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Memory Technology
n Static RAM (SRAM)

n 0.5ns – 2.5ns, $1000 – $2000 per GB
n Dynamic RAM (DRAM)

n 10ns – 40ns, $3 – $7 per GB
n Magnetic disk

n 3ms – 12ms, $0.018 per GB (about half of 2018)
n Data transfer rate: 200MB/s

n SSD (TLC)
n 0.1ms – 1.5ms (write), $0.15 per GB (also about 

half of 2018); 8X of HDD
n Data transfer rate: 200-2500MB/s

§5.2 M
em

ory Technologies

https://en.wikipedia.org/wiki/Solid-state_drive#Hard_disk_drives

https://venturebeat.com/2019/09/02/the-death-of-disk-hdds-still-
have-an-important-role-to-play/

https://en.wikipedia.org/wiki/Solid-state_drive
https://venturebeat.com/2019/09/02/the-death-of-disk-hdds-still-have-an-important-role-to-play/


Static RAM Cell
6-Transistor SRAM Cell
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n Write:
1. Drive bit lines (bit=1, bit’=0)
2. Select row

n Read:
1. Precharge bit and bit’ to Vdd
2. Select row
3. Cell pulls one line low
4. Sense amp on column detects difference between bit and bit’

10

0 1

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight



Classical DRAM Organization
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RAM Cell
Array

word (row) select

bit (data) lines

n Row and Column Address together: 
n Select 1 bit a time

Sense Amp + Column buffer



1-Transistor DRAM Cell
n Write

n Charge bit line HIGH or LOW and set word line 
HIGH

n Read
n Bit line is precharged to Vdd/2, and then the word 

line is set HIGH. 
n Depending on the charge in the cap, the 

precharged bitline is pulled slightly higher
or lower.

n Sense Amp Detects change
n Read is destructive

n So need to design circuit to write original value back to 
restore charge

n Therefore read refreshes memory
n Must periodically be refreshed to prevent charge 

leakage
n Read contents and write back
n Performed on a DRAM “row”
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DRAM Generations

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

2017 4Gbit $5
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DRAM also exhibits ”moor’s law” in the past decades. 



DRAM Performance Factors
n Row buffer

n Allows several words to be read and refreshed in 
parallel

n Synchronous DRAM
n Allows for consecutive accesses in bursts without 

needing to send each address
n Improves bandwidth

n DRAM banking
n Allows simultaneous access to multiple DRAMs
n Improves bandwidth
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DRAM Organizations
n Multiple banks to output rows of data 

simultaneously
n Increase throughputs
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Main Memory Supporting Caches
n Use DRAMs for main memory

n Fixed width (e.g., 1 word)
n Connected by fixed-width clocked bus

n Bus clock is typically slower than CPU clock

n Example cache block read
n 1 bus cycle for address transfer
n 15 bus cycles per DRAM access
n 1 bus cycle per data transfer

n For 4-word block, 1-word-wide DRAM
n Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Increasing Memory Bandwidth
Assumptions:
1 cycle to send address
15 cycles for each DRAM 

access initiated
1 cycle to send a word of 

data

n 1-word wide memory
n Miss penalty = 1 + 4 x (15 + 1) = 65 cycles
n Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

n 4-word wide memory
n Miss penalty = 1 + 15 + 1 = 17 bus cycles (BW=0.94 B/cycle)

n 4-bank interleaved memory
n Miss penalty = 1 + 15 + 4×1 = 20 bus cycles (BW=0.8 B/cycle)
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Flash Storage
n Nonvolatile semiconductor storage

n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB (between disk and DRAM)
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Flash Types
n NOR flash: bit cell like a NOR gate

n Random read/write access
n Used for instruction memory in embedded systems

n NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

n Flash bits wears out after 1000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks
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Disk Storage
n Nonvolatile, rotating magnetic storage
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Disk Sectors and Access
n Each sector records

n Sector ID
n Data (512 bytes, 4096 bytes proposed)
n Error correcting code (ECC)

n Used to hide defects and recording errors
n Synchronization fields and gaps

n Access to a sector involves
n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead
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Disk Access Example
n Given

