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Chapter 6
Parallel Processors from 
Client to Cloud



Introduction
n Goal: connecting multiple computers

to get higher performance
n Multiprocessors
n Scalability, availability, power efficiency

n Task-level (process-level) parallelism
n High throughput for independent jobs

n Parallel processing program
n Single program run on multiple processors
n Multicore microprocessors --- chips with 

multiple processors (cores)

§6.1 Introduction
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Hardware and Software
n Hardware

n Serial: e.g., one Pentium core
n Parallel: e.g., quad-core Xeon CPU

n Software
n Sequential: e.g., matrix multiplication
n Concurrent: e.g., web server

n Sequential/concurrent software can run on 
serial/parallel hardware
n Challenge: making effective use of parallel 

hardware
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What We’ve Already Covered
n §2.11: Parallelism and Instructions

n Synchronization
n §3.6: Parallelism and Computer Arithmetic

n Subword Parallelism
n §4.10: Parallelism and Advanced 

Instruction-Level Parallelism
n §5.10: Parallelism and Memory 

Hierarchies
n Cache Coherence
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Parallel Programming
n Parallel software is the problem
n Need to get significant performance 

improvement
n Otherwise, just use a faster uniprocessor, 

since it’s easier!
n Difficulties

n Partitioning
n Coordination
n Communications overhead

§6.2 The D
ifficulty of C

reating Parallel Processing Program
s
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Amdahl’s Law
n Sequential part can limit speedup
n Example: 100 processors, 90× speedup?

n Tnew = Tparallelizable/100 + Tsequential

n

n Solving: Fparallelizable = 0.999
n Need sequential part to be 0.1% of original 

time
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Scaling Example
n Workload: sum of 10 scalars, and 10 × 10 matrix 

sum
n Speed up from 10 to 100 processors

n Single processor: Time = (10 + 100) × tadd
n 10 processors

n Time = 10 × tadd + 100/10 × tadd = 20 × tadd
n Speedup = 110/20 = 5.5 (55% efficiency)

n 100 processors
n Time = 10 × tadd + 100/100 × tadd = 11 × tadd
n Speedup = 110/11 = 10 (10% efficiency)

n Assumes load can be balanced across 
processors
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Scaling Example (cont)
n What if matrix size is 100 × 100?
n Single processor: Time = (10 + 10000) × tadd

n 10 processors
n Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

n Speedup = 10010/1010 = 9.9 (99% efficiency)
n 100 processors

n Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

n Speedup = 10010/110 = 91 (91% efficiency)
n Assuming load balanced
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Strong vs Weak Scaling
n Strong scaling: problem size fixed

n As in example
n Weak scaling: problem size proportional to 

number of processors
n 10 processors, 10 × 10 matrix

n Time = 20 × tadd

n 100 processors, 32 × 32 matrix
n Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

n Constant performance in this example
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Instruction and Data Streams
n An alternate classification

Data Streams

Single Multiple

Instruction 

Streams

Single SISD:

RISC-V Base ISA

SIMD: AVX instructions of 

x86; Thinking Machine 

CM2

Multiple MISD:

No example

MIMD: Multi-processors: 

Cray T3D, TM CM5

n SIMD: Single Instruction Multiple Data

n MIMD: Multiple Instruction Multiple Data

n SPMD: Single Program Multiple Data --- a 

parallel program on a MIMD computer
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Example: DAXPY (Y = a × X + Y)

nVector RISC-V code:
fld f0,0(x3)    // load scalar a

fld.v v0,0(x19)   // load vector x

fmul.d.vs v0,v0,f0    // vector-scalar multiply

fld.v v1,0(x20)   // load vector y

fadd.d.v v1,v1,v0    // vector-vector add

fsd.v v1,0(x20)   // store vector y
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nConventional RISC-V code:
fld f0,0(x3)     // load scalar a

addi x5,x19,512   // end of array X

loop: fld f1,0(x19)    // load x[i]

fmul.d f1,f1,f0     // a * x[i]

fld f2,0(x20)    // load y[i]

fadd.d f2,f2,f1     // a * x[i] + y[i]

fsd f2,0(x20)    // store y[i]

addi x19,x19,8    // increment index to x

addi x20,x20,8    // increment index to y

bltu x19,x5,loop  // repeat if not done
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Vector Processors
n Highly pipelined function units
n Stream data from/to vector registers to memory

n Data collected from memory into registers
n Results stored from registers to memory

n Example: Vector extension to RISC-V
n 32 × 64-element registers (64-bit elements)
n Vector instructions

n vld, vst: load/store vector
n vadd: add vectors of integers
n fadd.d.v: add two vectors of doubles

n Significantly reduces instruction-fetch bandwidth 
and improve vector data access locality
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Cray-1 (1976)

