
/

Program Assignment 2
May 31, 2020 (2020-05-31T00:00:00+08:00)

By Ren-Shuo Liu

Due: 23:59 on May. 31, 2020

Contents

1 Problem

1.1 File Structure

1.2 LFSR-based Random Number Generator

Di�erent versions of rand()

Use the new LFSR instruction

1.3 Linear Search

Di�erent versions of search()

1.4 Compile and Run

1.5 Grading

1-stage emulator

rand() - 25%

search() - 25%

5-stage emulator

rand() - 25%

search() - 25%

1.6 Submission

2 Issues

1 Problem
Due: 23:59 on May. 31, 2020

Pages
Contacts

Course Video

Important Dates

Notes

Resources

Rules

Categories
labs

misc

programming
assignments

tutorials

Social
Q & A Forum

Computer Architecture
Home Contacts Course Video Important Dates Notes Resources Rules

https://www.ee.nthu.edu.tw/ee345000/program-assignment-2.html
https://www.ee.nthu.edu.tw/ee345000/author/ren-shuo-liu.html
https://www.ee.nthu.edu.tw/ee345000/pages/contacts.html
https://www.ee.nthu.edu.tw/ee345000/pages/course-video.html
https://www.ee.nthu.edu.tw/ee345000/pages/important-dates.html
https://www.ee.nthu.edu.tw/ee345000/pages/notes.html
https://www.ee.nthu.edu.tw/ee345000/pages/resources.html
https://www.ee.nthu.edu.tw/ee345000/pages/rules.html
https://www.ee.nthu.edu.tw/ee345000/category/labs.html
https://www.ee.nthu.edu.tw/ee345000/category/misc.html
https://www.ee.nthu.edu.tw/ee345000/category/programming-assignments.html
https://www.ee.nthu.edu.tw/ee345000/category/tutorials.html
https://elearn.nthu.edu.tw/course/view.php?id=2482
https://www.ee.nthu.edu.tw/ee345000/
https://www.ee.nthu.edu.tw/ee345000/
https://www.ee.nthu.edu.tw/ee345000/pages/contacts.html
https://www.ee.nthu.edu.tw/ee345000/pages/course-video.html
https://www.ee.nthu.edu.tw/ee345000/pages/important-dates.html
https://www.ee.nthu.edu.tw/ee345000/pages/notes.html
https://www.ee.nthu.edu.tw/ee345000/pages/resources.html
https://www.ee.nthu.edu.tw/ee345000/pages/rules.html

/

For this assignment, you're required to implement two functions, generating
random numbers and searching linearly for a target number, in RISC-V
assembly. Please download this ppt (./downloads/sodor.pptx) for detailed
information.

First, please download the sodor emulator,

$ ssh -p 3450 ee3450b
$ git clone http://gitlab.larc-nthu.net/ee3450/sodor.git pa2

1.1 File Structure
pa4/
|── riscv-tests/
| |── benchmarks/
| |── Makefile
| |── rand_and_search/
| |── main.c <- only edit line 22 and line 31
| |── rand_*.S <- implement rand() here
| |── search_*.S <- implement search() here
|── src/
| |── rv32_1stage/
| |── *.scala
| |── rv32_5_stage/
| |── *.scala
|── emulator/
| |── rv32_1stage
| |── rv32_5stage

The main.c calls di�erent versions of rand() and search() based on the macros

de�ned in main.c line 22 and line 31, respectively. For example, if
#define RAND_VER 2 , then rand_2() , which resides in rand_2.S, will be called. There

are 3 versions of rand() and 3 versions of search() , de�ned in di�erent

assembly �les, so 6 assembly �les in total. Currently, all of them are empty and
your job is to �ll them out.

1.2 LFSR-based Random Number
Generator
void rand(int32_t *a, int32_t len, int32_t seed);

The rand() function generates len pseudo-random numbers using the LFSR

(https://en.wikipedia.org/wiki/Linear-feedback_shift_register)-based algorithm
with initial value seed . The random numbers are stored in the integer array at

address a in the order of their generation time. The following code snippet is a

reference implementation.

https://www.ee.nthu.edu.tw/ee345000/downloads/sodor.pptx
https://en.wikipedia.org/wiki/Linear-feedback_shift_register

/

void rand_0(int32_t *a, int32_t len, int32_t seed)
{
 a[0] = seed;
 for (int i = 1; i < len; i++) {
 int32_t tmp = a[i - 1];
 tmp = (tmp ^ (tmp << 1) ^ (tmp << 6) ^ (tmp << 7)) & 0x80;
 a[i] = (a[i - 1] >> 1) | tmp;
 }
}

You're required to implement the same function, but in RISC-V assembly.
Further, you're required to optimize it with the new lfsr instruction and loop

unrolling.

Di�erent versions of rand()
RAND_VERFunction In File Implementation

0 rand_0 main.c C version of rand()

1 rand_1 rand_1.S
Directly implement the rand() function in
assembly

2 rand_2 rand_2.S
Based on rand_1.S, use the added LFSR
instruction

3 rand_3 rand_3.SBased on rand_2.S, unroll the loop for 4 times

Use the new LFSR instruction
To speed up random number generation, we implement a LFSR hardware in
the CPU emulator. I.e., the ALU now can not only add two numbers, shift a
number, etc., it can also generate a random number directly. The new LFSR
instruction is a R-type instruction, in the form of lfsr rd, rs1, rs2 , where rd

stores the generated number, rs1 stores the previously generated number (for

the �rst generated number, rs1 should store seed), and rs2 is always �xed to

0x380000c3.