n 512B sector, 15,000rpm, 4ms average seek 
time, 100MB/s transfer rate, 0.2ms controller 
overhead, idle disk

n Average read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

n If actual average seek time is 1ms
n Average read time = 3.2ms
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Disk Performance Issues
n Manufacturers quote average seek time

n Based on all possible seeks
n Locality and OS scheduling lead to smaller actual 

average seek times
n Smart disk controller allocate physical sectors on 

disk
n Present logical sector interface to host
n SCSI, ATA, SATA

n Disk drives include caches
n Prefetch sectors in anticipation of access
n Avoid seek and rotational delay
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Bridging Gap Between External DRAM 
and On-Chip SRAM

n Read access to DRAM can take 50-200 
CPU cycles

n Access to SRAM is typically 1-2 cycles
n The impact to CPI is huge if we directly 

access instructions or data from DRAM
n As shown in the following example

n Solution
n Data locality

§5.1 Introduction



Example 1-Cycle Memory

n Total 9 cycles
n CPI=9/4=2.25
n Ignore instruction fetch from memory
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F D A M Wld x20, 0(x10)

ld x21, 4(x10) F D A M W

add x22, x20, x21 F D A M W

sd x22, 8(x10) F D A M W



Example 4-Cycle Memory

n Total 15 cycles

n CPI=15/4=3.75

n Assume memory write buffer
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

F D A M W

F D A M W

F D A M W

F D A M W

ld x20, 0(x10)

ld x21, 4(x10)

add x22, x20, x21

sd x22, 8(x10)
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Principle of Locality
n Programs access a small proportion of 

their address space at any time
n Temporal locality

n Items accessed recently are likely to be 
accessed again soon

n e.g., instructions in a loop, induction variables
n Spatial locality

n Items near those accessed recently are likely 
to be accessed soon

n E.g., sequential instruction access, array data
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Taking Advantage of Locality
n Apply memory hierarchy

n All data are available on disk
n Copy recently accessed (and nearby) items 

from disk to smaller DRAM memory
n Copy more recently accessed (and nearby) 

items from DRAM to smaller SRAM Cache 
memory
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Memory Hierarchy Levels
n Block (aka line): unit of copying

n May be multiple words
n If accessed data is present in 

upper level
n Hit: access satisfied by upper level

n Hit ratio: hits/accesses

n If accessed data is absent
n Miss: block copied from lower level

n Time taken: miss penalty
n Miss ratio: misses/accesses

= 1 – hit ratio
n Then accessed data supplied from 

upper level

Cache

Main memory
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Memory Hierarchy Organization
n Illusion of a large and fast memory
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Cache Memory
n Cache memory

n The level of the memory hierarchy closest to 
the CPU

n Given accesses X1, …, Xn–1, Xn

§5.3 The Basics of C
aches

n How do we know if 
the data is present?

n Where do we look 
for data?
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Direct Mapped Cache
n Location determined by address
n Direct mapped: only one choice

n (Block address) modulo (#Blocks in cache)

n #Blocks is a 
power of 2

n Use low-order 
address bits
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記憶體各自對應到Cache的位置，同一個Cache會由多個Memory佔有
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一個Cache空間會有額外的空間去紀錄是哪個Memory存進去 
Ex:001->(00)001
多的兩個bits為tag

另外存一個boolean去判斷Cache裡面由沒有資料
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Tags and Valid Bits
n How do we know which particular block is 

stored in a cache location?
n Store block address as well as the data
n Actually, only need the high-order bits
n Called the tag

n What if there is no data in a location?
n Valid bit: 1 = present, 0 = not present
n Initially 0
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Cache Example
n 8-blocks, 1 word/block, direct mapped
n Initial state

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N
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Cache Example

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Miss 110
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
26 11 010 Miss 010
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Cache Example

Index V Tag Data
000 N
001 N
010 Y 11 Mem[11010]
011 N
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
22 10 110 Hit 110
26 11 010 Hit 010
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Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 11 Mem[11010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000
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Cache Example

Index V Tag Data
000 Y 10 Mem[10000]
001 N
010 Y 10 Mem[10010]
011 Y 00 Mem[00011]
100 N
101 N
110 Y 10 Mem[10110]
111 N

