
���

Chapter 5
Virtual Memory

Outline
n Virtual Machines
n Virtual Memory
n A Common Framework for Memory Hierarchies
n Using a Finite State Machine to Control A Simple

Cache
n Parallelism and Memory Hierarchies: Cache

Coherence
n The ARM Cortex-A53 and Intel Core i7 Memory

Hierarchies
n Real Stuff: RISC-V System and Special Instructions
n Going Faster: Cache Blocking and Matrix Multiply
n Fallacies and Pitfalls
n Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Virtual Machines
n Host computer emulates guest operating system

and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

n Virtualization has some performance impact
n Feasible with modern high-performance computers

n Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

§5.6 Virtual M
achines

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Virtual Machine Monitor
n Maps virtual resources to physical

resources
n Memory, I/O devices, CPUs

n Guest code runs on native machine in user
mode
n Traps to VMM on privileged instructions and

access to protected resources
n Guest OS may be different from host OS
n VMM handles real I/O devices

n Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Example: Timer Virtualization
n In native machine, on timer interrupt

n OS suspends current process, handles
interrupt, selects and resumes next process

n With Virtual Machine Monitor
n VMM suspends current VM, handles interrupt,

selects and resumes next VM
n If a VM requires timer interrupts

n VMM emulates a virtual timer
n Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Instruction Set Support
n User and System modes
n Privileged instructions only available in

system mode
n Trap to system if executed in user mode

n All physical resources only accessible
using privileged instructions
n Including page tables, interrupt controls, I/O

registers
n Renaissance of virtualization support

n Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Virtual Memory Origin
n To execute a program larger than available

memory size
n Load from disk parts of a program to

memory
n Load on-demand when a ”page” is needed.
n Some “page” in memory will be replaced.

n Not so useful because of slow HD access
time.
n Thrashing --- when next required page is

always in disk

§5.7 Virtual M
em

ory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Virtual Address

n To manage a program’s memory, it’s
convenient to use a uniform memory map
n from 0x00000000 – 0xFFFFFFFF
n This is called virtual address
n Now programmers are free from assigning

physical addresses and media

n O.S. handles the mapping to physical
memory address or disk space

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Virtual Memory Usage
n Multiple programs share the same main

memory
n Each gets a private virtual address space

n Can protect access from other programs
n Ownership of physical pages is enforced by

O.S.
n One program cannot arbitrarily access

another program’s memory pages

Virtual vs. Physical Address
n CPU and OS translate virtual addresses to

physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

a page in
memory

a page miss

Program Memory Map

Stack

Dynamic data

Static data

Text

Reserved

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Program map
in virtual address

Stack

Dynamic data

Static data

Text

Reserved

Paged map
in virtual address

Stack

Dynamic data

Static data

Text

Reserved
Mapped to
physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Address Translation

Each page is setup at
a fixed size, e.g., 4k.
Only virtual page
number is translated.

A byte inside a
page is identified
by an offset.

Virtual address (VA)

Physical address (PA)

Map VA to PA

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Virtual
Address
Space

(p1,o1)

(p2,o2)
Physical
Memory

(f1,o1)

(f2,o2)

n Map virtual page # to frames (physical memory
page #)

n Pages are contiguous in a VA
n But pages are arbitrarily located

in physical memory, and
n Not all pages mapped at all times

Virtual Address Translation

Page Table

CPU

(p,o)

p

P’s
Virtual
Address
Space

Physical
Memory120 910

p o

(f,o)

116 910

f o

Physical
Addresses

Program
P

Virtual
Addresses

f

Memory Access Latency
n All memory accesses now need virtual to

physical translation
n instruction fetch, function address, global

data, etc.
n Increased access latency

n Overlap to optimize (more on this later).

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Page Fault Penalty
n On page fault, the page must be fetched

from disk
n Takes millions of clock cycles
n Handled by OS code

n Try to minimize page fault rate
n Fully associative placement
n Smart replacement algorithms

Page Fault Process
n Page fault handling steps:

n Processor runs the interrupt handler
n OS blocks the running process
n OS starts read of the unmapped page
n OS resumes/initiates some other process
n Read of page completes
n OS maps the missing page into memory
n OS restart the faulting process

