
���

Chapter 6
Parallel Processors from
Client to Cloud

Introduction
n Goal: connecting multiple computers

to get higher performance
n Multiprocessors
n Scalability, availability, power efficiency

n Task-level (process-level) parallelism
n High throughput for independent jobs

n Parallel processing program
n Single program run on multiple processors
n Multicore microprocessors --- chips with

multiple processors (cores)

§6.1 Introduction

Chapter 6 — Parallel Processors from Client to Cloud — 2

Hardware and Software
n Hardware

n Serial: e.g., one Pentium core
n Parallel: e.g., quad-core Xeon CPU

n Software
n Sequential: e.g., matrix multiplication
n Concurrent: e.g., web server

n Sequential/concurrent software can run on
serial/parallel hardware
n Challenge: making effective use of parallel

hardware

Chapter 6 — Parallel Processors from Client to Cloud — 3

What We’ve Already Covered
n §2.11: Parallelism and Instructions

n Synchronization
n §3.6: Parallelism and Computer Arithmetic

n Subword Parallelism
n §4.10: Parallelism and Advanced

Instruction-Level Parallelism
n §5.10: Parallelism and Memory

Hierarchies
n Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 4

Parallel Programming
n Parallel software is the problem
n Need to get significant performance

improvement
n Otherwise, just use a faster uniprocessor,

since it’s easier!
n Difficulties

n Partitioning
n Coordination
n Communications overhead

§6.2 The D
ifficulty of C

reating Parallel Processing Program
s

Chapter 6 — Parallel Processors from Client to Cloud — 5

Max
Highlight
資料分成independent的block做平行化計算或處理

Max
Highlight
平行化的同時需要注意同步化, 處理overhead的情況, 故平行化到一個程度上限之後, performance就會saturate

Amdahl’s Law
n Sequential part can limit speedup
n Example: 100 processors, 90× speedup?

n Tnew = Tparallelizable/100 + Tsequential

n

n Solving: Fparallelizable = 0.999
n Need sequential part to be 0.1% of original

time

90
/100F)F(1

1Speedup
ableparallelizableparalleliz

=
+-

=

Chapter 6 — Parallel Processors from Client to Cloud — 6

Max
Highlight

Max
Rectangle

Scaling Example
n Workload: sum of 10 scalars, and 10 × 10 matrix

sum
n Speed up from 10 to 100 processors

n Single processor: Time = (10 + 100) × tadd
n 10 processors

n Time = 10 × tadd + 100/10 × tadd = 20 × tadd
n Speedup = 110/20 = 5.5 (55% efficiency)

n 100 processors
n Time = 10 × tadd + 100/100 × tadd = 11 × tadd
n Speedup = 110/11 = 10 (10% efficiency)

n Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 7

Max
Highlight
Efficiency為 SpeedUp / Processor數量, 象徵CPU數量上升對應到SpeedUp上升的程度

Scaling Example (cont)
n What if matrix size is 100 × 100?
n Single processor: Time = (10 + 10000) × tadd

n 10 processors
n Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

n Speedup = 10010/1010 = 9.9 (99% efficiency)
n 100 processors

n Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

n Speedup = 10010/110 = 91 (91% efficiency)
n Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 8

Strong vs Weak Scaling
n Strong scaling: problem size fixed

n As in example
n Weak scaling: problem size proportional to

number of processors
n 10 processors, 10 × 10 matrix

n Time = 20 × tadd

n 100 processors, 32 × 32 matrix
n Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

n Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 9

Max
Highlight

Max
Underline

Max
Highlight
Amdahl's Law: 將problem size固定住, 這種限制使得performance會被bound住, 較悲觀

Instruction and Data Streams
n An alternate classification

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

RISC-V Base ISA

SIMD: AVX instructions of

x86; Thinking Machine

CM2

Multiple MISD:

No example

MIMD: Multi-processors:

Cray T3D, TM CM5

n SIMD: Single Instruction Multiple Data

n MIMD: Multiple Instruction Multiple Data

n SPMD: Single Program Multiple Data --- a

parallel program on a MIMD computer

Chapter 6 — Parallel Processors from Client to Cloud — 10

§
6
.3

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

http://www.hpcc.ecs.soton.ac.uk/EandT/coursew

are/IntroHPC/architectures.html

Max
Highlight
Sub-word parallelism: 根據資料需要的大小去做平行化計算

Ex: 若資料為8bit, Register有256bit, 那就可以將Register做分割去做資料的運算

Max
Typewriter
VLIW (Very Long Instruction Word)

