
���

Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

Outline
n Memory Technologies
n Introduction to Caches
n The Basics of Caches
n Measuring and Improving Cache

Performance
n Dependable Memory Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Memory Technology
n Static RAM (SRAM)

n 0.5ns – 2.5ns, $1000 – $2000 per GB
n Dynamic RAM (DRAM)

n 10ns – 40ns, $3 – $7 per GB
n Magnetic disk

n 3ms – 12ms, $0.018 per GB (about half of 2018)
n Data transfer rate: 200MB/s

n SSD (TLC)
n 0.1ms – 1.5ms (write), $0.15 per GB (also about

half of 2018); 8X of HDD
n Data transfer rate: 200-2500MB/s

§5.2 M
em

ory Technologies

https://en.wikipedia.org/wiki/Solid-state_drive#Hard_disk_drives

https://venturebeat.com/2019/09/02/the-death-of-disk-hdds-still-
have-an-important-role-to-play/

https://en.wikipedia.org/wiki/Solid-state_drive
https://venturebeat.com/2019/09/02/the-death-of-disk-hdds-still-have-an-important-role-to-play/

Static RAM Cell
6-Transistor SRAM Cell

bit bit

word
(row select)

bit bit

word

n Write:
1. Drive bit lines (bit=1, bit’=0)
2. Select row

n Read:
1. Precharge bit and bit’ to Vdd
2. Select row
3. Cell pulls one line low
4. Sense amp on column detects difference between bit and bit’

10

0 1

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Classical DRAM Organization

r
o
w

d
e
c
o
d
e
r

row
address Column Selector column address

data

RAM Cell
Array

word (row) select

bit (data) lines

n Row and Column Address together:
n Select 1 bit a time

Sense Amp + Column buffer

1-Transistor DRAM Cell
n Write

n Charge bit line HIGH or LOW and set word line
HIGH

n Read
n Bit line is precharged to Vdd/2, and then the word

line is set HIGH.
n Depending on the charge in the cap, the

precharged bitline is pulled slightly higher
or lower.

n Sense Amp Detects change
n Read is destructive

n So need to design circuit to write original value back to
restore charge

n Therefore read refreshes memory
n Must periodically be refreshed to prevent charge

leakage
n Read contents and write back
n Performed on a DRAM “row”

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

.

.

.
Bit line

Word line

Max
Highlight

Max
Highlight

Max
Highlight

Max
Note
Sensing Bit line

Max
Oval

Max
Oval

Max
Arrow

Max
Note
透過Bit line去改變capacitor的電荷量, 代表寫入0或1 (Word line必須為1)

Max
Highlight

Max
Typewriter
DRAM的操作時間會比SRAM慢很多

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

DRAM Generations

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

2017 4Gbit $5

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Capacity

DRAM also exhibits ”moor’s law” in the past decades.

DRAM Performance Factors
n Row buffer

n Allows several words to be read and refreshed in
parallel

n Synchronous DRAM
n Allows for consecutive accesses in bursts without

needing to send each address
n Improves bandwidth

n DRAM banking
n Allows simultaneous access to multiple DRAMs
n Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

DRAM Organizations
n Multiple banks to output rows of data

simultaneously
n Increase throughputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Main Memory Supporting Caches
n Use DRAMs for main memory

n Fixed width (e.g., 1 word)
n Connected by fixed-width clocked bus

n Bus clock is typically slower than CPU clock

n Example cache block read
n 1 bus cycle for address transfer
n 15 bus cycles per DRAM access
n 1 bus cycle per data transfer

n For 4-word block, 1-word-wide DRAM
n Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Increasing Memory Bandwidth
Assumptions:
1 cycle to send address
15 cycles for each DRAM

access initiated
1 cycle to send a word of

data

n 1-word wide memory
n Miss penalty = 1 + 4 x (15 + 1) = 65 cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

n 4-word wide memory
n Miss penalty = 1 + 15 + 1 = 17 bus cycles (BW=0.94 B/cycle)

n 4-bank interleaved memory
n Miss penalty = 1 + 15 + 4×1 = 20 bus cycles (BW=0.8 B/cycle)

Chapter 6 — Storage and Other I/O Topics — 12

Flash Storage
n Nonvolatile semiconductor storage

n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB (between disk and DRAM)

