Chapter 6

Parallel Processors from
Client to Cloud




Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors

Scalability, availability, power efficiency
Task-level (process-level) parallelism

High throughput for independent jobs
Parallel processing program

Single program run on multiple processors

Multicore microprocessors --- chips with
multiple processors (cores)
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Hardware and Software

Hardware

Serial: e.g., one Pentium core

Parallel: e.g., quad-core Xeon CPU
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., web server
Sequential/concurrent software can run on
serial/parallel hardware

Challenge: making effective use of parallel
hardware
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' What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Subword Parallelism

§4.10: Parallelism and Advanced
Instruction-Level Parallelism

§5.10: Parallelism and Memory
Hierarchies

Cache Coherence
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| Parallel Programming

Parallel software is the problem

Need to get significant performance
improvement

Otherwise, just use a faster uniprocessor,
since it's easier!
Difficulties
Partitioning
Coordination
Communications overhead
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| Amdahl’s Law

Sequential part can limit speedup
Example: 100 processors, 90x speedup?

Tnew = Tparallelizable//I 00 + Tsequential

1
)+Fp

Speedup =

- 90
(1-F /100

parallelizable arallelizable

SOIVing: |:parallelizable = 0.999

Need sequential part to be 0.1% of original
time
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| Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_g44
10 processors
Time =10 x t44 + 100/10 x t_44 = 20 x t_ 4
Speedup = 110/20 = 5.5 (55% efficiency)
100 processors
Time =10 x t 44 + 100/100 x t_ 4y = 11 x t_44
Speedup = 110/11 = 10 (10% efficiency)

Assumes load can be balanced across
Processors
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' Scaling Example (cont)

What if matrix size is 100 x 1007
Single processor: Time = (10 + 10000) x t_g44
10 processors
Time = 10 x t 4y + 10000/10 % t,4q = 1010 x t,4q
Speedup = 10010/1010 = 9.9 (99% efficiency)
100 processors
Time = 10 x t 4y + 10000/100 x t,4q = 110 x t,4q
Speedup = 10010/110 = 91 (91% efficiency)

Assuming load balanced
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' Strong vs Weak Scaling

Strong scaling: problem size fixed
As In example

Weak scaling: problem size proportional to
number of processors

10 processors, 10 x 10 matrix

Time = 20 x t_44
100 processors, 32 x 32 matrix

Time = 10 x t,qy + 1000/100 % t,4q = 20 % t,qq
Constant performance in this example
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| Instruction and Data Streams

An alternate classification

Data Streams
Single Multiple
Instruction | Single | SISD: SIMD: AVX instructions of
Streams RISC-V Base ISA x86; Thinking Machine
CM2
Multiple | MISD: MIMD: Multi-processors:
No example Cray T3D, TM CMS [0 Gt ions

SIMD: Single Instruction Multiple Data

MIMD: Multiple Instruction Multiple Data

SPMD: Single Program Multiple Data --- a
parallel program on a MIMD computer

http://WWW.hpCC.ec.;S.Soton.ac.uk/EandT/COlEﬁgg\{er 6 — Parallel Processors from Client to Cloud — 10
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Example: DAXPY (Y = a x X + Y)

Conventional RISC-V code:
f1d f0,0(x3) // load scalar a
addi x5,x19,512 // end of array X
Toop: fld f1,0(x19) // Toad x[i]
fmul.d f1,f1,f0 // a * x[i]
f1d 2,0(x20) // load y[i]
fadd.d f2,f2,f1 // a * x[1] + y[i]
fsd 2,0(x20) // store y[i]
addi x19,x19,8 // increment index to Xx
addi x20,x20,8 // increment index to y
b1tu x19,x5,1oop // repeat if not done

