
/

Program Assignment 4 Cache
Simulation
Jun 28, 2020 (2020-06-28T00:00:00+08:00)

By Jing-Jia Liou

Contents

1 Problems

1.1 Penalty of plagiarism

1.2 Part I LFU replacement policy (60%)

1.3 Part II: Observe and Analyze (10%)

1.4 Part III Cache Optimization (30%)

2 Submission

2.1 Part I

2.2 Part II

2.3 Part III

3 Grading

1 Problems
In this homework, there are three main parts.
1. In Part I (60%), we will implement the LFU policy in a cache simulator.

2. In Part II (10%), please answer the questions in the Google form.

3. In Part III (30%), we will implement an optimized L1 cache.

1.1 Penalty of plagiarism
If your �nal version (last submission before due date) is a plagiarized code,
no credit will be given.

1.2 Part I LFU replacement policy (60%)
Due: 23:59 on June 28, 2020

Pages
Contacts

Course Video

Important Dates

Notes

Resources

Rules

Categories
labs

misc

programming
assignments

tutorials

Social
Q & A Forum

Computer Architecture
Home Contacts Course Video Important Dates Notes Resources Rules

https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html
https://www.ee.nthu.edu.tw/ee345000/author/jing-jia-liou.html
https://www.ee.nthu.edu.tw/ee345000/pages/contacts.html
https://www.ee.nthu.edu.tw/ee345000/pages/course-video.html
https://www.ee.nthu.edu.tw/ee345000/pages/important-dates.html
https://www.ee.nthu.edu.tw/ee345000/pages/notes.html
https://www.ee.nthu.edu.tw/ee345000/pages/resources.html
https://www.ee.nthu.edu.tw/ee345000/pages/rules.html
https://www.ee.nthu.edu.tw/ee345000/category/labs.html
https://www.ee.nthu.edu.tw/ee345000/category/misc.html
https://www.ee.nthu.edu.tw/ee345000/category/programming-assignments.html
https://www.ee.nthu.edu.tw/ee345000/category/tutorials.html
https://elearn.nthu.edu.tw/course/view.php?id=2482
https://www.ee.nthu.edu.tw/ee345000/
https://www.ee.nthu.edu.tw/ee345000/
https://www.ee.nthu.edu.tw/ee345000/pages/contacts.html
https://www.ee.nthu.edu.tw/ee345000/pages/course-video.html
https://www.ee.nthu.edu.tw/ee345000/pages/important-dates.html
https://www.ee.nthu.edu.tw/ee345000/pages/notes.html
https://www.ee.nthu.edu.tw/ee345000/pages/resources.html
https://www.ee.nthu.edu.tw/ee345000/pages/rules.html

/

Proportion: 60%

We've prepared a Cache Simulator programmed in C++. Please download
codes by the following command:

$ git clone https://gitlab.com/amy26656/pa4_template.git pa4

Please implement LFU replacement policy in our cache simulator. LFU
stands for "least frequent used" blocks. LFU blocks will be replaced if
con�ict happens. LFU is calculated based the number of accesses (including
both read and write) over a period of time (please use 100 memory
accesses as a period in this program assignment). We only record data for
cache blocks in the cache. If one block is replaced, there will be no record
(set frequency 0).

1. In pa4/part1/src/main_cache.cpp , please complete two functions:

_HitHandle() and _GetIndexByLFU()

_HitHandle(const addr_t &addr) :

This function is always provoked when the cache is accessed with a
given address addr .

_GetIndexByLFU(const addr_t &addr) :

This function is provoked in the process of writing data to cache.
Given an address, determine which cache block is going to be over-
written by new data from address addr .