Word addr Binary addr Hit/miss Cache block
18 10 010 Miss

Replace
010

Max
Highlight

Max
Rectangle

Max
Callout
需要指標去判斷是否要Replace



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Address Subdivision
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Example: Larger Block Size
n A direct-mapped cache has 64 blocks, 16 

bytes/block
n Block number of address 1200?
n Block address = ë1200/16û = 75
n Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

1200 = b 0100 1011 0000

offsetindextag
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(2)缺點: 記憶體大小有限, Bytes越多代表Index減少, 存取時Conflict的機率越高, Temporal Locality變差

用Spatial Locality換取Temporal Locality
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Block Size Considerations
n Larger blocks should reduce miss rate

n Due to spatial locality
n But in a fixed-sized cache

n Larger blocks Þ fewer of them
n More competition Þ increased miss rate

n Larger blocks Þ pollution
n Larger miss penalty

n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help

• Early restart – send arrived words in cache to CPU 
as early as possible

• Critical-word-first – retrieve needed words from 
memory first
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Example of Block Size on Performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Increase block size tends to decrease miss rate
$ size

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

better
1 KB 
8 KB 
16 KB 
64 KB 
256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

Mi
ss

 ra
te

64164

Block size (bytes)
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Memory Access Time v.s. Block Size

nAverage Memory Access Time
= Hit Time  +  Miss Penalty x Miss Rate
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Cache Misses
n On cache hit, CPU proceeds normally
n On cache miss

n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

n Restart instruction fetch
n Data cache miss

n Complete data access
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Write-Through
n On data-write hit, could just update the block in 

cache
n But then cache and memory would be inconsistent

n Write through: also update memory, but makes 
writes take longer
n e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
n Effective CPI = 1 + 0.1×100 = 11

n Solution: write buffer
n Holds data temporarily while waiting to be written to 

memory
n CPU continues immediately

n Only stalls on write if write buffer is already full

Max
Highlight

Max
Highlight

Max
Highlight

Max
Callout
先不寫回記憶體,等一會兒才寫回
(Pipeline不會Stall在Write-Through上)

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Highlight

Max
Note
原本問題是不知道該等多久才寫回去Memory裡面算適合, 且該等待時間會讓CPU Stall



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Write-Back
n On data-write hit, just update the block in 

cache
n Need to keep track of whether each block is 

dirty
n A block is dirty if it has been written and 

inconsistent with memory
n When a dirty block is replaced

n Write it back to memory
n Can also use a write buffer to allow replacing 

block to be read first
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Write Allocation
n On a write miss
n Two methods for write-through

n Allocate on miss: fetch the block
n Write around: don’t fetch the block

n Since programs often write a whole block before 
reading it (e.g., initialization)

n For write-back
n Usually fetch the block
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Example: Intrinsity FastMATH
n Embedded MIPS processor

n 12-stage pipeline

n Instruction and data access on each cycle

n Split cache: separate I-cache and D-cache

n Each 16KB: 256 blocks × 16 words/block

n D-cache: write-through or write-back

n SPEC2000 miss rates

n I-cache: 0.4%

n D-cache: 11.4%

n Weighted average: 3.2%
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Example: Intrinsity FastMATH
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Measuring Cache Performance
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Instruction and Data Cache
n Most architectures 

separate instruction 
and data caches

n Different I-Cache 
and D-Cache 
architectures to 
optimize 
performance and 
increase bandwidth.
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I-Cache and D-Cache Performance
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Cache Performance Example
n Given

n I-cache miss rate = 2%
n D-cache miss rate = 4%
n Miss penalty = 100 cycles
n Base CPI (ideal cache) = 2
n Load & stores are 36% of instructions

n Miss cycles per instruction
n I-cache: 0.02 × 100 = 2
n D-cache: 0.36 × 0.04 × 100 = 1.44

n Actual CPI = 2 + 2 + 1.44 = 5.44
n Ideal CPU is 5.44/2 =2.72 times faster
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Average Access Time
n Hit time is also important for performance

n Average memory access time (AMAT)