Max
Highlight
Group of Register去做平行化的運算

Example: DAXPY (Y = a × X + Y)

nVector RISC-V code:
fld f0,0(x3) // load scalar a

fld.v v0,0(x19) // load vector x

fmul.d.vs v0,v0,f0 // vector-scalar multiply

fld.v v1,0(x20) // load vector y

fadd.d.v v1,v1,v0 // vector-vector add

fsd.v v1,0(x20) // store vector y

Chapter 6 — Parallel Processors from Client to Cloud — 11

nConventional RISC-V code:
fld f0,0(x3) // load scalar a

addi x5,x19,512 // end of array X

loop: fld f1,0(x19) // load x[i]

fmul.d f1,f1,f0 // a * x[i]

fld f2,0(x20) // load y[i]

fadd.d f2,f2,f1 // a * x[i] + y[i]

fsd f2,0(x20) // store y[i]

addi x19,x19,8 // increment index to x

addi x20,x20,8 // increment index to y

bltu x19,x5,loop // repeat if not done

Max
Callout
沒有Loop, 不用做Branch Prediction也沒有Pipeline Bubbles

Vector Processors
n Highly pipelined function units
n Stream data from/to vector registers to memory

n Data collected from memory into registers
n Results stored from registers to memory

n Example: Vector extension to RISC-V
n 32 × 64-element registers (64-bit elements)
n Vector instructions

n vld, vst: load/store vector
n vadd: add vectors of integers
n fadd.d.v: add two vectors of doubles

n Significantly reduces instruction-fetch bandwidth
and improve vector data access locality

Chapter 6 — Parallel Processors from Client to Cloud — 12

Max
Highlight
32個Group, 每個Group裡面有64個64bits的Register, 因此可以做Vectorized的平行化計算

Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words
+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element Vector
Registers

Chapter 6 — Parallel Processors from Client to Cloud — 13

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2 Memory

Vector Register

Vector Programming Model

Vector Instruction Set Advantages
n Compact

n one short instruction encodes N operations
n Expressive, tells hardware that these N operations:

n are independent
n use the same functional unit
n access disjoint registers
n access registers in the same pattern as previous

instructions
n access a contiguous block of memory (unit-stride

load/store)
n access memory in a known pattern (strided load/store)

n Scalable
n can run same object code on more parallel pipelines

or lanes

• Use deep pipeline (=> fast clock) to
execute element operations

• Simplifies control of deep pipeline
because elements in vector are
independent (=> no hazards!)

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Vector Arithmetic Execution

Max
Note
用深的Pipeline及Vector乘法的independency, 做出快速的Vector乘法

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank

Vector Memory System

Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using
four pipelined
functional units

Vector vs. Scalar
n Vector architectures and compilers

n Simplify data-parallel programming
n Explicit statement of absence of loop-carried

dependences
n Reduced checking in hardware

n Regular access patterns benefit from
interleaved and burst memory

n Avoid control hazards by avoiding loops
n More general than ad-hoc media

extensions (such as MMX, SSE)
n Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 19

SIMD
n Operate elementwise on vectors of data

n E.g., MMX and SSE instructions in x86
n Multiple data elements in 128-bit wide registers

n All processors execute the same
instruction at the same time
n Each with different data address, etc.

n Simplifies synchronization
n Reduced instruction control hardware
n Works best for highly data-parallel

applications

Chapter 6 — Parallel Processors from Client to Cloud — 20

Vector vs. Multimedia Extensions
n Vector instructions have a variable vector width,

multimedia extensions have a fixed width
n Vector instructions support strided access,

multimedia extensions do not
n Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 21

Multithreading
n Performing multiple threads of execution in

parallel
n Replicate registers, PC, etc.
n Fast switching between threads

n Fine-grain multithreading
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading

Chapter 6 — Parallel Processors from Client to Cloud — 22

Max
Highlight

Max
Highlight
每一個Cycle都做Threads Switching

Max
Highlight
Program運行到一定程度時才做Threads Switching, 實務上較容易實作

Max
Underline

Max
Underline

Simultaneous Multithreading
n In multiple-issue dynamically scheduled

processor
n Schedule instructions from multiple threads
n Instructions from independent threads execute

when function units are available
n Within threads, dependencies handled by

scheduling and register renaming
n Example: Intel Pentium-4 HT

n Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 23

Max
Highlight
將多個Threads結合在一個Pipeline內部執行(但運算複雜, 可能變慢)

