
Computer
Architecture

Prof. Ren-Shuo Liu
NTHU EE

CH4 Processor Microarchitecture (IV)

Outline

• Background

• Single-cycle design

• Pipelined design
• Pipeline concepts and MIPS's pipeline

• Cost and issues of pipelining

• Detailed pipelined datapath and control
• Trace the pipeline

• Dependencies, hazards, and forwarding

• Stalls and exceptions

2

Data Hazards That Cause Stall(s)

• Two lw cases

3

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

lw r1, imm(r2)

ALU r3, r4, r1

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

lw r1, imm(r2)

sw r3, imm(r1)

Data Hazards That Cause Stall(s)

• Three branch cases

4

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

ALU r1, r, r

beq r1, r2, imm

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

lw r1, imm(r2)

beq r1, r2, imm

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

lw r1, imm(r2)

beq r1, r2, imm

nop

How to Handle

• Detect the situations

• Stall the pipeline

• Example

5

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

lw r1, imm(r2)

R-type r3, r4, r1 nop

R-type r3, r4, r1

PC

PC-4

PC

Hazard Detect and Stall

6

nop

inst inst' inst''keep_instkeep_PC

Hazard Detect and Stall

7

nop

inst inst' inst''keep_instkeep_PC

lw
$

1
, 1

0
0

($
2

)

84: addi
80: lw

8
4

n
o

p

n
o

p

n
o

p

Hazard Detect and Stall

8

nop

inst inst' inst''keep_instkeep_PC

ad
d

it
3

, t
1

, 1
2

3

lw
t1

, 1
0

0
(t

2
)

8
8

84: addi
80: lw n

o
p

n
o

p

Hazard Detect and Stall

9

nop

inst inst' inst''keep_instkeep_PC

ad
d

it
3

, t
1

, 1
2

3

n
o

p

lw
t1

, 1
0

0
(t

2
)

84: addi
80: lw

8
8

n
o

p

Hazard Detect and Stall

10

nop

inst inst' inst''keep_instkeep_PC

…

ad
d

it
3

, t
1

, 1
2

3

n
o

p

84: addi
80: lw

8
C

lw
t1

, 1
0

0
(t

2
)

Hazard Detect and Stall

11

nop

inst inst' inst''keep_instkeep_PC

… …

ad
d

it
3

, t
1

, 1
2

3

84: addi
80: lw

9
0

n
o

p

Hazard Detect and Stall

12

nop

inst inst' inst''keep_instkeep_PC

… … …

84: addi
80: lw

9
4

ad
d

it
3

, t
1

, 1
2

3

Exceptions

• An function call whose calling point is not
predefined
• In comparison, the calling points of normal functions are

known at compile time

• Some very similar concepts
• Interrupts

• Exceptions

• Traps

13

Exception Handling Flow

• Hardware
• Sets the EPC register to be PC
• Sets the Cause register to reflect the type of the exception

• Hardware flushes mis-fetched instructions

• Hardware sets PC to be a predefined value
• Where an OS-level exception handler resides
• The OS-level exception handler reads the Cause register
• The OS-level exception handler may further invokes a user-

level exception handler

• Exception handler (software) decides whether to jump
to the EPC to resume the program

14

Common Exception Causes

• IF
• Page fault/access fault on instruction fetch

• ID
• Undefined opcode

• EXE
• Overflow

• Divided by zero

• MEM
• Page fault/access fault on data access

• WB

15

Example

or $13, $2, $6

add $1, $2, $1

slt $15, $6, $7

lw $16, 50($7)

16

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Example

• If add causes overflow
• When the exception happens?

• Which instructions are in the pipeline?

• Which instructions shouldn't have entered the pipeline?

17

or $13, $2, $6

add $1, $2, $1

slt $15, $6, $7

lw $16, 50($7)

andi $16, $16, 0xff

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Example

18

or $13, $2, $6

add $1, $2, $1

slt $15, $6, $7

lw $16, 50($7)

andi $16, $16, 0xff

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

• Already fetched into the pipeline
• Shouldn't have done that (若事先知道
add產生exception，就不該fetch它們)

• Overflow
exception

Exception Hardware

19

nop nop

predefined
handler address

Overflow,
divide by zero,
page faultInvalid OP

nop

Page fault

Other Advanced Topics

• Static vs dynamic mechanisms

• Multiple issue

• Loop unrolling

• Branch predictor

20

Static vs Dynamic

• Static
• Decisions are made (typically by a compiler) at compile

time

• Dynamic
• Decisions are made at run time according to the

information available at run time

• Which performs better?