n AMAT = Hit time + Miss rate × Miss penalty

n Example

n CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5%

n AMAT = 1 + 0.05 × 20 = 2ns

n 2 cycles per instruction
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Performance Summary
n When CPU performance increased

n Miss penalty becomes more significant
n Decreasing base CPI

n Greater proportion of time spent on memory 
stalls

n Increasing clock rate
n Memory stalls account for more CPU cycles

n Can’t neglect cache behavior when 
evaluating system performance
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Associative Caches
n Fully associative

n Allow a given block to go in any cache entry
n Requires all entries to be searched at once
n Comparator per entry (expensive)

n n-way set associative
n Each set contains n entries
n Block number determines which set

n (Block number) modulo (#Sets in cache)
n Search all entries in a given set at once
n n comparators (less expensive)
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Different Cache Architectures
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Spectrum of Associativity
n For a cache with 8 entries
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Associativity Example
n Compare 4-block caches

n Direct mapped, 2-way set associative,
fully associative

n Block access sequence: 0, 8, 0, 6, 8

n Direct mapped
Block 

address
Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]
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Associativity Example
n 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

n Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]
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How Much Associativity
n Increased associativity decreases miss 

rate
n But with diminishing returns

n Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%
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4-way Set Associative Cache Organization
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4KB capacity
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Example of Multi-Way Caches
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Replacement Policy for Associative Caches

n Direct mapped: no choice
n Set associative

n Prefer non-valid entry, if there is one
n Otherwise, choose among entries in the set

n Least-recently used (LRU)
n Choose the one unused for the longest time

n Simple for 2-way, a single bit to set if one block is 
accessed, unset if the other is accessed

n Manageable for 4-way, too hard beyond that
n Random (randomly pick any block)

n Gives approximately the same performance 
as LRU for high associativity
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LRU Example
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A B C D
MRU LRULRU+1MRU-1

Access C
C A B D

Access D
D C A B

Access E
E D C A

Access C
C E D A

Access G
G C E D

MISS, replacement 
needed

MISS, replacement 
needed
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Pseudo LRU
n Most caches use approximate LRU

n A popular approach uses S-1 bits for an S-way 
cache

n The blocks are hierarchically divided into a binary tree
n At each level of the tree, one bit is used to track the 

least recently used
n For a 4-way set associate cache, blocks are first 

divided into two halves, each half has two blocks
n The 1st bit tracks the more recently used half
n The 2nd bit (3rd) tracks the more recently block in the 

first (second) half
n The one to replace is the less recently used block in the 

less recently used half
n Used in many commercial processors
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Example Pseudo LRU
n Tree-based

n O(N): 3 bits for 4-way
n Cache ways are the leaves of the tree
n Combine ways as we proceed towards the root of 

the tree
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AB/CD bit

A/B bit C/D bit

A B C D
Way0Way1Way2Way3

Tracks the more 
recent block of A 
or B

Tracks the more 
recent block of C 
or D

Tracks the more recent 
half of AB or CD



Comparing Random and LRU Policy
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2-way 4-way 8-way

Size LRU Random LRU Random LRU Random

16KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Sources of Misses
n Compulsory misses (aka cold start misses)

n First access to a block
n Capacity misses

n Due to finite cache size
n A replaced block is later accessed again

n Conflict misses (aka collision misses)
n In a non-fully associative cache
n Due to competition for entries in a set
n Would not occur in a fully associative cache of 

the same total size
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Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. For very large 
block size, may 
increase miss rate 
due to pollution.



More Cache Examples
n Block placement
n Block identification and address formats
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Block Placement
n Which location to put a block?
n Direct-mapped

n location= (block addr) mod (# block in cache)
n Fully-associative

n Any place in cache
n Search complete cache for exact block 

location
n Set-associative

n location= (block addr) mod (# set in cache)
n Search # way for exact block location in a set
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Block Placement Example (Direct-mapped)
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Block Placement Example (Fully-associative)
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Block Placement Example (Set-associative)
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Block Identification (Direct-mapped)
n Find where we put a block in cache?
n Direct-mapped address format

n address = r + m + n
n 2n bytes in a block
n 2m blocks in a cache
n cache size = 2m * 2n

n index = (block addr) mod (2m)
n Check valid bit at index location
n Compare r address tag to confirm match
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r = address tag m = block index n = byte offset