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 24

Max
Callout
一個Cycle做Switch Thread

Future of Multithreading
n Will it survive? In what form?
n Power considerations Þ simplified

microarchitectures
n Simpler forms of multithreading

n Tolerating cache-miss latency
n Thread switch may be most effective

n Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 25

Max
Highlight

Shared Memory
n SMP: shared memory multiprocessor

n Hardware provides single physical
address space for all processors

n Synchronize shared variables using locks
n Memory access time

n UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 26

§6.5 M
ulticore and O

ther Shared M
em

ory M
ultiprocessors

Example: Sum Reduction
n Sum 100,000 numbers on 100 processor UMA

n Each processor has ID: 0 ≤ Pn ≤ 99
n Partition 1000 numbers per processor
n Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

n Now need to add these partial sums
n Reduction: divide and conquer
n Half the processors add pairs, then quarter, …
n Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 27

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 6 — Parallel Processors from Client to Cloud — 28

History of GPUs
n Early video cards

n Frame buffer memory with address generation for
video output

n 3D graphics processing
n Originally high-end computers (e.g., SGI)
n Moore’s Law Þ lower cost, higher density
n 3D graphics cards for PCs and game consoles

n Graphics Processing Units
n Processors oriented to 3D graphics tasks
n Vertex/pixel processing, shading, texture mapping,

rasterization

§6.6 Introduction to G
raphics Processing U

nits

Chapter 6 — Parallel Processors from Client to Cloud — 29

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 30

GPU Architectures
n Processing is highly data-parallel

n GPUs are highly multithreaded
n Use thread switching to hide memory latency

n Less reliance on multi-level caches
n Graphics memory is wide and high-bandwidth

n Trend toward general purpose GPUs
n Heterogeneous CPU/GPU systems
n CPU for sequential code, GPU for parallel code

n Programming languages/APIs
n DirectX, OpenGL
n C for Graphics (Cg), High Level Shader Language

(HLSL)
n Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 31

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Chapter 6 — Parallel Processors from Client to Cloud — 32

Example: NVIDIA Tesla
n Streaming Processors

n Single-precision FP and integer units
n Each SP is fine-grained multithreaded

n Warp: group of 32 threads
n Executed in parallel,

SIMD style
n 8 SPs

× 4 clock cycles
n Hardware contexts

for 24 warps
n Registers, PCs, …

Chapter 6 — Parallel Processors from Client to Cloud — 33

Classifying GPUs
n Don’t fit nicely into SIMD/MIMD model

n Conditional execution in a thread allows an
illusion of MIMD

n But with performance degredation
n Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered
at Runtime

Instruction-Level
Parallelism

VLIW Superscalar

Data-Level
Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 34

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 35

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 36

Feature Multicore with SIMD GPU
SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Chapter 6 — Parallel Processors from Client to Cloud — 37

Message Passing
n Each processor has private physical

address space
n Hardware sends/receives messages

between processors

§6.7 C
lusters, W

SC
, and O

ther M
essage-Passing M

Ps

Chapter 6 — Parallel Processors from Client to Cloud — 38

Loosely Coupled Clusters
n Network of independent computers

n Each has private memory and OS
n Connected using I/O system

n E.g., Ethernet/switch, Internet

n Suitable for applications with independent tasks
n Web servers, databases, simulations, …

n High availability, scalable, affordable
n Problems

n Administration cost (prefer virtual machines)
n Low interconnect bandwidth

n c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 39

Sum Reduction (Again)
n Sum 100,000 on 100 processors
n First distribute 100 numbers to each

n The do partial sums
sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

n Reduction
n Half the processors send, other half receive

and add
n The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 40

Sum Reduction (Again)
n Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

n Send/receive also provide synchronization
n Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 41

Grid Computing
n Separate computers interconnected by

long-haul networks
n E.g., Internet connections
n Work units farmed out, results sent back

n Can make use of idle time on PCs
n E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 42

Interconnection Networks
n Network topologies

n Arrangements of processors, switches, and links

§6.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 43

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 44

Network Characteristics
n Performance

n Latency per message (unloaded network)
n Throughput

n Link bandwidth
n Total network bandwidth
n Bisection bandwidth

n Congestion delays (depending on traffic)
n Cost
n Power
n Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 45

Parallel Benchmarks
n Linpack: matrix linear algebra
n SPECrate: parallel run of SPEC CPU programs

n Job-level parallelism
n SPLASH: Stanford Parallel Applications for

Shared Memory
n Mix of kernels and applications, strong scaling

n NAS (NASA Advanced Supercomputing) suite
n computational fluid dynamics kernels

n PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
n Multithreaded applications using Pthreads and