Vector RISC-V code: Loop, Branch
f1d £0,0(x3)  // load scalar a .~ |oumoes PO
fld.v v0,0(x19) // load vector x
fmul.d.vs vO,v0,f0 // vector-scalar multiply
fld.v vl,0(x20) // load vector y
fadd.d.v v1,vl,v0 // vector-vector add
fsd.v v1l,0(x20) // store vector y
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| Vector Processors

Highly pipelined function units

Stream data from/to vector registers to memory
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
32 x 64-element registers (64-bit elements)

Vector instructions
vld, vst: load/store vector
vadd: add vectors of integers
fadd.d.v: add two vectors of doubles

Significantly reduces instruction-fetch bandwidth
and improve vector data access locality
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Cray-1 (1976)

VO V.
V1 — V. Mask
64 Fltement-Yector V2 V,
— 5 xi y V. Length
. Registers :
Single Port d Vo
Memory VL | FP Add
SO S; »>| FP Mul
16 banks of 64- ((A)*+jkm) | - J .
bit words s, | S FP Reclp
A 64 — | s S,
N (Ro) T Reasl_ T " Int Add
8-bit SECDED 9of = o[ Int Logic
Int Shift
AQ
80MW/sec data ((A)+jkm) s Pop Cnt
load/store A [ A ‘
(Ao) |64 B' [ —as A "| Addr Add
> 5 »
320MW/sec B Regsj—= e | A Addr Mul
. . A7
Instruction o
buffer refill — R S
+/—| 64-bitx16 [J=7 NIP CIP
4 Instruction Buffers LLP

memory bank cycle 50 ns  processor cycle 12.5 ns (80MHZz)
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| Vector Programming Model
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Vector Instruction Set Advantages

Compact
one short instruction encodes N operations

Expressive, tells hardware that these N operations:
are independent
use the same functional unit
access disjoint registers

access registers in the same pattern as previous
Instructions

access a contiguous block of memory (unit-stride
load/store)

access memory in a known pattern (strided load/store)
Scalable

can run same object code on more parallel pipelines
or lanes



Vector Arithmetic Execution

» \Use deep pipeline (=> fast clock) to v ilv [lv
execute element operations 1 112 113
« Simplifies control of deep pipeline
because elements in vector are R
independent (=> no hazards!) '\ T
-
L
%.gix stage multiply pipeline /' \ /<'-
T

V3 <= vl * v2
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Vector Memory System

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

« Bank busy time: Cycles between accesses to same bank

Base Stride

Vector Registers
[ 3 I ‘L 3
Address _
Generator \ + /
f i
O |1 (2 (3 |4 |5 |6 (7 |8 |9 C |[D |E |F
Memaory Banks




Vector Instruction Execution

Al6]  BI6]
A[S]  B[9]
Al4]  Bl4]
A[B]  B[3]

Execution using
one pipelined
functional unit
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| Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology
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Operate elementwise on vectors of data
E.g., MMX and SSE instructions in x86

Multiple data elements in 128-bit wide registers

All processors execute the same
instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications
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Vector vs. Multimedia Extensions

Vector instructions have a variable vector width,
multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and
arrayed functional units: ottt
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' Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.

Fast switching between threads
Fine-grain multithreading

Switch threads after each cycle

Interleave instruction execution

If one thread stalls, others are executed
Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)
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| Simultaneous Multithreading

In multiple-issue dynamically scheduled
processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches
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Multithreading Example

Time

Time

Cycle

\

Switch Thread

Issue slots ——
Thread A

Thread B

Issue slots ——

Coarse MT
HE
[ |

Fine MT
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' Future of Multithreading

Will it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively
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Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor . Processor

Interconnection Network
A
Y

Memory 1/O

A
Y
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Example: Sum Reduction
Sum 100,000 numbers on 100 processor UMA

Each processor has ID: 0 < Pn <99
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] = O;
for (1 = 1000*Pn;
1 < 1000*(Pn+1); 1 =1 + 1)
sum[Pn] = sum[Pn] + A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...
Need to synchronize between reduction steps
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Example: Sum Reduction

