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Virtual Machines
n Host computer emulates guest operating system 

and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

n Virtualization has some performance impact
n Feasible with modern high-performance computers

n Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

§5.6 Virtual M
achines
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Virtual Machine Monitor
n Maps virtual resources to physical 

resources
n Memory, I/O devices, CPUs

n Guest code runs on native machine in user 
mode
n Traps to VMM on privileged instructions and 

access to protected resources
n Guest OS may be different from host OS
n VMM handles real I/O devices

n Emulates generic virtual I/O devices for guest
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Example: Timer Virtualization
n In native machine, on timer interrupt

n OS suspends current process, handles 
interrupt, selects and resumes next process

n With Virtual Machine Monitor
n VMM suspends current VM, handles interrupt, 

selects and resumes next VM
n If a VM requires timer interrupts

n VMM emulates a virtual timer
n Emulates interrupt for VM when physical timer 

interrupt occurs
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Instruction Set Support
n User and System modes
n Privileged instructions only available in 

system mode
n Trap to system if executed in user mode

n All physical resources only accessible 
using privileged instructions
n Including page tables, interrupt controls, I/O 

registers
n Renaissance of virtualization support

n Current ISAs (e.g., x86) adapting
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Virtual Memory Origin
n To execute a program larger than available 

memory size
n Load from disk parts of a program to 

memory
n Load on-demand when a ”page” is needed.
n Some “page” in memory will be replaced.

n Not so useful because of slow HD access 
time.
n Thrashing --- when next required page is 

always in disk

§5.7 Virtual M
em

ory
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Virtual Address

n To manage a program’s memory, it’s 
convenient to use a uniform memory map
n from 0x00000000 – 0xFFFFFFFF
n This is called virtual address
n Now programmers are free from assigning 

physical addresses and media

n O.S. handles the mapping to physical 
memory address or disk space
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Virtual Memory Usage
n Multiple programs share the same main 

memory
n Each gets a private virtual address space

n Can protect access from other programs
n Ownership of physical pages is enforced by 

O.S.
n One program cannot arbitrarily access 

another program’s memory pages



Virtual vs. Physical Address 
n CPU and OS translate virtual addresses to 

physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault
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a page in
memory

a page miss
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Program map
in virtual address 

Stack

Dynamic data

Static data

Text

Reserved

Paged map
in virtual address 

Stack

Dynamic data

Static data

Text

Reserved
Mapped to 
physical address 
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Address Translation

Each page is setup at 
a fixed size, e.g., 4k.
Only virtual page 
number is translated. 

A byte inside a 
page is identified 
by an offset.

Virtual address (VA)

Physical address (PA)



Map VA to PA
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Virtual
Address
Space

(p1,o1)

(p2,o2)
Physical
Memory

(f1,o1)

(f2,o2)

n Map virtual page # to frames (physical memory 
page #)

n Pages are contiguous in a VA 
n But pages are arbitrarily located 

in physical memory, and
n Not all pages mapped at all times



Virtual Address Translation

Page Table

CPU

(p,o)

p

P’s
Virtual
Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical
Addresses

Program
P

Virtual
Addresses

f



Memory Access Latency
n All memory accesses now need virtual to 

physical translation
n instruction fetch, function address, global 

data, etc.
n Increased access latency

n Overlap to optimize (more on this later).
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Page Fault Penalty
n On page fault, the page must be fetched 

from disk
n Takes millions of clock cycles
n Handled by OS code

n Try to minimize page fault rate
n Fully associative placement
n Smart replacement algorithms



Page Fault Process 
n Page fault handling steps:

n Processor runs the interrupt handler
n OS blocks the running process
n OS starts read of the unmapped page
n OS resumes/initiates some other process
n Read of page completes
n OS maps the missing page into memory
n OS restart the faulting process
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Page Tables
n Stores placement information

n Array of page table entries, indexed by virtual 
page number

n Page table register in CPU points to page 
table in physical memory

n If page is present in memory
n PTE stores the physical page number
n Plus other status bits (referenced, dirty, …)

n If page is not present
n PTE can refer to location in swap space on 

disk



Translation Using a Page Table



Page Table Structure
n 1 table per process

n Access with PTBR (page table base register)
n Contain

n Flags — dirty bit, valid bit, clock/reference bit
n Frame number
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1 0