/

void MainCache::_HitHandle(const addr_t &addr) {
 // # TODO

 // switch(property.associativity) {
 // case full_associative:

 // case set_associative:

 // default:
 // break;
 // }
}

ulint MainCache::_GetIndexByLFU(const addr_t &addr) {
 ulint res(0);
 // # TODO

 // switch(property.associativity) {
 // case full_associative:

 // case set_associative:

 // default:
 // break;
 // }
 return res;
}

2. You can declare any additional variable or method in MainCache class

Compiling the simulator

The program directory structure looks like this

pa4/
| part1/
| |----CMakeLists.txt
| |----include/
| |----src/
| | |----main_cache.cpp
| | |----main_cache.hpp
| | |----main.cpp
 ...

Here we use CMake instead of traditional Make�le to build your project,
you can add any C++ source �les in src/ directory and cmake will detect

them automatically.

Use the following commands to build your simulator (Assume you are
already in the project root folder):

/

$ mkdir build && cd build
$ cmake ..
$ make

Then the binary executable �le will be generated and named as cache_sim .

We also prepared a few trace �les under pa4/part1/trace/ directory.

Trace �les are load/store records dumped from benchmark programs. We
will use them to represent program memory accesses. The format of a trace
�le is as follows:

l 0x000000001fffff50

l or s means load or store.

0x000000001fffff50 is the 64-bit address in hexadecimal, note that the block

size should be at least 8 Bytes (due to RISC-V double word load/store).

There are three(3) sample con�g �les under pa4/part1/config/ directory.

Con�g �le is used to specify a cache architecture:

{
 "multi-level": false,
 "content": [
 {
 "cache-size": 256,
 "block-size": 8,
 "associativity": "direct-mapped",
 "replacement-policy": "random"
 }
]
}

{
 "multi-level": false,
 "content": [
 {
 "cache-size": 64,
 "block-size": 32,
 "associativity": "set-associative",
 "number-of-way": 4,
 "replacement-policy": "random"
 }
]
}

/

{
 "multi-level": false,
 "content": [
 {
 "cache-size": 8,
 "block-size": 64,
 "associativity": "full-associative",
 "replacement-policy": "random"
 }
]
}

Run simulation and check your simulation results.

Assume you are running with gcc.trace and cache1.json . Use the following

command to run simulation.

$./cache_sim -t ../trace/gcc.trace -c ../config/cache1.json

You can use the following command to run simulation and dump the results
into text �le gcc.txt .

$./cache_sim -t ../trace/gcc.trace -c ../config/cache1.json > gcc.txt

Your simulator output will be as follows:

==
Test file: ../TestData/gcc.trace
--
L1 Cache
Cache size: 256KB
Cache block size: 8B
Associativity: direct-mapped
Replacement policy: Random
--
Number of cache access: 515683
Number of cache load: 318197
Number of cache store: 197486
Number of total cache hit: 494203
Cache hit rate: 0.958347
Average Memory Access Time: 5.165 cycles
==

To verify your LFU implementation, please use following tables to check
your outputs.

Test �le gcc gzip mcf swim twolf maze
Total inst. 51568348104472723030319348282413388

Load 3181973204415972 22066835140312074

/

Test �le gcc gzip mcf swim twolf maze
Store 19748616060372125882525 1314211314

256KB, 8 Bytes/line, direct-mapped, None

Test �le gcc gzip mcf swim twolf maze
Hit Rate 0.9583470.6670720.0103790.9343190.9884430.935614

64KB, 32 Bytes/line, 4-way set-associative, LFU

Test �le gcc gzip mcf swim twolf maze
Hit Rate 0.9871650.6682630.7524480.9768270.9963170.979609

8KB, 64 Bytes/line, fully-associative, LFU

Test �le gcc gzip mcf swim twolf maze
Hit Rate 0.9626050.6683750.8759510.9748910.9761340.976696

Note that your simulation results should match above tables for the same
cache architecture and trace �les.

In our Autolab system, we prepare 9 di�erent trace �les as testcases for
grading your implementation. You already have 6 of 9 trace �les as public
test cases, the other 3 test cases are non-public.