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Page Tables
n Stores placement information

n Array of page table entries, indexed by virtual
page number

n Page table register in CPU points to page
table in physical memory

n If page is present in memory
n PTE stores the physical page number
n Plus other status bits (referenced, dirty, …)

n If page is not present
n PTE can refer to location in swap space on

disk

Translation Using a Page Table

Page Table Structure
n 1 table per process

n Access with PTBR (page table base register)
n Contain

n Flags — dirty bit, valid bit, clock/reference bit
n Frame number

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

1 0

Page Table

p

120 910

p o

116 910

f o

Physical
Addresses

Virtual
Addresses

f0PTBR

CPU

+

Page Table Flags
n Valid

n The table entry has a valid frame number
n Dirty

n The page has been written
n Reference

n To identify the last visited page
n For replacement usage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Translation Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

page index valid dirty Physical page number
0x00000 0x001
0x00001 0x005
…
0x02306 0x004
0x02307 1 0x0c2
…
0xfffff DISK segment

Virtual address 0x02307 0x6A4

Physical address 0x0c2 0x6A4

virtual page number page offset

Look up
page table

Copy
page offset

Copy
physical page number

Another Translation Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

1 1 0 0 1 0 0

CPU

Page Table

Physical
Memory15

p o

(4,1023)

14 910

f o

Physical
Addresses

Virtual
Addresses

0 0 0 0 0 0 0

P’s
Virtual
Address
Space

(3,1023)
(4,0)

(0,0)

1
0

0010 9

n A system with 16-bit addresses
n 32 KB of physical memory
n 1024 byte pages

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Replacement and Writes
n To reduce page fault rate, prefer least-

recently used (LRU) replacement
n Reference bit (aka use bit) in PTE set to 1 on

access to page
n Periodically cleared to 0 by OS
n A page with reference bit = 0 has not been

used recently
n Disk writes take millions of cycles

n Block at once, not individual locations
n Write through is impractical
n Use write-back
n Dirty bit in PTE set when page is written

First-in First-out (FIFO) Replacement
n Evict oldest page

n Defined by when a page is used.

n The earlier, the older.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

0 1 2 3 4 5 6 7 8

0 1 3 3 2 2 2 2 4

0 1 1 3 3 3 3 2

0 0 1 1 1 1 3

0 0 0 0 1

time

FIFO

4 page
frame

Evicted

0 1 3 0 2 0 1 3 4
reference
page sequence

Least Recently Used (LRU) Replacement
n Evict page that has not been used for the

longest time
n When a page is referenced, it is placed at the end

of a Queue

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

0 1 2 3 4 5 6 7 8
0 1 3 0 2 0 1 3 4

0 1 3 0 2 0 1 3
0 1 3 3 2 0 1

1 1 3 2 0

time

4 page
frame

Evicted

0 1 3 0 2 0 1 3 4
reference
page sequence

Size of Page Table
n Assume

n 32-bit virtual address
n 4k page size à 12 bit page offset
n 20 bits for virtual page number

n Assume 4bytes per page entry, we need
220*4 ~ 4Mbytes page table size

n We need one table for each process.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Where is the page table?
n Page table is too big for CPU

n Actually most of it is empty
n It is too slow to translate with OS and main

memory

n Solution: Put page table in memory and
cache part of it in CPU

n Translation Lookaside Buffer (TLB)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

How to compress page table?
n Inverted page table

n Store only mapped PA frames
n Store both VA and PA, and use hash table to

search

n Multi-level page table
n Divide virtual page number into blocks
n Each block index a table
n Can handle stack and heap memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Multi-level Paging

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Third-Level
Page Tables

p2 o
Virtual Address

First-Level
Page Table

p3

Second-Level
Page Tables

p1

p1

p2

p3

n Add additional levels of
indirection to the page table by
sub-dividing page number into
k parts
n The architecture defines levels

of page table

Example: Two-level Paging

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Second-Level
Page Table

120 1016

p1 o

116 10

f o
Physical
Address

Virtual
Address

CPU

First-Level
Page Table

pointer to
2nd level

table
p2

f

p1

PTBR

p2

++

Memory

Inverted Hashed Page Tables

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

h(PID, p)

120 9

p o

116 9

f o
Physical
Address

Virtual
Address

PTBR

CPU

Hash

Inverted Page Table

page #

Memory

+

=?
tag check

10 frame # 1

Speedup Page Lookup

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Processor Core

Control

ALU

Register

L1
Cache

TLB

Page
table in
Main

Memory

Parts of page table can
be cached in TLB.

The cache is indexed by
virtual page numbers to
lookup physical frame
numbers.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Fast Translation Using a TLB
n Address translation would appear to require

extra memory references
n One to access the PTE
n Then the actual memory access

n But access to page tables has good locality
n So use a fast cache of PTEs within the CPU
n Called a Translation Look-aside Buffer (TLB)
n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate
n Misses could be handled by hardware or software

Use TLB to Speedup Page Lookup

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Page Table

120 910

p o

116 910

f o
Physical

Addresses

Virtual
Addresses

CPU

TLB

f

Tag Value

p-index

p

f

?