Page Table
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CPU
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Page Table Flags 
n Valid

n The table entry has a valid frame number
n Dirty

n The page has been written
n Reference

n To identify the last visited page
n For replacement usage
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Translation Example
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page index valid dirty Physical page number
0x00000 0x001
0x00001 0x005
…
0x02306 0x004
0x02307 1 0x0c2
…
0xfffff DISK segment

Virtual address 0x02307 0x6A4

Physical address 0x0c2 0x6A4

virtual page number page offset

Look up 
page table

Copy 
page offset

Copy 
physical page number



Another Translation Example
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1 1 0 0 1 0 0

CPU

Page Table

Physical
Memory15

p o

(4,1023)

14 910

f o

Physical
Addresses

Virtual
Addresses

0 0 0 0 0 0 0

P’s
Virtual
Address
Space

(3,1023)
(4,0)

(0,0)

1
0

0010 9

n A system with 16-bit addresses
n 32 KB of physical memory
n 1024 byte pages
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Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement
n Reference bit (aka use bit) in PTE set to 1 on 

access to page
n Periodically cleared to 0 by OS
n A page with reference bit = 0 has not been 

used recently
n Disk writes take millions of cycles

n Block at once, not individual locations
n Write through is impractical
n Use write-back
n Dirty bit in PTE set when page is written



First-in First-out (FIFO) Replacement
n Evict oldest page

n Defined by when a page is used.

n The earlier, the older.
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0 1 2 3 4 5 6 7 8

0 1 3 3 2 2 2 2 4

0 1 1 3 3 3 3 2

0 0 1 1 1 1 3

0 0 0 0 1

time

FIFO

4 page
frame

Evicted

0 1 3 0 2 0 1 3 4
reference 
page sequence



Least Recently Used (LRU) Replacement
n Evict page that has not been used for the 

longest time
n When a page is referenced, it is placed at the end 

of a Queue
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0 1 2 3 4 5 6 7 8
0 1 3 0 2 0 1 3 4

0 1 3 0 2 0 1 3
0 1 3 3 2 0 1

1 1 3 2 0

time

4 page
frame

Evicted

0 1 3 0 2 0 1 3 4
reference 
page sequence



Size of Page Table
n Assume

n 32-bit virtual address
n 4k page size à 12 bit page offset
n 20 bits for virtual page number

n Assume 4bytes per page entry, we need 
220*4 ~ 4Mbytes page table size

n We need one table for each process.
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Where is the page table?
n Page table is too big for CPU

n Actually most of it is empty
n It is too slow to translate with OS and main 

memory 

n Solution: Put page table in memory and 
cache part of it in CPU

n Translation Lookaside Buffer (TLB)
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How to compress page table?
n Inverted page table

n Store only mapped PA frames
n Store both VA and PA, and use hash table to 

search

n Multi-level page table
n Divide virtual page number into blocks
n Each block index a table
n Can handle stack and heap memory
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Multi-level Paging
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Third-Level
Page Tables

p2 o
Virtual Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

n Add additional levels of 
indirection to the page table by 
sub-dividing page number into 
k parts 
n The architecture defines levels 

of page table



Example: Two-level Paging
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Second-Level
Page Table
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116 10

f o
Physical
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CPU
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f
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PTBR

p2

++

Memory



Inverted Hashed Page Tables
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h(PID, p)

120 9

p o

116 9

f o
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=?
tag check

10 frame #  1



Speedup Page Lookup
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Processor Core

Control

ALU

Register

L1 
Cache

TLB

Page 
table in 
Main

Memory

Parts of page table can 
be cached in TLB.