1.3 Part II: Observe and Analyze (10%)
Due: 23:59 on June 28, 2020

Proportion: 10%

Please answer the questions listed in the form.
1. EE3450-pa4-extra.

1.4 Part III Cache Optimization (30%)
Due: 23:59 on June 28, 2020

Proportion: 30%

In this part, we will design an optimized cache architecture with a cache size
of 64KB (cache size is de�ned by the available space to store user's data, not
including bits necessary for cache management) . The design parameters
are cache block size, number of ways. Our objective is to have an average
hit rate as high as possible under the 64KB constraint over several trace
�les.

https://forms.gle/QWnnpquYMU7w2uit9

/

We will use the trace �les under pa4/part3/trace/ directory to evaluate

average hit rate.

If two cache architecture has similar average hit rates (di�erence < 0.1%),
we will use hardware cost to �nd the best cache design. The hardware cost
is basically the total memory bits used in the cache. Note that we will
actually use a SRAM simulator (CACTI) to estimate the total memory area
(not just bit numbers).

Cache designs from all students will be ranked in Poisson distribution
percentile for grading.

Please use LFU as your replacement policy, remember to copy the LFU you
write in part1 to part3, in pa4/part3/src/ directory.

To design your cache architecture, please modify cache_arc.cfg under
pa4/part3/ directory.

To evaluate the average hit rate and hardware cost, we prepare an
evaluation tool. The tool will be activated by the following command.

$ make

The tool will ask for your cache con�guration and generate hit rate and
hardware cost for your cache design. The terminal output will looks like the
following. In this case, the hardware cost of the design is
96.98347245600002 and the average hit rate is 0.998051. Note that the
lower hardware cost, your cache needs less hardware (better).

Block-size: 64
Associativity(2^n with n >= 0): 4
Hardware cost: 96.98347245600002
Average Hit-Rate: 0.998051
$

Also note that this tool will generate a �le named score.txt in current
folder. You will need to submit this score �le, too. Remember to use
make clean , if you want to re-evaluate the hit rate and hardware cost.

2 Submission
2.1 Part I

Files to submit

/

1. Project directory (pa4): Including all C++ source �les and CMakeLists.txt,
but DO NOT submit the build directory and trace �les.

The detailed �le structure is listed below.

pa4/
|---CMakeLists.txt
|---include/
|---src/
| |--- main_cache.cpp
| |--- main_cache.hpp
| |--- main.cpp
| |--- any .cpp files you created

1. Compress your project directory as submission.tar

$ tar cvf submission.tar pa4

2. Submit the tar �le on Autolab website (https://autolab.larc-
nthu.net/courses/EE3450/assessments/pa4).

2.2 Part II
Just answer the form, no other �le needs to be submitted.

2.3 Part III
Files to submit

1. Compress the �les "score.txt" and "cache_arc.cfg" as "pa4_part3.tar"

$ tar cvf pa4_part3.tar score.txt cache_arc.cfg

2. Submit the tar �le on Autolab website part3 (https://autolab.larc-
nthu.net/courses/ee3450_2020_spring/assessments/pa4part3).

3. You can check your rank in Autolab scoreboard (https://autolab.larc-
nthu.net/courses/ee3450_2020_spring/assessments/pa4part3/scoreboard).

3 Grading
No credit for dead or crashed codes.

No credit for codes with wrong output formats.

The hit rate of each simulation should be identical to the tables listed. If
some value mismatches the table, only partial credits will be given.

https://autolab.larc-nthu.net/courses/EE3450/assessments/pa4
https://autolab.larc-nthu.net/courses/ee3450_2020_spring/assessments/pa4part3
https://autolab.larc-nthu.net/courses/ee3450_2020_spring/assessments/pa4part3/scoreboard

/

For Part I, if some value in non-public testcases mismatches the correct
answer, only partial credits will be given.

Proudly powered by Pelican, which takes great

advantage of Python.

Based on the Gumby Framework

http://getpelican.com/
http://python.org/
http://gumbyframework.com/