Chapter 6 — Storage and Other I/O Topics — 13

Flash Types
n NOR flash: bit cell like a NOR gate

n Random read/write access
n Used for instruction memory in embedded systems

n NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

n Flash bits wears out after 1000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other I/O Topics — 14

Disk Storage
n Nonvolatile, rotating magnetic storage

Chapter 6 — Storage and Other I/O Topics — 15

Disk Sectors and Access
n Each sector records

n Sector ID
n Data (512 bytes, 4096 bytes proposed)
n Error correcting code (ECC)

n Used to hide defects and recording errors
n Synchronization fields and gaps

n Access to a sector involves
n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead

Chapter 6 — Storage and Other I/O Topics — 16

Disk Access Example
n Given

n 512B sector, 15,000rpm, 4ms average seek
time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

n Average read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

n If actual average seek time is 1ms
n Average read time = 3.2ms

Chapter 6 — Storage and Other I/O Topics — 17

Disk Performance Issues
n Manufacturers quote average seek time

n Based on all possible seeks
n Locality and OS scheduling lead to smaller actual

average seek times
n Smart disk controller allocate physical sectors on

disk
n Present logical sector interface to host
n SCSI, ATA, SATA

n Disk drives include caches
n Prefetch sectors in anticipation of access
n Avoid seek and rotational delay

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Bridging Gap Between External DRAM
and On-Chip SRAM

n Read access to DRAM can take 50-200
CPU cycles

n Access to SRAM is typically 1-2 cycles
n The impact to CPI is huge if we directly

access instructions or data from DRAM
n As shown in the following example

n Solution
n Data locality

§5.1 Introduction

Example 1-Cycle Memory

n Total 9 cycles
n CPI=9/4=2.25
n Ignore instruction fetch from memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F D A M Wld x20, 0(x10)

ld x21, 4(x10) F D A M W

add x22, x20, x21 F D A M W

sd x22, 8(x10) F D A M W

Example 4-Cycle Memory

n Total 15 cycles

n CPI=15/4=3.75

n Assume memory write buffer

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F D A M W

F D A M W

F D A M W

F D A M W

ld x20, 0(x10)

ld x21, 4(x10)

add x22, x20, x21

sd x22, 8(x10)

Max
Callout
Memory讀取需要4個Cycles

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Principle of Locality
n Programs access a small proportion of

their address space at any time
n Temporal locality

n Items accessed recently are likely to be
accessed again soon

n e.g., instructions in a loop, induction variables
n Spatial locality

n Items near those accessed recently are likely
to be accessed soon

n E.g., sequential instruction access, array data

Max
Underline

Max
Underline

Max
Underline

Max
Underline

Max
Callout
Array或是影像資料

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Taking Advantage of Locality
n Apply memory hierarchy

n All data are available on disk
n Copy recently accessed (and nearby) items

from disk to smaller DRAM memory
n Copy more recently accessed (and nearby)

items from DRAM to smaller SRAM Cache
memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Memory Hierarchy Levels
n Block (aka line): unit of copying

n May be multiple words
n If accessed data is present in

upper level
n Hit: access satisfied by upper level

n Hit ratio: hits/accesses

n If accessed data is absent
n Miss: block copied from lower level

n Time taken: miss penalty
n Miss ratio: misses/accesses

= 1 – hit ratio
n Then accessed data supplied from

upper level

Cache

Main memory

Max
Highlight

Max
Highlight

Max
Arrow

Max
Arrow

Max
Callout
直接能從Cache得到

Max
Highlight

Max
Callout
必須從記憶體讀取

Max
Underline

Memory Hierarchy Organization
n Illusion of a large and fast memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Processor Core

Control

Datapath

Register

L1
Cache

(SRAM)

L2
Cache

(SRAM)

L3
Cache

(SRAM)

Main
Memory
(DRAM)

Disk
(HD,
SSD)

Processor Chip

Faster
Smaller
More cost

Slower
Larger
Less cost

Max
Callout
記憶體越大,存取抓取值的Critical Path會越長(RC增大,Latency越長),故實務上架構不會做一個很大的記憶體，像這個例子用數個小的SRAM組成