Single Port
Memory

16 banks of 64-
bit words
+ 
8-bit SECDED

80MW/sec data 
load/store

320MW/sec 
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

( (Ah) + j k m )

64
T Regs

(A0)

( (Ah) + j k m )

64 
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add

FP Mul

FP Recip

Int Add

Int Logic

Int Shift

Pop Cnt

Sj

Si

Sk

Addr Add

Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns     processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element Vector 
Registers
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[0] [1] [VLR-1]

Vector Arithmetic 
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and Store Instructions

LV v1, r1, r2

Base, r1 Stride, r2 Memory

Vector Register

Vector Programming Model



Vector Instruction Set Advantages
n Compact

n one short instruction encodes N operations
n Expressive, tells hardware that these N operations:

n are independent
n use the same functional unit
n access disjoint registers
n access registers in the same pattern as previous 

instructions
n access a contiguous block of memory (unit-stride 

load/store)
n access memory in a known pattern (strided load/store) 

n Scalable
n can run same object code on more parallel pipelines 

or lanes



• Use deep pipeline (=> fast clock) to 
execute element operations

• Simplifies control of deep pipeline 
because elements in vector are 
independent (=> no hazards!) 

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Vector Arithmetic Execution
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0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency
• Bank busy time: Cycles between accesses to same bank

Vector Memory System



Vector Instruction Execution
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]
A[4] B[4]
A[5] B[5]
A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]
A[16] B[16]
A[20] B[20]
A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]
A[17] B[17]
A[21] B[21]
A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]
A[18] B[18]
A[22] B[22]
A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]
A[19] B[19]
A[23] B[23]
A[27] B[27]

Execution using 
four pipelined 
functional units



Vector vs. Scalar
n Vector architectures and compilers

n Simplify data-parallel programming
n Explicit statement of absence of loop-carried 

dependences
n Reduced checking in hardware

n Regular access patterns benefit from 
interleaved and burst memory

n Avoid control hazards by avoiding loops
n More general than ad-hoc media 

extensions (such as MMX, SSE)
n Better match with compiler technology
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SIMD
n Operate elementwise on vectors of data

n E.g., MMX and SSE instructions in x86
n Multiple data elements in 128-bit wide registers

n All processors execute the same 
instruction at the same time
n Each with different data address, etc.

n Simplifies synchronization
n Reduced instruction control hardware
n Works best for highly data-parallel 

applications
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Vector vs. Multimedia Extensions
n Vector instructions have a variable vector width, 

multimedia extensions have a fixed width
n Vector instructions support strided access, 

multimedia extensions do not
n Vector units can be combination of pipelined and 

arrayed functional units:
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Multithreading
n Performing multiple threads of execution in 

parallel
n Replicate registers, PC, etc.
n Fast switching between threads

n Fine-grain multithreading
n Switch threads after each cycle
n Interleave instruction execution
n If one thread stalls, others are executed

n Coarse-grain multithreading
n Only switch on long stall (e.g., L2-cache miss)
n Simplifies hardware, but doesn’t hide short stalls 

(eg, data hazards)

§6.4 H
ardw

are M
ultithreading
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Simultaneous Multithreading
n In multiple-issue dynamically scheduled 

processor
n Schedule instructions from multiple threads
n Instructions from independent threads execute 

when function units are available
n Within threads, dependencies handled by 

scheduling and register renaming
n Example: Intel Pentium-4 HT

n Two threads: duplicated registers, shared 
function units and caches
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Multithreading Example
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Future of Multithreading
n Will it survive? In what form?
n Power considerations Þ simplified 

microarchitectures
n Simpler forms of multithreading

n Tolerating cache-miss latency
n Thread switch may be most effective

n Multiple simple cores might share 
resources more effectively
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Shared Memory
n SMP: shared memory multiprocessor