Block Identification (Fully-associative)
n Find where we put a block in cache?
n Fully-associative address format

n address = r + n
n 2n bytes in a block
n Compare r address tag to all cache blocks to 

confirm match
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r = address tag n = byte offset



Block Identification (Set-associative)
n Find where we put a block in cache?
n Set-associative address format

n address = r + m + n
n 2n bytes in a block
n 2m sets in a cache
n cache size = 2m * 2n * # way
n set index = (block addr) mod (2m)
n Compare r address tag of all ways to confirm 

match
n Check valid bit at set location
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r = address tag m = set index n = byte offset
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Direct-mapped Address Example
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Fully-associative Address Example
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2-way Set-associative Address Example
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Multilevel Caches
n Primary cache attached to CPU

n Small, but fast
n Level-2 cache services misses from 

primary cache
n Larger, slower, but still faster than main 

memory
n Main memory services L-2 cache misses
n Some high-end systems include L-3 cache
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Multilevel Cache Example
n Given

n CPU base CPI = 1, clock rate = 4GHz
n Miss rate/instruction = 2%
n Main memory access time = 100ns

n With just primary cache
n Miss penalty = 100ns/0.25ns = 400 cycles
n Effective CPI = 1 + 0.02 × 400 = 9
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Example (cont.)
n Now add L-2 cache

n Access time = 5ns
n Global miss rate to main memory = 0.5%

n Primary miss with L-2 hit
n Penalty = 5ns/0.25ns = 20 cycles

n Primary miss with L-2 miss
n Extra penalty = 400 cycles

n CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
n Performance ratio = 9/3.4 = 2.6
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Multilevel Cache Considerations
n Primary cache

n Focus on minimal hit time
n L-2 cache

n Focus on low miss rate to avoid main memory 
access

n Hit time has less overall impact
n Results

n L-1 cache usually smaller than a single cache
n L-1 block size smaller than L-2 block size
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Interactions with Advanced CPUs
n Out-of-order CPUs can execute 

instructions during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation 

stations
n Independent instructions continue

n Effect of miss depends on program data 
flow
n Much harder to analyse
n Use system simulation
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Interactions with Software
n Misses depend on 

memory access 
patterns
n Algorithm behavior
n Compiler 

optimization for 
memory access
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Software Optimization via Blocking
n Goal:  maximize accesses to data before it 

is replaced
n Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)
{
double cij = C[i+j*n];
for( int k = 0; k < n; k++ )
cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;
}
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DGEMM Access Pattern
n C, A, and B arrays
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Cache Blocked DGEMM
1 #define BLOCKSIZE 32
2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)
4 {
5  for (int i = si; i < si+BLOCKSIZE; ++i)
6   for (int j = sj; j < sj+BLOCKSIZE; ++j)
7   {
8    double cij = C[i+j*n];/* cij = C[i][j] */
9    for( int k = sk; k < sk+BLOCKSIZE; k++ )
10    cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */
11   C[i+j*n] = cij;/* C[i][j] = cij */
12  }
13 }
14 void dgemm (int n, double* A, double* B, double* C)
15 {
16  for ( int sj = 0; sj < n; sj += BLOCKSIZE )
17   for ( int si = 0; si < n; si += BLOCKSIZE )
18    for ( int sk = 0; sk < n; sk += BLOCKSIZE )
19     do_block(n, si, sj, sk, A, B, C);
20 }
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Blocked DGEMM Access Pattern
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Unoptimized Blocked
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Dependability

n Fault: failure of a 
component
n May or may not lead 

to system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration
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Dependability Measures
n Reliability: mean time to failure (MTTF)
n Service interruption: mean time to repair (MTTR)
n Mean time between failures

n MTBF = MTTF + MTTR
n Availability = MTTF / (MTTF + MTTR)
n Improving Availability

n Increase MTTF: fault avoidance, fault tolerance, fault 
forecasting

n Reduce MTTR: improved tools and processes for 
diagnosis and repair