X

p-tag

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

TLB Misses
n If page is in memory

n Load the PTE from memory and retry
n Could be handled in hardware

n Can get complex for more complicated page table
structures

n Or in software
n Raise a special exception, with optimized handler

n If page is not in memory (page fault)
n OS handles fetching the page and updating

the page table
n Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

TLB Miss Handler
n TLB miss indicates

n Page present, but PTE not in TLB
n Page not preset

n Must recognize TLB miss before
destination register overwritten
n Raise exception

n Handler copies PTE from memory to TLB
n Then restarts instruction
n If page not present, page fault will occur

TLB and Cache
n If we lookup a physical address in cache,

we will have to wait for TLB/OS/page fault,
before we get actual instruction or data.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

TLBVirtual
address Cache

Physical
address

DRAM

Physical
address

Hit

Page table
DRAM

Miss

Hit
data & Instructions

Miss

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Intrinsity FastMath
4KiB page, 16-entry
Fully-Associative TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

TLB and Cache Interaction
n If cache tag uses

physical address
n Need to translate

before cache lookup
n Alternative: use virtual

address tag
n Complications due to

aliasing
n Different virtual

addresses for shared
physical address

Cache Index/Tag Options
n Physically indexed, physically tagged (PIPT)

n Wait for full address translation
n Then use physical address for both indexing and tag

comparison

n Virtually indexed, physically tagged (VIPT)
n Use portion of the virtual address for indexing then wait for

address translation and use physical address for tag
comparisons

n Easiest when index portion of virtual address w/in offset
(page size) address bits, otherwise aliasing may occur

n Virtually indexed, virtually tagged (VIVT)
n Use virtual address for both indexing and tagging…No TLB

access unless cache miss
n Requires invalidation of cache lines on context switch or

use of process ID as part of tagsChapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

VIPT Flow
n Lookup a virtual address in cache and match with physical tag (from TLB).
n Intel

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

TLBVirtual
address

Physical address
(tag)

DRAM
Physical address

Page table
DRAM

Miss

Miss
Cache

Hitdata &
Instructions

Hit

VIVT Flow
n Lookup a virtual address in cache and match with virtual tag per process.
n Either too much hardware or too much time for context switching

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

TLB
per

process

Virtual
address

Physical address
(tag)

DRAM

Page table
DRAM

Miss

Miss

Cache
per

process

Hitdata &
Instructions

Hit

Multi-programming and Protection
n Machines can run multiple processes

n Share a single or multiple cores
n Share the same physical memory space

n OS coordinates the resource sharing and
protection
n To avoid one process read or write to other’s

data/instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Memory Protection
n Different tasks can share parts of their

virtual address spaces
n But need to protect against errant access
n Requires OS assistance

n Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only

accessible in supervisor mode
n System call exception (e.g., syscall in MIPS)

Protection with bounds
n Each process is limited between base and

bound addresses
n Checked by two registers

n Only OS can update these registers
n in privileged mode and instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

process 1

process 2

process 3

process 4
base address
of process 3

bound address
of process 3

Allocation of physical space

Protection with page tables
n Each process has one page table
n Each process can only access physical

addresses in the table
n Page tables are in OS kernel space

n only OS can change them

n TLB to support protection and avoid virtual
address aliasing
n Add process ID to TLB
n Or flush TLB on context switch

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Different Page Table for Each Process

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

virtual space (P2) physical space

virtual space (P1)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

The Memory Hierarchy

n Common principles apply at all levels of
the memory hierarchy
n Based on notions of caching

n At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

§5.8 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchies

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Block Placement
n Determined by associativity

n Direct mapped (1-way associative)
n One choice for placement

n n-way set associative
n n choices within a set

n Fully associative
n Any location

n Higher associativity reduces miss rate
n Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Finding a Block

n Hardware caches
n Reduce comparisons to reduce cost

n Virtual memory
n Full table lookup makes full associativity feasible
n Benefit in reduced miss rate

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set
associative

Set index, then search
entries within the set

n

Fully associative Search all entries #entries
Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Replacement
n Choice of entry to replace on a miss

n Least recently used (LRU)
n Complex and costly hardware for high associativity

n Random
n Close to LRU, easier to implement

n Virtual memory
n LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Write Policy
n Write-through

n Update both upper and lower levels
n Simplifies replacement, but may require write

buffer
n Write-back

n Update upper level only
n Update lower level when block is replaced
n Need to keep more state

n Virtual memory
n Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of

the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Cache Design Trade-offs

Design change Effect on miss rate Negative performance
effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Cache Control
n Example cache characteristics