However, since we do not modify the assembler, you can't directly use the LFSR
instruction as a typical instruction, e.g. lfsr t1, a2, t0 . Instead, you should

recognize the bit pattern of the instruction and write down the bit pattern. The
format of a RISC-V R-type instruction is

| func7 (7 bits) | rs2 (5 bits) | rs1 (5 bits) | func3 (3 bits) | rd (5 bits) |
opcode (7 bits) |

For example, say you intend to call lfsr t1, a2, t0 , you should write

.word 0x56730b instead, since

/

func7 = 0 (fixed)
rs2 = 5 (t0)
rs1 = 12 (a2)
func3 = 7 (fixed)
rd = 6 (t1)
opcode = 11 (fixed)

The id of each register can be found here
(http://www1.ee.nthu.edu.tw/ee345000/lab-1-assembly-language-and-isa-
simulators.html#introduction-of-risc-v-instruction-set). The �nal bit pattern is

0000000 00101 01100 111 00110 0001011
0 5 12 7 6 11

Group four bits into one chunk

0000 0000 0101 0110 0111 0011 0000 1011
0 0 5 6 7 3 0 b

1.3 Linear Search
int32_t search(int32_t *a, int32_t len, int32_t target);

The search() function searches for the number target in an integer array

linearly and return the index of target upon a successful query; otherwise,

return -1. The integer array is at address a and has len elements. The

following code snippet is a reference implementation.

int32_t search_0(int32_t *a, int32_t len, int32_t target)
{
 for (int32_t i = 0; i < len; i++)
 if (a[i] == target)
 return i;
 return -1;
}

You're required to implement the same function, but in RISC-V assembly.
Further, you're required to optimize it with loop unrolling and static
instructions reordering.

Di�erent versions of search()
SEARCH_VERFunction In File Implementation

0 search_0main.c C version of search()

1 search_1search_1.S
Directly implement the search() function in
assembly

http://www1.ee.nthu.edu.tw/ee345000/lab-1-assembly-language-and-isa-simulators.html#introduction-of-risc-v-instruction-set

/

2 search_2search_2.S
Based on search_1.S, unroll the loop for 4
times (but don't reorder the load instructions
with other instructions)

3 search_3search_3.S
Based on search_2.S, reorder the load
instructions with other instruction to avoid
data hazards

1.4 Compile and Run
Compile your rand and search program,

$ cd ~/ee3450/pa4/riscv-tests/benchmarks
$ make

Run your program on the 1-stage and 5-stage emulators,

$ make run-1stage
$ make run-5stage

If your program is correct, the cycle counts of rand() and search() will be

displayed on the terminal.

1.5 Grading

/

Grading is based on the performance of your rand and search program
running on the 1-stage and 5-stage emulators. We will only measure the 3rd
version of rand() and search() , so make sure your submission includes

rand_3.S and search_3.S.

1-stage emulator
rand() - 25%
 Cycle Count RangeScore
Tier A x <= 900 100

Tier B 900 < x <= 1400 90

Tier C 1400 < x <= 2100 80

Tier D 2100 < x <= 2800 70

Tier E x > 2800 60

search() - 25%
 Cycle Count RangeScore
Tier A x <= 3200 100

Tier B 3200 < x <= 3400 90

Tier C 3400 < x <= 3600 80

Tier D 3600 < x <= 3800 70

Tier E x > 3800 60

5-stage emulator
rand() - 25%
 Cycle Count RangeScore
Tier A x <= 1000 100

Tier B 1000 < x <= 1700 90

Tier C 1700 < x <= 2600 80

Tier D 2600 < x <= 3500 70

Tier E x > 3500 60

search() - 25%
 Cycle Count RangeScore
Tier A x <= 3900 100

Tier B 3900 < x <= 4200 90

Tier C 4200 < x <= 4800 80

Tier D 4800 < x <= 5300 70

Tier E x > 5300 60

1.6 Submission
1. Please put rand_3.S and search_3.S in the same directory named code.

/

code/
|── rand_3.S
|── search_3.S

2. Tar the directory and named as code.tar.

$ tar cvf code.tar code

3. Submit your code.tar to autolab (https://autolab.larc-
nthu.net/courses/ee3450_2020_spring/assessments/pa2).

2 Issues
If you encounter any server error or do not understand the problem
description, please contact:

Jun Shen Wu <sesshoumaru99912@gmail.com
(mailto:sesshoumaru99912@gmail.com)> Yun Chen Lo
<tarzen0509@gmail.com (mailto:tarzen0509@gmail.com)>

Proudly powered by Pelican, which takes great

advantage of Python.

Based on the Gumby Framework

https://autolab.larc-nthu.net/courses/ee3450_2020_spring/assessments/pa2
mailto:sesshoumaru99912@gmail.com
mailto:tarzen0509@gmail.com
http://getpelican.com/
http://python.org/
http://gumbyframework.com/

