EE 361002 Signal and System HW16 Answer

10.32

(a) We are given that $h[n] = a^n u[n]$ and x[n] = u[n] - u[n - N]. Therefore,

$$y[n] = x[n] \cdot h[n]$$

$$= \sum_{k=-\infty}^{\infty} h[n-k]x[k]$$

$$= \sum_{k=0}^{N-1} a^{n-k}u[n-k]$$

Now, y[n] may be evaluated to be

$$y[n] = \begin{cases} 0, & n < 0 \\ \sum_{k=0}^{n} a^{n} a^{-k}, & 0 \le n \le N-1 \\ \sum_{k=0}^{N-1} a^{n} a^{-k}, & n > N-1 \end{cases}$$

Simplifying.

$$y[n] = \begin{cases} 0, & n < 0 \\ (a^n - a^{-1})/(1 - a^{-1}), & 0 \le n \le N - 1 \\ a^n(1 - a^{-N})/(1 - a^{-1}), & n > N - 1 \end{cases}$$

(b) Using Table 10.2, we get

$$H(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$

and

$$X(z) = \frac{1-z^{-N}}{1-z^{-1}}, \quad \text{All } z.$$

Therefore,

$$Y(z) = X(z)H(z) = \frac{1}{(1-z^{-1})(1-az^{-1})} - \frac{z^{-N}}{(1-z^{-1})(1-az^{-1})}$$

The ROC is |z| > |a|. Consider

$$P(z) = \frac{1}{(1-z^{-1})(1-az^{-1})}$$

with ROC |z| > |a|. The partial fraction expansion of P(z) is

$$P(z) = \frac{1/(1-a)}{1-z^{-1}} + \frac{1/(1-a^{-1})}{1-az^{-1}}.$$

Therefore,

$$p[n] = \frac{1}{1-a}u[n] + \frac{1}{1-a^{-1}}a^nu[n].$$

Now, note that

$$Y(z) = P(z)[1 - z^{-N}].$$

Therefore,

$$y[n] = p[n] - p[n-N] = \frac{1}{1-a} \{u[n] - u[n-N]\} + \frac{1}{1-a^{-1}} \{a^n u[n] - a^{n-N} u[n-N]\}$$

This may be written as

$$y[n] = \begin{cases} 0, & n < 0 \\ (a^n - a^{-1})/(1 - a^{-1}), & 0 \le n \le N - 1 \\ a^n(1 - a^{-N})/(1 - a^{-1}), & n > N - 1 \end{cases}$$

This is the same as the result of part (a).

Taking the z-transform of both sides of the given difference equation and simplifying, we get

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z - \frac{5}{2} + z^{-1}} = \frac{z^{-1}}{1 - \frac{5}{2}z^{-1} + z^{-2}}.$$

The partial fraction expansion of H(z) is

$$H(z) = \frac{-2/3}{1 - \frac{1}{2}z^{-1}} + \frac{2/3}{1 - 2z^{-1}}.$$

If the ROC is |z| > 2, then

$$h_1[n] = -\frac{2}{3} \left(\frac{1}{2}\right)^n u[n] + \frac{2}{3} (2)^n u[n].$$

If the ROC is 1/2 < |z| < 2, then

$$h_2[n] = -\frac{2}{3} \left(\frac{1}{2}\right)^n u[n] - \frac{2}{3} (2)^n u[-n-1].$$

If the ROC is |z| < 1/2, then

$$h_3[n] = \frac{2}{3} \left(\frac{1}{2}\right)^n u[-n-1] - \frac{2}{3} (2)^n u[-n-1].$$

For each $h_i[n]$, we now need to show that if $y[n] = h_i[n]$ in the difference equation, then $x[n] = \delta[n]$. Consider substituting $h_1[n]$ into the difference equation. This yields

$$\frac{2}{3} \qquad \left(\frac{1}{2}\right)^{n-1} u[n-1] - \frac{2}{3}(2)^{n-1} u[n-1] - \frac{5}{3} \left(\frac{1}{2}\right)^n u[n] \\ + \frac{5}{3}(2)^n u[n] + \frac{2}{3} \left(\frac{1}{2}\right)^{n+1} u[n+1] - \frac{2}{3}(2)^{n+1} u[n+1] = x[n]$$

Then.

$$x[n] = 0$$
, for $n < -1$,
 $x[-1] = 2/3 - 2/3 = 0$,
 $x[n] = 0$, for $n > 0$.

It follows that $x[n] = \delta[n]$. It can similarly be shown that $h_2[n]$ and $h_3[n]$ satisfy the difference equation.

- (a) $e_1[n] = f_1[n]$.
- (b) $e_2[n] = f_2[n]$.
- (c) Using the results of parts (a) and (b), we may redraw the block-diagram as shown in Figure S10.38.