0

=

;
™

(half =2)[0][1][2][3
half = 100; T
repeat (half =4)]0
synch();
1t (half%2 != 0 && Pn == 0)
sum[0] = sum[0] + sum[half-1];
/% Conditional sum needed when half is odd;
Processor0 gets missing element */
half = half/2; /* dividing line on who sums */
if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];
until (half == 1);

o

(half = 1)

_
N
w
N
&)
(o)}
~
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| History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore's Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units
Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization
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Graphics in the System

Intel
CPU

A
Front Side Bus
4

x16 PCI-Express Link

North | DDR2
display Bridge Memory
x4 PCI-Express Link 4 128-bit
derivative y 667 MT/s
AMD
GPU
Memory South CPU
CPU Bridge CPU
core
A . A 128-bit
Front Side B .
I ront Side Bus internal bus 667 MT/s
Bridge Bridge Memory
A
y PClBus A
A x16 PCI-Express Link y HyperTransport 1.03
\
South Framebuffer _ Chipset
Bridge Memory display
J
i
VGA GPU
LAN UART _!il Display Memory
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| GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs

DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Tesla
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Example: NVIDIA Tesla

Streaming Processors
Single-precision FP and integer units
Each SP is fine-grained multithreaded

Warp: group of 32 threads
Executed in parallel,

Processors

UltraSPARC T2 Tesla Multiprocessor

B [EEEEEEER
SIMD Style B Thread ENEEEEEN .
8 SPs e |(EEEEmEEE
x 4 clock cycles Sopporcs I Theact [
e Qi EEEEEEES...
Hardware contexts | Hmer | SEEEEEEE

for 24 warps
Registers, PCs, ...

EEEEEEEN
T —
EEEEEEEE

EEEEEEEE
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' Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation

Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism
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GPU Memory Structures

CUDA Thread

Per-CUDA Thread Private Memory

Thread block
Per-Block
Local Memory

Grid 0 Sequence
<L = < <L
— — — Inter-Grid Synchronization — — — GPU Memory

Grid 1

&
> > > -~
7 PPPPPPPPPP Y
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Putting GPUs into Perspective
_ Featre | Multicorewith SIMD | _GPU__

SIMD processors 4t08 8 to 16
SIMD lanes/processor 2to4 8 to 16
Multithreading hardware support for 2to 4 16 to 32
SIMD threads

Typical ratio of single precision to 2:1 2:1
double-precision performance

Largest cache size 8 MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4 GBto 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD Yes No
processor

Cache coherent Yes No

Chapter 6 — Parallel Processors from Client to Cloud — 36



osest old term
ouhlllo of GPUs

Official CUDA/
NVIDIA GPU term Book definition

Vectorizable Vectorizable Loop Avectonizable loop, exscutad on the GPU, mads

" Loop up of one or more Thread Blocks (bodies of

S vectorized loop) that can execute in parallel.

E Body of Body ofa Thread Block Avectonized loop exscuted on a multithreaded

2 Vectorized Loop | (Strip-Mined) SIMD Proc=ssor, made up of ons or mors threads

s Vectorized Loop of SIMD instructions. They can communicate via

% Local Memory.

e Sequence of One itaration of CUDA Thread Avertical cut of a thread of SIMD instuctions
SIMD Lane a Scalar Loop corresponding to ons lement exscutad by one
Operations SIMD Lan=. Result is storsd depending on mask

and pradicats register.

- A Thr=ad of Thread of Vector Warp A traditional thr=ad, but it contains just SIMD

R SIMD Instructions instructions that are exscuted on a multithreaded

£ Instructions SIMD Proc=ssor. Results stored depanding on a

%’ per<lement mask,

é’ SIMD Vector Instruction | PTX Instruction A single SIMD instuction exscutad across SIMD
Instruction Lanes.