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Cache Memory
n Cache memory

n The level of the memory hierarchy closest to
the CPU

n Given accesses X1, …, Xn–1, Xn

§5.3 The Basics of C
aches

n How do we know if
the data is present?

n Where do we look
for data?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a
power of 2

n Use low-order
address bits

Max
Callout
記憶體各自對應到Cache的位置，同一個Cache會由多個Memory佔有

Max
Typewriter
(DRAM)

Max
Callout
一個Cache空間會有額外的空間去紀錄是哪個Memory存進去
Ex:001->(00)001
多的兩個bits為tag

另外存一個boolean去判斷Cache裡面由沒有資料

olive
螢光標示

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Tags and Valid Bits
n How do we know which particular block is

stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

n What if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0

Max
Highlight

Max
Highlight

Max
Highlight

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Cache Example
n 8-blocks, 1 word/block, direct mapped
n Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss

Replace
010

Max
Highlight

Max
Rectangle

Max
Callout
需要指標去判斷是否要Replace

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Address Subdivision

Max
Rectangle

Max
Note
最後兩個bit不會拿來做定位, 因為Data一個會存32bits, 代表每隔一個Data會隔4 Bytes (記憶體為Byte Offest), 故最後兩個bit不會用到

Max
Rectangle

Max
Note
用剩餘的10個bits去對應Cache的Index (0~1023)

Max
Rectangle

Max
Note
用20個bits去表示是哪個Memory去存取該Cache位置

Max
Callout
(1)先看Valid是否為1,Cache是否有存值
(2)自己的Tag和Cache內存取的tag是否相符合

若(1)(2)都成立則Hit

Max
Rectangle

Max
Callout
Block Size都代表Data這一段

olive
螢光標示

Max
Callout
很重要! 此圖與(P44)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Example: Larger Block Size
n A direct-mapped cache has 64 blocks, 16

bytes/block
n Block number of address 1200?
n Block address = ë1200/16û = 75
n Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

1200 = b 0100 1011 0000

offsetindextag

Max
Rectangle

Max
Note
因為每個Block為16Bytes, 故Offset用不到的部分為4bits

Max
Rectangle

Max
Note
Cache總共有64個Blocks, 故需要6bits去做index

Max
Line

Max
Callout
通常不會用Modulo去判斷Block Number,因為會增加Latency(Cache目的本是加速)

Max
Note
Block越大,存取Bytes越多:
(1)優點: Spatial Locality越好
(2)缺點: 記憶體大小有限, Bytes越多代表Index減少, 存取時Conflict的機率越高, Temporal Locality變差

用Spatial Locality換取Temporal Locality

Max
Note
某一個Memory的Address

Max
Note
屬於第75個Block

Max
Typewriter
Memory Address: Tag+Index+Offset

Max
Note
因為Cache只有64 Blocks, 所以存在第11個Block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Block Size Considerations
n Larger blocks should reduce miss rate

n Due to spatial locality
n But in a fixed-sized cache

n Larger blocks Þ fewer of them
n More competition Þ increased miss rate

n Larger blocks Þ pollution
n Larger miss penalty

n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help

• Early restart – send arrived words in cache to CPU
as early as possible

• Critical-word-first – retrieve needed words from
memory first

Max
Highlight

Max
Highlight

Max
Callout
從記憶體讀取資料送到CPU後,再處理Cache的問題

Max
Highlight

Max
Highlight

Max
Highlight

Max
Underline

Example of Block Size on Performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Increase block size tends to decrease miss rate
$ size

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

better
1 KB
8 KB
16 KB
64 KB
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

Mi
ss

 ra
te

64164

Block size (bytes)

Max
Arrow

Max
Highlight

Memory Access Time v.s. Block Size

nAverage Memory Access Time
= Hit Time + Miss Penalty x Miss Rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Miss
Penalty

Block Size

Miss
Rate Ave. Access

Time

Block Size Block Size

Takes longer
time to fill up
the block

Larger blocks
exploit Spatial
Locality

Fewer blocks:
compromises
temporal
locality (block
competition)