n Hardware provides single physical
address space for all processors

n Synchronize shared variables using locks
n Memory access time

n UMA (uniform) vs. NUMA (nonuniform)
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Example: Sum Reduction
n Sum 100,000 numbers on 100 processor UMA

n Each processor has ID: 0 ≤ Pn ≤ 99
n Partition 1000 numbers per processor
n Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

n Now need to add these partial sums
n Reduction: divide and conquer
n Half the processors add pairs, then quarter, …
n Need to synchronize between reduction steps
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Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);
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History of GPUs
n Early video cards

n Frame buffer memory with address generation for 
video output

n 3D graphics processing
n Originally high-end computers (e.g., SGI)
n Moore’s Law Þ lower cost, higher density
n 3D graphics cards for PCs and game consoles

n Graphics Processing Units
n Processors oriented to 3D graphics tasks
n Vertex/pixel processing, shading, texture mapping,

rasterization

§6.6 Introduction to G
raphics Processing U

nits
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Graphics in the System
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GPU Architectures
n Processing is highly data-parallel

n GPUs are highly multithreaded
n Use thread switching to hide memory latency

n Less reliance on multi-level caches
n Graphics memory is wide and high-bandwidth

n Trend toward general purpose GPUs
n Heterogeneous CPU/GPU systems
n CPU for sequential code, GPU for parallel code

n Programming languages/APIs
n DirectX, OpenGL
n C for Graphics (Cg), High Level Shader Language 

(HLSL)
n Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Tesla
Streaming 

multiprocessor

8 × Streaming
processors
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Example: NVIDIA Tesla
n Streaming Processors

n Single-precision FP and integer units
n Each SP is fine-grained multithreaded

n Warp: group of 32 threads
n Executed in parallel,

SIMD style
n 8 SPs

× 4 clock cycles
n Hardware contexts

for 24 warps
n Registers, PCs, …
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Classifying GPUs
n Don’t fit nicely into SIMD/MIMD model

n Conditional execution in a thread allows an 
illusion of MIMD

n But with performance degredation
n Need to write general purpose code with care

Static: Discovered
at Compile Time

Dynamic: Discovered 
at Runtime

Instruction-Level 
Parallelism

VLIW Superscalar

Data-Level 
Parallelism

SIMD or Vector Tesla Multiprocessor
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GPU Memory Structures
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Putting GPUs into Perspective
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Feature Multicore with SIMD GPU
SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to 

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD 

processor

Yes No

Cache coherent Yes No
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Message Passing
n Each processor has private physical 

address space
n Hardware sends/receives messages 

between processors

§6.7 C
lusters, W

SC
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Chapter 6 — Parallel Processors from Client to Cloud — 38



Loosely Coupled Clusters
n Network of independent computers

n Each has private memory and OS
n Connected using I/O system

n E.g., Ethernet/switch, Internet

n Suitable for applications with independent tasks
n Web servers, databases, simulations, …

n High availability, scalable, affordable
n Problems

n Administration cost (prefer virtual machines)
n Low interconnect bandwidth

n c.f. processor/memory bandwidth on an SMP
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Sum Reduction (Again)
n Sum 100,000 on 100 processors
n First distribute 100 numbers to each

n The do partial sums
sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + AN[i];

n Reduction
n Half the processors send, other half receive 

and add
n The quarter send, quarter receive and add, …
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Sum Reduction (Again)
n Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
half = (half+1)/2; /* send vs. receive

dividing line */
if (Pn >= half && Pn < limit)
send(Pn - half, sum);

if (Pn < (limit/2))
sum = sum + receive();

limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

n Send/receive also provide synchronization
n Assumes send/receive take similar time to addition
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Grid Computing
n Separate computers interconnected by 

long-haul networks
n E.g., Internet connections
n Work units farmed out, results sent back

n Can make use of idle time on PCs
n E.g., SETI@home, World Community Grid
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Interconnection Networks
n Network topologies

n Arrangements of processors, switches, and links

§6.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Bus Ring

2D Mesh
N-cube (N = 3)

