Chapter 1

Performance
Measurements

| Outline

Performance
The power wall

'he sea change: the switch from
uniprocessor to multiprocessor

Real stuff: benchmarking the Intel Core i7
Fallacies and pitfalls
Concluding remarks

Chapter 1 — Computer Abstractions and Technology — 2

Basic Performance Metric

Latency (Response Time)
2T
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must | wait for the database query?
Throughput (bandwidth)
2Wi /LT,
— How many jobs can the machine run at once?
— # of lines of code per day
— # of bits per second transmitted over a wire

If we upgrade a machine with a faster processor what do we
increase? Latency Throughput

If we add an additional machine to the lab what do we

Increase? | .iency Throughput

Chapter 1 — Computer Abstractions and Technology — 3

Max
Typewriter
Latency減少，Throughput會跟著上升

Max
Typewriter
Latency不變，但平行度的提高可以增加Throughput

Max

Max

Defining Performance

[[[[[
Boeing 777 | Boeing 777 |
Boeing 747 Boeing 747
BAC/Sud | BAC/Sud | |
Concorde Concorde |
Douglas Douglas DC- |
DC-8-50 8-50 T T T T
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
O Passenger Capacity O Cruising Range (miles) |
[[
Boeing 777 Boeing 777 | | |
Boeing 747 Boeing 747 |
BAC/Sud | BAC/Sud | | |
Concorde Concorde
Douglas Douglas DC-
DC-8-50 :5 gs0 — 1
0 500 1000 1500 0 100000 200000 300000 400000
|0 Cruising Speed (mph) | |0 Passengers x mph |

Chapter 1 — Computer Abstractions and Technology — 4

| Example: Latency vs. Throughput

Plane DC to Paris Speed Passengers Ul el ol
(pph)
_a 0
i 6.5 hours 610 mph 470 72.3
3 hours 1350 mph 132 44

Time to run the task
Execution time, response time, latency

Tasks per day, hour, week, sec, ns ...
Throughput, bandwidth

Chapter 1 — Computer Abstractions and Technology — 5

| Performance

Speed of Concorde vs. Boeing 747
1350 mph vs 610 mph (2.21:1)

Concord is 2.2 times faster in terms of flying
time

Throughput of Boeing 747 vs. Concorde
72.3 pph vs 44 pph (1.63:1)

Boeing is 1.6 times faster (better) in terms of
throughput

Chapter 1 — Computer Abstractions and Technology — 6

| Relative Performance

Define Performance = 1/Execution Time
“Xis n time faster than Y”

Performance, /Performance,
= Execution time,, /Execution time, =n

Example: time taken to run a program
10son A, 15s on B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 7

Max
Rectangle

Max

Max

| Measuring Execution Time

Elapsed time oo
(Non-Deterministic)
Total response time, including all aspects
Processing, 1/0O, OS overhead, idle time

Determines system performance
CPU tlme (@) UsgI;UTHQ? :Program

(2) System Time: 0S Serviq?
Time spent processing a given job
Discounts |/O time, other jobs’ shares
Comprises user CPU time and system CPU
time

Different programs are affected differently by
CPU and system performance

End to End time (Total time) = Elapsed Time + CPU Time

Chapter 1 — Computer Abstractions and Technology — 8

Max
Callout
Wall Clock: 包含OS Scheduling、I/O program, 其他程式干擾的時間

(Non-Deterministic) 通常會排除

Max
Callout
通常看CPU Time的影響:

(1) User Time: 自己的Program

(2) System Time: OS Service

Max
Typewriter
End to End time (Total time) = Elapsed Time + CPU Time

Max

Max

Max

Max

| CPU Clocking

Operation of digital hardware governed by a

constant-rate clock llaster-Stave Flip Flop
Rising Edge
Slave Logic (Next
<+—Clock period—s- Stage)
Clock (cycles) B
Data transfer < X >!

and computation

i X
Update state <:> <:>

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250%10-12s

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10°Hz

Chapter 1 — Computer Abstractions and Technology — 9

Max
Oval

Max
Callout
採用Master-Slave Flip Flop的設計，當Rising Edge的時候，將Slave的資料送入Logic運算(Next Stage)

Max

' What is a Clock?

Logic signal to determine when “state” should be
updated
Ex: when a register latches output of the adder

It takes time to take values (54, 23) and propagate

through adder

Clock period = longest paths between registers
(complexity of computation)

Reg
A
=54

— Adder

t

Reg
B

=23
Clock r

output=77

—

Reg
C

Clock (cycles)

<+—Clock period—s-

Rising edge 1 Rising edge 2
A & B - Add C takes value =77

Chapter 1 — Computer Abstractions and Technology — 10

Max
Typewriter
數位邏輯設計採用Clock當作指標，可以

忽略電路設計帶來的影響

C P U Ti m e Architecture

CPU

CPU Time = CPU Clock Cyclesx Clock Cycle Time
- CPUClIock Cycles

Clock Rate

CPU Time is the time a processor spends
executing a piece of software

Performance improved by 10ps 1ps
. clock 10ps(
Reducing number of clock cycles) _dock 1ps
. register
ncreasing clock rate 10ps
-Hardware designer must often trade off clock rate

against cycle count

Chapter 1 — Computer Abstractions and Technology — 11

Max
Rectangle

Max
Callout
Architecture設計目標

Max
Callout
電路設計目標

Max
Callout
只考慮程式在CPU被執行所需的時間

Max
Typewriter
舉例來說:

乘法器需10ps、加法器需1ps

一般來說會取clock為10ps(選較慢的)，但是若將clock訂為1ps時，會增加存在register的時間與次數，使得執行時間大於10ps!