Combined
increased

miss penalty
& miss rate

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Misses
n On cache hit, CPU proceeds normally
n On cache miss

n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

n Restart instruction fetch
n Data cache miss

n Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Write-Through
n On data-write hit, could just update the block in

cache
n But then cache and memory would be inconsistent

n Write through: also update memory, but makes
writes take longer
n e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data temporarily while waiting to be written to

memory
n CPU continues immediately

n Only stalls on write if write buffer is already full

Max
Highlight

Max
Highlight

Max
Highlight

Max
Callout
先不寫回記憶體,等一會兒才寫回
(Pipeline不會Stall在Write-Through上)

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Note
原本問題是不知道該等多久才寫回去Memory裡面算適合, 且該等待時間會讓CPU Stall

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Write-Back
n On data-write hit, just update the block in

cache
n Need to keep track of whether each block is

dirty
n A block is dirty if it has been written and

inconsistent with memory
n When a dirty block is replaced

n Write it back to memory
n Can also use a write buffer to allow replacing

block to be read first

Max
Callout
當Cache被更動時就要寫回去記憶體

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Write Allocation
n On a write miss
n Two methods for write-through

n Allocate on miss: fetch the block
n Write around: don’t fetch the block

n Since programs often write a whole block before
reading it (e.g., initialization)

n For write-back
n Usually fetch the block

Max
Highlight

Max
Highlight

Max
Highlight

Max
Callout
整個Cache做更新
Ex:初始化Array

Max
Highlight
全部做更新

Max
Highlight
當Memory讀取至Cache後交給CPU運算, 運算後存回Cache使得Memory跟Cache的Data變成Inconsistent (Miss)

故要把該Cache的資料更新回去Memory

不一樣的才做更新

Max
Note
當Memory讀取至Cache後交給CPU運算, 運算後存回Cache使得Memory跟Cache的Data變成Inconsistent (Miss)

故要把該Cache的資料更新回去Memory

Max
Typewriter
Write Hit : Write Back
Write Miss : Write Allocation

Max
Typewriter
．當cache hit時，若CPU要寫入資料到某一位址時，可分為二種方式：一種是write through，此種方式資料會立刻寫到cache及主記憶體中；另一種是write back，此種方式會先將資料寫入cache中，然後再將同一位址的資料整批一起寫入主記憶體中（非立即寫入）。
．當cache miss時，若CPU要寫入資料到某一位址時，可分為二種方式：一種是no write allocate，此種方式會直接將資料寫到主記憶體中，不會再從記憶體中載入到cache，另一種方式是write allocate，此種方式會先將資料從主記憶體中載入到cache，然後再依cache hit的規則，將資料寫出。

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Example: Intrinsity FastMATH
n Embedded MIPS processor

n 12-stage pipeline

n Instruction and data access on each cycle

n Split cache: separate I-cache and D-cache

n Each 16KB: 256 blocks × 16 words/block

n D-cache: write-through or write-back

n SPEC2000 miss rates

n I-cache: 0.4%

n D-cache: 11.4%

n Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Example: Intrinsity FastMATH

Max
Note
因為Block Size比Memory Size還要大,故需要Multiplexer去做Bit Offset用以抓取特定位置的資料

Max
Cloud

Max
Typewriter
Memory Address

Max
Arrow

Max
Oval

Max
Note
用8個bits的index去指定其中一個Block

Max
Oval

Max
Note
用剩餘的Memory Address bits去當作tag, 用來判斷是否符合, 若符合則Hit

Max
Callout
1. Block size = 512bits = 64 bytes(前6bits不看) 2. 取的資料是word = 4bytes 因此前2bits不重要0/4/8....3. 後4bits 總共有2^4 =16種可能，分別對應512/32 = 16個words

Measuring Cache Performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

§5.4 M
easuring and Im

proving C
ache Perform

ance

!"# $%&'
= ")*+),& '-'./$%*0 .1.2'3 + 5'&*)1 3$,22 .1.2'3
= 603$)/.$%*03

")*+),& ×!"6 ×!2*.8 "')%*9

+ 603$)/.$%*03")*+),& ×&%33),$' ×&%33 :'0,2$1

&%33'3
%03$)/.$%*0

Hit Miss

Max
Highlight

Max
Highlight

Max
Strikeout

Max
Strikeout

Max
Typewriter
Cycles數

Max
Textbox
Ideal Cache

Max
Typewriter
CPU time = CPI time + Miss time(I-Cache+D-Cache)