Fully connected
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Multistage Networks
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Network Characteristics
n Performance

n Latency per message (unloaded network)
n Throughput

n Link bandwidth
n Total network bandwidth
n Bisection bandwidth

n Congestion delays (depending on traffic)
n Cost
n Power
n Routability in silicon
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Parallel Benchmarks
n Linpack: matrix linear algebra
n SPECrate: parallel run of SPEC CPU programs

n Job-level parallelism
n SPLASH: Stanford Parallel Applications for 

Shared Memory
n Mix of kernels and applications, strong scaling

n NAS (NASA Advanced Supercomputing) suite
n computational fluid dynamics kernels

n PARSEC (Princeton Application Repository for 
Shared Memory Computers) suite
n Multithreaded applications using Pthreads and 

OpenMP

§6.10 M
ultiprocessor Benchm

arks and Perform
ance M

odels
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Code or Applications?
n Traditional benchmarks

n Fixed code and data sets
n Parallel programming is evolving

n Should algorithms, programming languages, 
and tools be part of the system?

n Compare systems, provided they implement a 
given application

n E.g., Linpack, Berkeley Design Patterns
n Would foster innovation in approaches to 

parallelism
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Modeling Performance
n Assume performance metric of interest is 

achievable GFLOPs/sec
n Measured using computational kernels from 

Berkeley Design Patterns
n Arithmetic intensity of a kernel

n FLOPs per byte of memory accessed
n For a given computer, determine

n Peak GFLOPS (from data sheet)
n Peak memory bytes/sec (using Stream 

benchmark)
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Roofline Diagram

Attainable GPLOPs/sec
= Max ( Peak Memory BW × Arithmetic Intensity, Peak FP Performance )
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Comparing Systems
n Example: Opteron X2 vs. Opteron X4

n 2-core vs. 4-core, 2× FP performance/core, 2.2GHz 
vs. 2.3GHz

n Same memory system

n To get higher performance 
on X4 than X2
n Need high arithmetic intensity
n Or working set must fit in X4’s 

2MB L-3 cache
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Optimizing Performance
n Optimize FP performance

n Balance adds & multiplies
n Improve superscalar ILP 

and use of SIMD 
instructions

n Optimize memory usage
n Software prefetch

n Avoid load stalls
n Memory affinity

n Avoid non-local data 
accesses
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Optimizing Performance
n Choice of optimization depends on 

arithmetic intensity of code

n Arithmetic intensity is 
not always fixed
n May scale with 

problem size
n Caching reduces 

memory accesses
n Increases arithmetic 

intensity
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i7-960 vs. NVIDIA Tesla 280/480
§6.11 R

eal Stuff: Benchm
arking and R

ooflines i7 vs. Tesla
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Rooflines
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Benchmarks
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Performance Summary
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n GPU (480) has 4.4 X the memory bandwidth
n Benefits memory bound kernels

n GPU has 13.1 X the single precision throughout, 2.5 X 
the double precision throughput
n Benefits FP compute bound kernels

n CPU cache prevents some kernels from becoming 
memory bound when they otherwise would on GPU

n GPUs offer scatter-gather, which assists with kernels 
with strided data

n Lack of synchronization and memory consistency 
support on GPU limits performance for some kernels



Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 57

§6.12 G
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n Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)
{
#pragma omp parallel for
for ( int sj = 0; sj < n; sj += BLOCKSIZE )
for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do_block(n, si, sj, sk, A, B, C);

}



Multithreaded DGEMM
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Multithreaded DGEMM
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Fallacies
n Amdahl’s Law doesn’t apply to parallel 

computers
n Since we can achieve linear speedup
n But only on applications with weak scaling

n Peak performance tracks observed 
performance
n Marketers like this approach!
n But compare Xeon with others in example
n Need to be aware of bottlenecks

§6.13 Fallacies and Pitfalls
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Pitfalls
n Not developing the software to take 

account of a multiprocessor architecture
n Example: using a single lock for a shared 

composite resource
n Serializes accesses, even if they could be done in 

parallel
n Use finer-granularity locking
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Concluding Remarks
n Goal: higher performance by using multiple 

processors
n Difficulties

n Developing parallel software
n Devising appropriate architectures

n SaaS importance is growing and clusters are a 
good match

n Performance per dollar and performance per 
Joule drive both mobile and WSC

§6.14 C
oncluding R

em
arks
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Concluding Remarks (con’t)
n SIMD and vector 

operations match 
multimedia applications 
and are easy to 
program
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