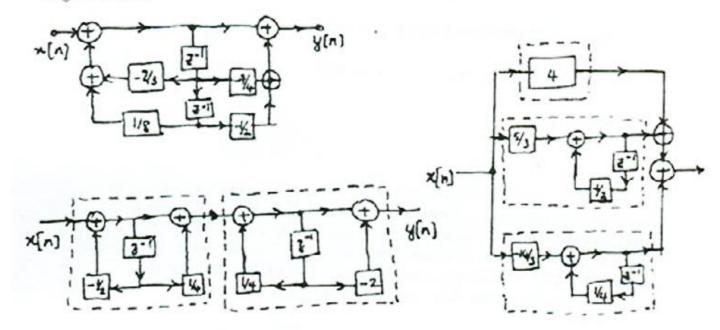


Figure S10.38

- (d) Using the approach shown in the examples in the textbook we may draw the block-diagram of H₁(z) = [1+(1/4)z⁻¹]/[1+(1/2)z⁻¹] and H₂(z) = [1-2z⁻¹]/[1-(1/4)z⁻¹] as shown in the dotted boxes in the figure below. H(z) is the cascade of these two systems.
- (e) Using the approach shown in the examples shown in the textbook, we may draw the block-diagram of H₁(z) = 4, H₂(z) = [5/3]/[1 + (1/2)z⁻¹] and H₃(z) = [-14/3]/[1 (1/4)z⁻¹] as shown in the dotted boxes in the figure below. H(z) is the parallel combination of H₁(z), H_z(z), and H₃(z).

(a) Taking the unilateral z-transform of both sides of the given difference equation, we get

$$\mathcal{Y}(z) + 3z^{-1}\mathcal{Y}(z) + 3y[-1] = \mathcal{X}(z)$$

Setting $\mathcal{X}(z) = 0$, we get

$$y(z) = \frac{-3}{1 + 3z^{-1}}.$$

The inverse unilateral z-transform gives the zero-input response

$$y_{zi}[n] = -3(-3)^n u[n] = (-3)^{n+1} u[n].$$

Now, since it is given that $x[n] = (1/2)^n u[n]$, we have

$$\mathcal{X}(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| > 1/2.$$

Setting y[-1] to be zero, we get

$$\mathcal{Y}(z) + 3z^{-1}\mathcal{Y}(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$

Therefore,

$$\mathcal{Y}(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 + 3z^{-1})}.$$

The partial fraction expansion of $\mathcal{Y}(z)$ is

$$\mathcal{Y}(z) = \frac{1/7}{1 - \frac{1}{7}z^{-1}} + \frac{6/7}{1 + 3z^{-1}}.$$

The inverse unilateral z-transform gives the zero-state response

$$y_{xs}[n] = \frac{1}{7} \left(\frac{1}{2}\right)^n u[n] + \frac{6}{7} (-3)^n u[n].$$

(b) Taking the unilateral z-transform of both sides of the given difference equation, we get

$$\mathcal{Y}(z) - \frac{1}{2}z^{-1}\mathcal{Y}(z) - \frac{1}{2}y[-1] = \mathcal{X}(z) - \frac{1}{2}z^{-1}\mathcal{X}(z).$$

Setting X(z) = 0, we get

$$\mathcal{Y}(z) = 0.$$

The inverse unilateral z-transform gives the zero-input response

$$y_{zi}[n] = 0.$$

Now, since it is given that x[n] = u[n], we have

$$X(z) = \frac{1}{1-z^{-1}}, |z| > 1.$$

Setting y[-1] to be zero, we get

$$\mathcal{Y}(z) - \frac{1}{2}z^{-1}\mathcal{Y}(z) = \frac{1}{1-z^{-1}} - \frac{(1/2)z^{-1}}{1-z^{-1}}$$

Therefore,

$$\mathcal{Y}(z) = \frac{1}{1-z^{-1}}.$$

The inverse unilateral z-transform gives the zero-state response

$$y_{zs}[n] = u[n].$$

(c) Taking the unilateral z-transform of both sides of the given difference equation, we get

$$\mathcal{Y}(z) - \frac{1}{2}z^{-1}\mathcal{Y}(z) - \frac{1}{2}y[-1] = \mathcal{X}(z) - \frac{1}{2}z^{-1}\mathcal{X}(z).$$

Setting X(z) = 0, we get

$$\mathcal{Y}(z) = \frac{1/2}{1 - \frac{1}{2}z^{-1}}.$$

The inverse unilateral z-transform gives the zero-input response

$$y_{2n}[n] = \left(\frac{1}{2}\right)^{n+1} u[n].$$

Since the input x[n] is the same as the one used in the part (b), the zero-state response is still

$$y_{zs}[n] = u[n].$$