21

Multiple-Issue Pipeline

• Fetch and execute multiple instructions in a cycle

• Exploit the inherent parallelism of a program

• Increase the parallelism of a program

• Can be performed statically or dynamically

22

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Static Multiple Issue

• Compiler groups instructions into “issue packets”
• Group of instructions that can be issued on a single cycle

• Determined by pipeline resources required

• Think of an issue packet as a very long instruction
• Specifies multiple concurrent operations

•  Very Long Instruction Word (VLIW)

MIPS with Static Dual Issue

• Two-issue packets
• One ALU/branch instruction

• One load/store instruction

• 64-bit aligned
• ALU/branch, then load/store

• Pad an unused instruction with nop

24

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Pipeline with Static Dual Issue

25

Hazards in the Dual-Issue Pipeline

• More instructions executing in parallel

• EX data hazard
• Forwarding avoided stalls with single-issue

• Now can’t use ALU result in load/store in same packet
• add $t0, $s0, $s1
load $s2, 0($t0)

• Split into two packets, effectively a stall

• Load-use hazard
• Still one cycle use latency, but now two instructions

• More aggressive scheduling required

Static Dual Issue Example

• Schedule this for dual-issue MIPS
Loop: lw $t0, 0($s1) # $t0=array element

addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,–4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Static Dual Issue + Loop Unrolling

• Replicate loop body to expose more parallelism and reduce the
loop-control overhead

• Use different registers per replication

• IPC = 14/8 = 1.75 (at the cost of registers and code size)

ALU/branch Load/store cycle

Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

Dynamic Multiple Issue

• “Superscalar” processors

• CPU decides whether to issue 0, 1, 2, … instructions
each cycle

• Avoids the need for compiler scheduling
• Though it may still help

• Code semantics ensured by the CPU

Does Multiple Issue Work?

• Yes, but not as much as we’d like

• Programs have real dependencies that limit
instruction level parallelism (ILP)

• Some dependencies are hard to eliminate
• e.g., pointer

• Some parallelism is hard to expose
• Limited window size during instruction issue

• Memory delays and limited bandwidth
• Hard to keep pipelines full

• Speculation can help if done well

Power Efficiency

• Complexity of dynamic scheduling and speculations
requires power

• Multiple simpler cores may be better
Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Dynamic Branch Prediction

• In deeper and superscalar pipelines, stall cycles of
branch hazards are more significant

• Use dynamic prediction
• Store the recent outcomes (taken/not taken) of

branches into a table
• 1-bit predictor records the last outcome

• 2-bit predictor can record the last two outcomes

• To execute a branch
• Check the table, expect the same outcome

• Start fetching from fall-through or target

• If wrong, flush pipeline and flip prediction

1-Bit Predictor: Shortcoming

• Inner loop branches mispredicted twice

outer: …
…

inner: …
…
beq …, …, inner
…
beq …, …, outer

Outcome of the inner loop branches:
T, T, T, T, T, N, T, T, T, T, T, N, T, T, …
(T: taken, N: not taken) mispredicted

2-Bit Predictor

• Only change prediction on two successive
mispredictions

00 01 10 11

Predict taken Predict not taken

T T T

NNN
NT

Outcome of the inner loop branches:
T, T, T, T, T, N, T, T, T, T, T, N, T, T, …
(T: taken, N: not taken) mispredicted

Fallacies

• (X) Pipelining is easy
• The basic idea is easy

• The devil is in the details
• e.g., detecting data hazards

• (X) Pipelining is independent of technology (i.e,
transistor scaling)
• Latencies of RAM, ALU, etc. affect pipeline design

decisions, such as the number of pipeline stages

• More transistors make more advanced techniques
feasible

• Pipeline-related ISA design needs to take account of
technology trends

Pitfalls

• Poor ISA design can make pipelining harder
• e.g., complex instruction sets (X86)

• Significant overhead to make pipelining work

• X86 processor needs to translate X86 instructions into RISC-like
operations by hardware
• This is one small reason why Intel loses the smartphone market

• e.g., complex addressing modes

• e.g., delayed branches
• Advanced pipelines have long delay slots

• It is hard to fully utilize many slots

• Program portability is also a concern if delayed branches are
adopted

37

Programming

Instruction Set Archtecture

Organization & Architecture

Data Structures / Algorithms

Logic Design

Digital Electronics

CH2

CH3, 4, 5

Applications

Solid-State Electronics

Hardware

Software

Computer
Architecture