The cache is indexed by 
virtual page numbers to 
lookup physical frame 
numbers.
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Fast Translation Using a TLB
n Address translation would appear to require 

extra memory references
n One to access the PTE
n Then the actual memory access

n But access to page tables has good locality
n So use a fast cache of PTEs within the CPU
n Called a Translation Look-aside Buffer (TLB)
n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate
n Misses could be handled by hardware or software



Use TLB to Speedup Page Lookup
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Page Table

120 910

p o

116 910

f o
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Fast Translation Using a TLB
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TLB Misses
n If page is in memory

n Load the PTE from memory and retry
n Could be handled in hardware

n Can get complex for more complicated page table 
structures

n Or in software
n Raise a special exception, with optimized handler

n If page is not in memory (page fault)
n OS handles fetching the page and updating 

the page table
n Then restart the faulting instruction
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TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB
n Page not preset

n Must recognize TLB miss before 
destination register overwritten
n Raise exception

n Handler copies PTE from memory to TLB
n Then restarts instruction
n If page not present, page fault will occur



TLB and Cache
n If we lookup a physical address in cache, 

we will have to wait for TLB/OS/page fault, 
before we get actual instruction or data. 
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TLBVirtual
address Cache

Physical
address

DRAM

Physical
address

Hit

Page table
DRAM

Miss

Hit
data & Instructions

Miss
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Intrinsity FastMath
4KiB page, 16-entry
Fully-Associative TLB 
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TLB and Cache Interaction
n If cache tag uses 

physical address
n Need to translate 

before cache lookup
n Alternative: use virtual 

address tag
n Complications due to 

aliasing
n Different virtual 

addresses for shared 
physical address



Cache Index/Tag Options
n Physically indexed, physically tagged (PIPT)

n Wait for full address translation
n Then use physical address for both indexing and tag 

comparison

n Virtually indexed, physically tagged (VIPT)
n Use portion of the virtual address for indexing then wait for 

address translation and use physical address for tag 
comparisons

n Easiest when index portion of virtual address w/in offset 
(page size) address bits, otherwise aliasing may occur

n Virtually indexed, virtually tagged (VIVT)
n Use virtual address for both indexing and tagging…No TLB 

access unless cache miss
n Requires invalidation of cache lines on context switch or 

use of process ID as part of tagsChapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42



VIPT Flow
n Lookup a virtual address in cache and match with physical tag (from TLB). 
n Intel
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TLBVirtual
address

Physical address
(tag)

DRAM
Physical address

Page table
DRAM

Miss

Miss
Cache

Hitdata & 
Instructions

Hit



VIVT Flow
n Lookup a virtual address in cache and match with virtual tag per process.
n Either too much hardware or too much time for context switching
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Multi-programming and Protection
n Machines can run multiple processes

n Share a single or multiple cores
n Share the same physical memory space

n OS coordinates the resource sharing and 
protection
n To avoid one process read or write to other’s 

data/instructions
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Memory Protection
n Different tasks can share parts of their 

virtual address spaces
n But need to protect against errant access
n Requires OS assistance

n Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only 

accessible in supervisor mode
n System call exception (e.g., syscall in MIPS)



Protection with bounds
n Each process is limited between base and 

bound addresses
n Checked by two registers

n Only OS can update these registers
n in privileged mode and instructions
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process 1

process 2

process 3

process 4
base address
of process 3

bound address
of process 3

Allocation of physical space



Protection with page tables
n Each process has one page table
n Each process can only access physical 

addresses in the table
n Page tables are in OS kernel space

n only OS can change them

n TLB to support protection and avoid virtual 
address aliasing
n Add process ID to TLB
n Or flush TLB on context switch
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Different Page Table for Each Process
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virtual space (P2) physical space

virtual space (P1)
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The Memory Hierarchy

n Common principles apply at all levels of 
the memory hierarchy
n Based on notions of caching

n At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

§5.8 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchies

The BIG Picture
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Block Placement
n Determined by associativity

n Direct mapped (1-way associative)
n One choice for placement

n n-way set associative
n n choices within a set

n Fully associative
n Any location

n Higher associativity reduces miss rate
n Increases complexity, cost, and access time
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Finding a Block

n Hardware caches
n Reduce comparisons to reduce cost

n Virtual memory
n Full table lookup makes full associativity feasible
n Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set 
associative

