notation of continuous and discrete signals
o Transformation
o Periodic signal
o Even and odd signal
o Energy and power
o Complex exponential & sinusoidal signals

o Unit and step functions
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1.7 Summary

" System:
o Block diagram of system
o Interconnection of systems
o Feed-forward and Feed-back
o Memory & memoryless
o Invertibility and inverse systems
o Causality
o Stability
o Time 1mmvariant

o Linearity
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