Multithreadsd (Multithreaded) Streaming A multithreaded SIMD Procsssor exscutes
SIMD Vector Procsssor Multiprocessor threads of SIMD instructions, ndependent of
Procassor othar SIMD Processors.

Thread Block Scalar Procassor Giga Thread Assigns multiple Thread Blocks (bodies of

§ Scheduler Engine vectorized loop) to rmultithreaded SIMD

- Procassors.

2 SIMD Thread Thr=ad scheduler | Warp Scheduler Harcwars unit that schadules and issuss threads

E" Scheduler in @ Multithreaded of SIMD instructions when they ars ready to

2 CPU execute; includes a scorsboard to track SIMD

g Thr=ad execution.

o SIMD Lane Vector lane Thr=ad Procsssor A SIMD Lan= exscutss the opsrations in a thread
of SIMD instructions on a single elemant. Rasults
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accassible by all multithreaded

o SIMD Proc=ssors ina GPU.

2

2 Local Memory Local Memory Sharad M=mory Fast local SRAM for one multithrsaded SIMD

g- Procassor, unavailable to other SIMD Processors.

a

= SIMD Lane Vector Lane Thread Procsssor Ragisters in a single SIMD Lane allocatad acress
Registers Ragisters Ragdisters a full thread block (bady of vectorized boop).
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' Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor Processor
A A A
Y \ Y
Cache Cache Cache
A A A
Y Y  J
Memory Memory Memory
A A A
Y Y Y
Interconnection Network
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' Loosely Coupled Clusters

Network of independent computers

Each has private memory and OS

Connected using /O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...

High availability, scalable, affordable

Problems

Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP
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| Sum Reduction (Again)

Sum 100,000 on 100 processors

First distribute 100 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 =1 + 1)
sum = sum + AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...
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Sum Reduction (Again)

Given send() and receive() operations

Timit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum = sum + receive();
Timit = half; /* upper 1imit of senders */
until Chalf == 1); /* exit with final sum */

Send/receive also provide synchronization
Assumes send/receive take similar time to addition
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| Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections
Work units farmed out, results sent back

Can make use of idle time on PCs
E.g., SETI@home, World Community Grid
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Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

R S S S S S

Bus Ring

AAAA

QIO

T {w]{w

T e {w

C

s J\'J‘Ji N-cube (N = 3)

2D Mesh

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 43



Multistage Networks
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' Network Characteristics

Performance
Latency per message (unloaded network)

Throughput

Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon
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| Parallel Benchmarks

Linpack: matrix linear algebra
SPECrate: parallel run of SPEC CPU programs

Job-level parallelism

SPLASH: Stanford Parallel Applications for
Shared Memory
Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite

computational fluid dynamics kernels

PARSEC (Princeton Application Repository for
Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP
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Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism
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| Modeling Performance

Assume performance metric of interest is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed
For a given computer, determine

Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
benchmark)
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(Memory Throughput)
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Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2% FP performance/core, 2.2GHz
vs. 2.3GHz

Same memory system

128.0 ’ Opteron X4 (Barc )

640 To get higher performance
32.0 on X4 than X2

5
S 160 O Need high arithmetic intensity
o 80 \/ Or working set must fit in X4’s
g 40 Opteron X2 2MB L-3 cache
£ 20¢

1.0

0.5

Vg Wy 1, 12 4 8 16
Actual FLOPbyte ratio
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Optimizing Performance

AMD Opteron

Optimize FP performance -

Balance adds & multiplies .. .
Improve superscalar ILP
and use Of SIMD é% 20 Q® 2. Without ILP or SIMD

instructions mpae | 7
Optimize memory usage ’8
Software prefetch  [meove ~
Avoid load stalls
Memory affinity 5
Avoid non-local data
dCCEeSSES 10

2 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio
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Optimizing Performance