Instruction and Data Cache
n Most architectures

separate instruction
and data caches

n Different I-Cache
and D-Cache
architectures to
optimize
performance and
increase bandwidth.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Data
Cache

Instruction
Cache

Main Memory I/O System

Bus interconnect

Control

Datapath

Register

Processor Core

Max
Rectangle

Max
Rectangle

Max
Note
使用兩個Cache (D-Cache, I-Cache), 去增加表現及Bandwidth

I-Cache and D-Cache Performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

!"#$%& '()** +&+*"'
= -.'(%/+(0$. +)+ℎ" #0'' + 3)() +)+ℎ" #0''
= -.'(%/+(0$.'

4%$5%)# ×-+)+ℎ" #0'' %)(" ×#0'' 7".)*(&

+ 8$)3&:($%" -.'(%/+(0$.'4%$5%)# ×;+)+ℎ" #0'' %)(" ×#0'' 7".)*(&

Max
Callout
讀取Instruction的Miss

Max
Callout
讀取Data的Miss

Max
Highlight

Max
Highlight

Max
Highlight

Max
Arrow

Max
Arrow

Max
Textbox
Memory存取位置是共有的

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44
n Ideal CPU is 5.44/2 =2.72 times faster

Max
Underline

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Average Access Time
n Hit time is also important for performance

n Average memory access time (AMAT)

n AMAT = Hit time + Miss rate × Miss penalty

n Example

n CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

n AMAT = 1 + 0.05 × 20 = 2ns

n 2 cycles per instruction

Max
Highlight

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Performance Summary
n When CPU performance increased

n Miss penalty becomes more significant
n Decreasing base CPI

n Greater proportion of time spent on memory
stalls

n Increasing clock rate
n Memory stalls account for more CPU cycles

n Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)

Max
Underline

Max
Underline

Max
Callout
no index , offset剩下的全部拿來做tag

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Different Cache Architectures

Max
Note
每一個Memory Address對應到一個Cache (多對一)

Max
Callout
必須比對兩個Tag其中一個

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Spectrum of Associativity
n For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Associativity Example
n Compare 4-block caches

n Direct mapped, 2-way set associative,
fully associative

n Block access sequence: 0, 8, 0, 6, 8

n Direct mapped
Block

address
Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Max
Arrow

Max
Typewriter
時間軸

Max
Callout
Direct Mapping的Cache空間使用效率不佳

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Associativity Example
n 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Max
Callout
看出Hit比例較高

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

How Much Associativity
n Increased associativity decreases miss

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%

Max
Highlight

4-way Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

4KB capacity

Max
Note
可以任意選擇要放在哪一個Block裡面, 平行存取, 在取資料時則平行比對Tag去確認是放在哪一個Block

Example of Multi-Way Caches

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB
2 KB
4 KB
8 KB

M
iss

 ra
te

Associativity 16 KB
32 KB
64 KB
128 KB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Replacement Policy for Associative Caches

n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, a single bit to set if one block is
accessed, unset if the other is accessed

n Manageable for 4-way, too hard beyond that
n Random (randomly pick any block)

n Gives approximately the same performance
as LRU for high associativity

Max
Highlight

Max
Note
沒被Access的entry優先使用

Max
Highlight

Max
Underline

LRU Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

A B C D
MRU LRULRU+1MRU-1

Access C
C A B D

Access D
D C A B

Access E
E D C A

Access C
C E D A

Access G
G C E D

MISS, replacement
needed

MISS, replacement
needed

Max
Typewriter
目前被用到

Max
Typewriter
最久以前被用到

Max
Arrow

Pseudo LRU
n Most caches use approximate LRU

n A popular approach uses S-1 bits for an S-way
cache

n The blocks are hierarchically divided into a binary tree
n At each level of the tree, one bit is used to track the

least recently used
n For a 4-way set associate cache, blocks are first

divided into two halves, each half has two blocks
n The 1st bit tracks the more recently used half
n The 2nd bit (3rd) tracks the more recently block in the

first (second) half
n The one to replace is the less recently used block in the

less recently used half
n Used in many commercial processors

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Max
Highlight

Max
Highlight

Max
Highlight

Example Pseudo LRU
n Tree-based

n O(N): 3 bits for 4-way
n Cache ways are the leaves of the tree
n Combine ways as we proceed towards the root of

the tree

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

AB/CD bit

A/B bit C/D bit

A B C D
Way0Way1Way2Way3

Tracks the more
recent block of A
or B

Tracks the more
recent block of C
or D

Tracks the more recent
half of AB or CD

Comparing Random and LRU Policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of

the same total size

Max
Highlight
Temporal Locality
假如分成n個Set, 每次存入的選擇只有n個選擇, 而沒辦法選擇其他空的cache位置, 造成Miss
(fully associative cache不會發生)

