EE3450 Hw5 - Question 3-1 (5.12.1)

總分 18/18 ?

Chapter 5: Large and Fast: Exploiting Memory Hierarchy & Virtual Memory

0分, 共0分

[Email Address *
(oliverfeaqr01@gmail.com
1	Name *
	吴柏澄
-	
_	24d + 1D *
;	Student ID *
	106061235

Question 3-1 (5.12.1)

18分, 共18分

[5.3] means you should have read Section 5.3. Under the Covers, to help you solve this exercise

Multilevel caching is an important technique to overcome the limited amount of space that a first-level cache can provide while still maintaining its speed. Consider a processor with the following parameter:

Base CPI, No Memory Stalls	1.5
Processor Speed	2 GHz
Main Memeory Access Time	100ns
1-Level Cache Miss Rate per Instruction	7%
2-Level Cache, Direct-Mapped Speed	12 cycles
Miss Rate with 2-Level Cache, Direct-Mapped	3.5%
2-Level Cache, 8-Way Set Associative Speed	28 cycles
Miss Rate with 2-Level Cache, 8-way Set Associative	1.5%

Notice the extent to which an L2 cache can hide the effects of a slow memory. (Round off to the 2nd decimal place)

1. [5.4] Calculate the CPI for the processor in the table using only a 1-cache. *	level3/3
15.5	✓
2. [5.4] How does the number change if main memory access time double? *	3/3
29.5	. /

3. [5.4] Calculate the CPI for the processor in the table using a 2-level direct-mapped cache. *	3/3
2.83	✓
4. [5.4] How does the number change if main memory access time double? *	3/3
3.32	✓
 5. [5.4] Calculate the CPI for the processor in the table using a 2-level 8 way set associative cache. * 	3- 3/3
3.67	✓
✓ 6. [5.4] How does the number change if main memory access time double? *	3/3
3.88	✓

這份表單是在 清華大學 中建立。

Google 表單