OpenMP

§6.10 M
ultiprocessor Benchm

arks and Perform
ance M

odels

Chapter 6 — Parallel Processors from Client to Cloud — 46

Code or Applications?
n Traditional benchmarks

n Fixed code and data sets
n Parallel programming is evolving

n Should algorithms, programming languages,
and tools be part of the system?

n Compare systems, provided they implement a
given application

n E.g., Linpack, Berkeley Design Patterns
n Would foster innovation in approaches to

parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 47

Modeling Performance
n Assume performance metric of interest is

achievable GFLOPs/sec
n Measured using computational kernels from

Berkeley Design Patterns
n Arithmetic intensity of a kernel

n FLOPs per byte of memory accessed
n For a given computer, determine

n Peak GFLOPS (from data sheet)
n Peak memory bytes/sec (using Stream

benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 48

Roofline Diagram

Attainable GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 49

Max
Highlight

Max
Note
CPU的Throughput

Max
Note
記憶體每讀一筆(Ex: 4Bytes)資料能夠做的計算量

(Memory Throughput)

Max
Rectangle

Max
Rectangle

Max
Oval

Max
Note
Peak Performance

往左: Memory bounded, 記憶體需求比計算需求大

往右: CPU bounded, 計算需求比記憶體需求大

Max
Line

Comparing Systems
n Example: Opteron X2 vs. Opteron X4

n 2-core vs. 4-core, 2× FP performance/core, 2.2GHz
vs. 2.3GHz

n Same memory system

n To get higher performance
on X4 than X2
n Need high arithmetic intensity
n Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 50

Max
Highlight

Max
Arrow

Max
Oval

Max
Oval

Max
Highlight

Max
Highlight

Optimizing Performance
n Optimize FP performance

n Balance adds & multiplies
n Improve superscalar ILP

and use of SIMD
instructions

n Optimize memory usage
n Software prefetch

n Avoid load stalls
n Memory affinity

n Avoid non-local data
accesses

Chapter 6 — Parallel Processors from Client to Cloud — 51

Max
Highlight

Max
Highlight

Max
Arrow

Max
Arrow

Max
Highlight
會被用到的記憶體資料盡可能放在一起

Max
Callout
Improve計算能力的部分(右)

Max
Callout
Improve記憶體使用的部分(左)

Max
Arrow

Max
Highlight
把之後會用到的資料先讀取進來

Optimizing Performance
n Choice of optimization depends on

arithmetic intensity of code

n Arithmetic intensity is
not always fixed
n May scale with

problem size
n Caching reduces

memory accesses
n Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 52

i7-960 vs. NVIDIA Tesla 280/480
§6.11 R

eal Stuff: Benchm
arking and R

ooflines i7 vs. Tesla

Chapter 6 — Parallel Processors from Client to Cloud — 53

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 54

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 55

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 56

n GPU (480) has 4.4 X the memory bandwidth
n Benefits memory bound kernels

n GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
n Benefits FP compute bound kernels

n CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

n GPUs offer scatter-gather, which assists with kernels
with strided data

n Lack of synchronization and memory consistency
support on GPU limits performance for some kernels

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 57

§6.12 G
oing Faster: M

ultiple Processors and M
atrix M

ultiply

n Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE)
do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 58

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 59

Fallacies
n Amdahl’s Law doesn’t apply to parallel

computers
n Since we can achieve linear speedup
n But only on applications with weak scaling

n Peak performance tracks observed
performance
n Marketers like this approach!
n But compare Xeon with others in example
n Need to be aware of bottlenecks

§6.13 Fallacies and Pitfalls

Chapter 6 — Parallel Processors from Client to Cloud — 60

Pitfalls
n Not developing the software to take

account of a multiprocessor architecture
n Example: using a single lock for a shared

composite resource
n Serializes accesses, even if they could be done in

parallel
n Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 61

Concluding Remarks
n Goal: higher performance by using multiple

processors
n Difficulties

n Developing parallel software
n Devising appropriate architectures

n SaaS importance is growing and clusters are a
good match

n Performance per dollar and performance per
Joule drive both mobile and WSC

§6.14 C
oncluding R

em
arks

Chapter 6 — Parallel Processors from Client to Cloud — 62

Concluding Remarks (con’t)
n SIMD and vector

operations match
multimedia applications
and are easy to
program

Chapter 6 — Parallel Processors from Client to Cloud — 63