Set index, then search 
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0
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Replacement
n Choice of entry to replace on a miss

n Least recently used (LRU)
n Complex and costly hardware for high associativity

n Random
n Close to LRU, easier to implement

n Virtual memory
n LRU approximation with hardware support
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Write Policy
n Write-through

n Update both upper and lower levels
n Simplifies replacement, but may require write 

buffer
n Write-back

n Update upper level only
n Update lower level when block is replaced
n Need to keep more state

n Virtual memory
n Only write-back is feasible, given disk write 

latency 
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Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of 

the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.
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Cache Control
n Example cache characteristics

n Direct-mapped, write-back, write allocate
n Block size: 4 words (16 bytes)
n Cache size: 16 KB (1024 blocks)
n 32-bit byte addresses
n Valid bit and dirty bit per block
n Blocking cache

n CPU waits until access is complete

§5.9 U
sing a Finite State M

achine to C
ontrol A Sim

ple C
ache

Tag Index Offset
03491031

4 bits10 bits18 bits
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Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access
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Finite State Machines
n Use an FSM to 

sequence control steps
n Set of states, transition 

on each clock edge
n State values are binary 

encoded
n Current state stored in a 

register
n Next state

= fn (current state,
current inputs)

n Control output signals
= fo (current state)
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Cache Controller FSM

Could 
partition into 

separate 
states to 

reduce clock 
cycle time
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Cache Coherence Problem
n Suppose two CPU cores share a physical 

address space
n Write-through caches

§5.10 Parallelism
 and M

em
ory H

ierarchies: C
ache C

oherence

Time 
step

Event CPU A’s 
cache

CPU B’s 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1
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Coherence Defined
n Informally: Reads return most recently 

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X
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Cache Coherence Protocols
n Operations performed by caches in 

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of 
blocks in a directory
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Invalidating Snooping Protocols
n Cache gets exclusive access to a block 

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1
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Memory Consistency
n When are writes seen by other processors

n “Seen” means a read returns the written value
n Can’t be instantaneously

n Assumptions
n A write completes only when all processors have seen 

it
n A processor does not reorder writes with other 

accesses
n Consequence

n P writes X then writes Y
Þ all processors that see new Y also see new X

n Processors can reorder reads, but not writes
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Multilevel On-Chip Caches
§5.13 The AR

M
 C

ortex-A8 and Intel C
ore i7 M

em
ory H

ierarchies
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2-Level TLB Organization
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Supporting Multiple Issue
n Both have multi-banked caches that allow 

multiple accesses per cycle assuming no 
bank conflicts

n Core i7 cache optimizations
n Return requested word first
n Non-blocking cache

n Hit under miss
n Miss under miss

n Data prefetching



RISC-V System Instructions
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§5.14 R
eal S

tuff: R
IS

C
-V

 S
ystem

 and S
pecial Instructions

Type Mnemonic Name
Mem ordering fence.i Instruction fence

fence Fence

sfence.vm Address translation fence

CSR access csrrwi CSR read/write immediate

csrrsi CSR read/set immediate

csrrci CSR read/clear immediate

csrrw CSR read/write

csrrs CSR read/set

csrrc CSR read/clear

System ecall Environment call

ebreak Environment breakpoint

sret Supervisor exception return

wfi Wait for interrupt



DGEMM
n Combine cache blocking and subword 

parallelism
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§5.15 G
oing Faster:  C

ache Blocking and M
atrix M

ultiply
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Pitfalls
n Byte vs. word addressing

n Example: 32-byte direct-mapped cache,
4-byte blocks

n Byte 36 maps to block 1
n Word 36 maps to block 4

n Ignoring memory system effects when 
writing or generating code
n Example: iterating over rows vs. columns of 

arrays
n Large strides result in poor locality

§5.16 Fallacies and P
itfalls
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Pitfalls
n In multiprocessor with shared L2 or L3 

cache
n Less associativity than cores results in conflict 

misses
n More cores Þ need to increase associativity

n Using AMAT to evaluate performance of 
out-of-order processors
n Ignores effect of non-blocked accesses
n Instead, evaluate performance by simulation
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Pitfalls
n Extending address range using segments

n E.g., Intel 80286

n But a segment is not always big enough
n Makes address arithmetic complicated

n Implementing a VMM on an ISA not 
designed for virtualization
n E.g., non-privileged instructions accessing 

hardware resources

n Either extend ISA, or require guest OS not to 
use problematic instructions
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Concluding Remarks
n Fast memories are small, large memories are 

slow
n We really want fast, large memories L
n Caching gives this illusion J

n Principle of locality
n Programs use a small part of their memory space 

frequently
n Memory hierarchy

n L1 cache « L2 cache « … « DRAM memory
« disk

n Memory system design is critical for 
multiprocessors

§5.17 C
oncluding R

em
arks