n Direct-mapped, write-back, write allocate
n Block size: 4 words (16 bytes)
n Cache size: 16 KB (1024 blocks)
n 32-bit byte addresses
n Valid bit and dirty bit per block
n Blocking cache

n CPU waits until access is complete

§5.9 U
sing a Finite State M

achine to C
ontrol A Sim

ple C
ache

Tag Index Offset
03491031

4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Interface Signals

CacheCPU Memory

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write
Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles
per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Finite State Machines
n Use an FSM to

sequence control steps
n Set of states, transition

on each clock edge
n State values are binary

encoded
n Current state stored in a

register
n Next state

= fn (current state,
current inputs)

n Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Cache Controller FSM

Could
partition into

separate
states to

reduce clock
cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Cache Coherence Problem
n Suppose two CPU cores share a physical

address space
n Write-through caches

§5.10 Parallelism
 and M

em
ory H

ierarchies: C
ache C

oherence

Time
step

Event CPU A’s
cache

CPU B’s
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Coherence Defined
n Informally: Reads return most recently

written value
n Formally:

n P writes X; P reads X (no intervening writes)
Þ read returns written value

n P1 writes X; P2 reads X (sufficiently later)
Þ read returns written value

n c.f. CPU B reading X after step 3 in example
n P1 writes X, P2 writes X
Þ all processors see writes in the same order

n End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Cache Coherence Protocols
n Operations performed by caches in

multiprocessors to ensure coherence
n Migration of data to local caches

n Reduces bandwidth for shared memory
n Replication of read-shared data

n Reduces contention for access
n Snooping protocols

n Each cache monitors bus reads/writes
n Directory-based protocols

n Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Invalidating Snooping Protocols
n Cache gets exclusive access to a block

when it is to be written
n Broadcasts an invalidate message on the bus
n Subsequent read in another cache misses

n Owning cache supplies updated value

CPU activity Bus activity CPU A’s
cache

CPU B’s
cache

Memory

0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Memory Consistency
n When are writes seen by other processors

n “Seen” means a read returns the written value
n Can’t be instantaneously

n Assumptions
n A write completes only when all processors have seen

it
n A processor does not reorder writes with other

accesses
n Consequence

n P writes X then writes Y
Þ all processors that see new Y also see new X

n Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Multilevel On-Chip Caches
§5.13 The AR

M
 C

ortex-A8 and Intel C
ore i7 M

em
ory H

ierarchies

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

2-Level TLB Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Supporting Multiple Issue
n Both have multi-banked caches that allow

multiple accesses per cycle assuming no
bank conflicts

n Core i7 cache optimizations
n Return requested word first
n Non-blocking cache

n Hit under miss
n Miss under miss

n Data prefetching

RISC-V System Instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

§5.14 R
eal S

tuff: R
IS

C
-V

 S
ystem

 and S
pecial Instructions

Type Mnemonic Name
Mem ordering fence.i Instruction fence

fence Fence

sfence.vm Address translation fence

CSR access csrrwi CSR read/write immediate

csrrsi CSR read/set immediate

csrrci CSR read/clear immediate

csrrw CSR read/write

csrrs CSR read/set

csrrc CSR read/clear

System ecall Environment call

ebreak Environment breakpoint

sret Supervisor exception return

wfi Wait for interrupt

DGEMM
n Combine cache blocking and subword

parallelism

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

§5.15 G
oing Faster: C

ache Blocking and M
atrix M

ultiply

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Pitfalls
n Byte vs. word addressing

n Example: 32-byte direct-mapped cache,
4-byte blocks

n Byte 36 maps to block 1
n Word 36 maps to block 4

n Ignoring memory system effects when
writing or generating code
n Example: iterating over rows vs. columns of

arrays
n Large strides result in poor locality

§5.16 Fallacies and P
itfalls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

Pitfalls
n In multiprocessor with shared L2 or L3

cache
n Less associativity than cores results in conflict

misses
n More cores Þ need to increase associativity

n Using AMAT to evaluate performance of
out-of-order processors
n Ignores effect of non-blocked accesses
n Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

Pitfalls
n Extending address range using segments

n E.g., Intel 80286

n But a segment is not always big enough
n Makes address arithmetic complicated

n Implementing a VMM on an ISA not
designed for virtualization
n E.g., non-privileged instructions accessing

hardware resources

n Either extend ISA, or require guest OS not to
use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Concluding Remarks
n Fast memories are small, large memories are

slow
n We really want fast, large memories L
n Caching gives this illusion J

n Principle of locality
n Programs use a small part of their memory space

frequently
n Memory hierarchy

n L1 cache « L2 cache « … « DRAM memory
« disk

n Memory system design is critical for
multiprocessors

§5.17 C
oncluding R

em
arks