Choice of optimization depends on
arithmetic intensity of code

A

Arithmetic intensity is
?:Z _peakfloatingpoint perform_ance nOt always fixed

May scale with
problem size

Caching reduces
memory accesses

Increases arithmetic
iIntensity

8.0

4.0 |

2.0

Attainable GFLOPs/second

Kernel 1 Kernel 2

1.0

0.5 . - -
1/8 1/4 1/2 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio
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17-960 vs. NVIDIA Tesla 280/480
LW o | e S

Number of processing elements (cores or SMs)

Clock frequency (GHz) 3.2 1.3 1.4 0.41 0.44
Die size 263 576 520 2.2 2.0
Technology Intel 45 nm TCMS 65 nm TCMS 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3100 M 2.0 4.4
Memory brandwith (GBytes/sec) 32 141 177 4.4 5.5
Single frecision SIMD width 4 8 32 2.0 8.0
Dobule precision SIMD with 2 1 16 0.5 8.0
Peak Single frecision scalar FLOPS (GFLOP/sec) 26 117 63 4.6 2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec) 102 311 to 933 515to 1344 |3.09.1 |6.6-13.1
(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)
(SP 1 instruction fused) N.A (622) (1344) (6.1) (13.1)
(face SP dual issue fused) N.A (933) N.A (9.1) -
Peal double frecision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1
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Rooflines

Intel Core i7-960 NVIDIA GTX280
128 v . v 128 4 . . . . .
: : : : : : : peak = 78 GFlop/s
64p. i 51.2.GF/s Double Preision 64 T
. . . . 1 . .
) ! . )
Z IR a 16
o : ks)
5 ; &
.............. I L 8
! 4
I
QPR LTS T O 2
1 : 1 : : I : ; 1 >
1/8 1/4 1/2 1 2 4 8 16 32 1/8 1/4 1/2 1 2 4 8 16
Arithmetic Intensity (Flops/Byte) Arithmetic Intensity

512 Intgl Core |7—96O .

256f il

168 .- e 1024 GF/s Single Precision

GFlops/s

4 l . . : :
41/8 1/4 1/2 1 2 4 8 16 32
Arithmetic Intensity (Flops/Byte)
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Benchmarks

GTX 280/

SGEMM GFLOP/sec

MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 714 213 3.0
SAXPY GBytes/sec 16.8 88.8 5.3
LBM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec 5 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 5.7
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' Performance Summary

GPU (480) has 4.4 X the memory bandwidth

Benefits memory bound kernels

GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
Benefits FP compute bound kernels

CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

GPUs offer scatter-gather, which assists with kernels
with strided data

Lack of synchronization and memory consistency
support on GPU limits performance for some kernels
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Multi-threading DGEMM

Use OpenMP:

vold dgemm (int n, double* A, double* B, double* C)

{
fpragma omp parallel for

for ( int sj = 0; s < n; sj += BLOCKSIZE )

for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do block(n, si, sj, sk, A, B, C);
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Multithreaded DGEMM

960 X 960
480 X 480
—u—160 X 160

Speedup relative to 1 core

—e—32 X 32

Threads
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Multithreaded DGEMM

32x32 m 160x160 m 480x480m 960x960
200

150

100

GFLOPS

50

Threads
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| Fallacies

Amdahl's Law doesn’t apply to parallel
computers

Since we can achieve linear speedup

But only on applications with weak scaling
Peak performance tracks observed
performance

Marketers like this approach!

But compare Xeon with others in example

Need to be aware of bottlenecks
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| Pitfalls

Not developing the software to take

account of a multiprocessor architecture
Example: using a single lock for a shared
composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking
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' Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties

Developing parallel software
Devising appropriate architectures

SaaS importance is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC
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Concluding Remarks (con’t)

SIMD and vector 1000
. —¥- MIMD*SIMD (32b)
operations match ¢ MIMD*SIMD (64b)
multimedia applications SIMD (32b)
—o- SIMD (64b)
and are easy to . MIVD

program

Potential parallel speedup

1 | | | |
2003 2007 2011 2015 2019 2023
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