Max
Note
Direct Mapped或是Set Associative造成的Miss

Max
Highlight
第一次存取一定是Miss

Max
Underline

Max
Highlight
Spatial Locality
因為大小不夠造成的Miss
(fully associative cache也會發生)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Cache Design Trade-offs

Design change Effect on miss rate Negative performance
effect

Increase cache size Decrease capacity
misses

May increase access
time

Increase associativity Decrease conflict
misses

May increase access
time

Increase block size Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
increase miss rate
due to pollution.

More Cache Examples
n Block placement
n Block identification and address formats

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

§5.8 A C
om

m
on Fram

ew
ork for M

em
ory H

ierarchy

Block Placement
n Which location to put a block?
n Direct-mapped

n location= (block addr) mod (# block in cache)
n Fully-associative

n Any place in cache
n Search complete cache for exact block

location
n Set-associative

n location= (block addr) mod (# set in cache)
n Search # way for exact block location in a set

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Block Placement Example (Direct-mapped)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

0 1 2 3 4 5 6 7

Cache

Memory

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

block location of block #12
= 12 mod 8 = 4

Also block #4, #20, #28 will be placed
at the same cache location
(to replace #12).

Block
index

Block
index

Block Placement Example (Fully-associative)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Cache

Memory

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

block location of block #12
= any where in the cache

Also other 31 blocks can be placed
at the same cache location.

0 1 2 3 4 5 6 7

Block
index

Block Placement Example (Set-associative)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Cache

Memory

block location of block #12
= 12 mod 4 = 0

Block #12 can go into either block in
set 0.

Also block #0, #4, #8, #16, #20, #24,
#28 will be placed at the same set
(to replace #12).

0 1 2 3 4 5 6 7

set
0

set
1

set
2

set
3

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Block
index

Block Identification (Direct-mapped)
n Find where we put a block in cache?
n Direct-mapped address format

n address = r + m + n
n 2n bytes in a block
n 2m blocks in a cache
n cache size = 2m * 2n

n index = (block addr) mod (2m)
n Check valid bit at index location
n Compare r address tag to confirm match

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

r = address tag m = block index n = byte offset

Block Identification (Fully-associative)
n Find where we put a block in cache?
n Fully-associative address format

n address = r + n
n 2n bytes in a block
n Compare r address tag to all cache blocks to

confirm match

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 72

r = address tag n = byte offset

Block Identification (Set-associative)
n Find where we put a block in cache?
n Set-associative address format

n address = r + m + n
n 2n bytes in a block
n 2m sets in a cache
n cache size = 2m * 2n * # way
n set index = (block addr) mod (2m)
n Compare r address tag of all ways to confirm

match
n Check valid bit at set location

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 73

r = address tag m = set index n = byte offset

Max
Highlight

Max
Note
實際上會更大, 除此之外還有
Dirty bit (Cache內資料是否被更新過), Valid bit (Cache內是否存有資料),
Tag bit,
Replacement bit (存取先後)
等等去做Cache的管理

Direct-mapped Address Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

0 1 2 3 4 5 6 7

Cache

Memory

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

block size = 2 bits (22=4bytes)
total memory = 5+2 bits (27=128bytes)
cache block size = 3 bits (23=8blocks)
tag = 2 bits (5-3=2)

block #12= 01100
block index = 100 mod 8 = 100
tag = 01

Block
index

Block
index

Fully-associative Address Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Cache

Memory

block size = 2 bits (22=4bytes)
total memory = 5+2 bits (27=128bytes)
cache size = 3 bits (23=8blocks)
tag = 5 bits

block #12= 01100
tag = 01100

Block
index

Block
index

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 1 2 3 4 5 6 7

2-way Set-associative Address Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

Cache

Memory

block size = 2 bits (22=4bytes)
total memory = 5+2 bits (27=128bytes)
cache set size = 2 bits (22=4sets)
tag = 2 bits (5-3=2)

block #12= 01100
set index = 100 mod 4 = 00
tag = 011

Block
index

Block
index

0 1 2 3 4 5 6 7

set
0

set
1

set
2

set
3

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Max
Line

Max
Line

Max
Line

Max
Line

Max
Typewriter
3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from

primary cache
n Larger, slower, but still faster than main

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9

Max
Highlight

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 79

Example (cont.)
n Now add L-2 cache

n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 400 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6

Max
Callout
Level 2 Cache的Access time較高, 但是Miss Rate有效降低

Max
Highlight

Max
Highlight
L1 Cache Miss, L2 Cache Hit
(前面Level錯誤才會往後試)

Max
Highlight
L1 Hit

Max
Highlight
L2 Cache Miss

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 80

Multilevel Cache Considerations
n Primary cache

n Focus on minimal hit time
n L-2 cache

n Focus on low miss rate to avoid main memory
access

n Hit time has less overall impact
n Results

n L-1 cache usually smaller than a single cache
n L-1 block size smaller than L-2 block size

Max
Underline

Max
Underline

Max
Underline

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 81

Interactions with Advanced CPUs
n Out-of-order CPUs can execute

instructions during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation

stations
n Independent instructions continue

n Effect of miss depends on program data
flow
n Much harder to analyse
n Use system simulation

Max
Underline
亂序執行（錯序執行，英語：out-of-order execution，簡稱OoOE或OOE）是一種應用在高效能微處理器中來利用指令周期以避免特定類型的延遲消耗的範式。在這種範式中，處理器在一個由輸入資料可用性所決定的順序中執行指令，而不是由程式的原始資料所決定。在這種方式下，可以避免因為取得下一條程式指令所引起的處理器等待，取而代之的處理下一條可以立即執行的指令。

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 82

Interactions with Software
n Misses depend on

memory access
patterns
n Algorithm behavior
n Compiler

optimization for
memory access

Max
Oval

Max
Callout
Radix Sort Miss Rate上升

Software Optimization via Blocking
n Goal: maximize accesses to data before it

is replaced
n Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)
{
double cij = C[i+j*n];
for(int k = 0; k < n; k++)
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 83

DGEMM Access Pattern
n C, A, and B arrays

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 84

older accesses

new accesses

Cache Blocked DGEMM
1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5 for (int i = si; i < si+BLOCKSIZE; ++i)
6 for (int j = sj; j < sj+BLOCKSIZE; ++j)
7 {
8 double cij = C[i+j*n];/* cij = C[i][j] */
9 for(int k = sk; k < sk+BLOCKSIZE; k++)
10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11 C[i+j*n] = cij;/* C[i][j] = cij */
12 }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16 for (int sj = 0; sj < n; sj += BLOCKSIZE)
17 for (int si = 0; si < n; si += BLOCKSIZE)
18 for (int sk = 0; sk < n; sk += BLOCKSIZE)
19 do_block(n, si, sj, sk, A, B, C);
20 }

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 85

Blocked DGEMM Access Pattern

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Unoptimized Blocked

Max
Callout
利用Cache Optimization去優化演算法效率

Max
Note
Halide是一種計算機編程語言，旨在編寫數字圖像處理代碼，從而利用內存局部性，矢量化計算以及多核CPU和GPU的優勢。 Halide在C ++中作為內部特定於域的語言實現。

Chapter 6 — Storage and Other I/O Topics — 87

Dependability

n Fault: failure of a
component
n May or may not lead

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

§5.5 D
ependable M

em
ory H

ierarchy

Chapter 6 — Storage and Other I/O Topics — 88

Dependability Measures
n Reliability: mean time to failure (MTTF)
n Service interruption: mean time to repair (MTTR)
n Mean time between failures

n MTBF = MTTF + MTTR
n Availability = MTTF / (MTTF + MTTR)
n Improving Availability

n Increase MTTF: fault avoidance, fault tolerance, fault
forecasting

n Reduce MTTR: improved tools and processes for
diagnosis and repair