Max
Arrow

| CPU Time Example 1

CPU Clock freq = 1GHz (clk cycle time = 1
ns = 0.000000001 sec)

A program takes 5,000,000 cycles to
execute

CPU Time = 5,000,000 * 1 ns = 5,000,000
nsecs = 0.005 seconds

Chapter 1 — Computer Abstractions and Technology — 12

CPU Time Example 2

Computer A: 2GHz clock, 10s CPU time

Designing Computer B

Aim for 6s CPU time
Can do faster clock, but causes 1.2 x clock cycles

How fast must Computer B clock be?

Clock Cycles, 1.2xClock Cycles,

Clock Rateg = : =
CPU Timeg 6s

Clock Cycles, = CPU Time , xClock Rate ,
=10sx2GHz =20x10°

1.2x20x10° B 24 x10°

Clock Rate; =
6s 6s

=4GHz

Chapter 1 — Computer Abstractions and Technology — 13

Max
Rectangle

CPI: Cycles Per Instruction

CPI =Avg)Instruction Execution Time in

CPU time in cycles

CyCIeS_ # of instructions CPU |

CPl is an average of all instructions in a

program or several programs Vs n;!??ﬂﬁ???)ﬁa“‘)”
Cycle

Useful in comparing two different
implementations of the same architecture

Ex: Compiler Compiler Instructions A sane Tsacsare Tnstruction
CPU | Count)

Compiler [ISA: instruction count
CPU: cycles (CPI)
Processor: clock rate

Chapter 1 — Computer Abstractions and Technology — 14

Max
Typewriter
Ex: 排除Compiler的影響，因為較好的Compiler會有較少的Instructions，和

CPU本身的架構無關!

Max
Callout
通常以此來評斷CPU的表現!

Max
Oval

Max
Underline

Max
Callout
Same ISA(same Instruction Count)

Max
Callout
不同的implementation造成Instruction需要的Cycle數不同

Max
Typewriter
Compiler、ISA: instruction count

CPU: cycles (CPI)

Processor: clock rate

Instruction Count and CPI

Clock Cycles = Instruction Count x Cycles per Instruction

CPU Time — Instrtiction Count x CPIx Clock Cycle Time

nstruction Count x CPI
Clock Rate

Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction

Determined by CPU hardware

Different instructions have different CPI
Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 15

Max
Rectangle

Max
Arrow

Max
Underline

Max
Underline

Max

Max

Max

| CPIl Example

Computer A: Cycle Time = 250ps, CPI =2.0
Computer B: Cycle Time = 500ps, CPl =1.2
Same ISA sae struction count

Which is faster, and by how much?

CPU TimeA =Instruction Count x CPIA x Cycle TimeA

=Ix2.0x250ps =1x500ps «— | Ais faster...
CPU TimeB =Instruction Count x CPIB x Cycle TimeB
=[x1.2x500ps =1x600ps
CPU Timeg _ 1x600ps
CPU TimeA |x 500ps

=12~ ...by this much

Chapter 1 — Computer Abstractions and Technology — 16

Max
Typewriter
Same Instruction Count

Different CPI in Instruction Sets

Different instructions take different amount
of time to finish

Multiply vs. add
Cache hit and misses of load/store

Chapter 1 — Computer Abstractions and Technology — 17

| CPIl in More Detalil

If different instruction classes take different
numbers of cycles

n

Clock Cycles =) (CPI xInstruction Count,)
i=1

i Instruction

Welg hted average CPI (I:g?truction

CP|— Clock. Cycles _ Z(CPI. . Instructpn Count, j
Instruction Count 45 Instruction Count

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 18

Max
Callout
想成第i個Instruction佔所有Instruction的比例乘上其平均CPI

' CPIl Example 1

Assume a program has 100 instructions
25 load/store (each takes 2 cycles)
50 adds (each takes 1 cycle)
25 square root (each takes 100 cycles)

Improve
cycle
Avg CPI

Average CPI= total cycles/# of instructions ¢
=[(25*2) + (50*1) + (25*100)]/100
=(25/100)*2 + (50/100)*1 + (25/100)*100

=26.0 / \

frequency cycles

Chapter 1 — Computer Abstractions and Technology — 19

Max
Callout
看似improve平方根的cycle數能夠大大增進Avg CPI的表現，但在實務上卻不實際(因為平方根運算不常用)。

| CPIl Example 2

Alternative compiled code sequences using
instructions in classes A, B, C

Class A B C
Instruction CPI for class 1 2 3
O |IC in sequence 1 2 1 2
IC in sequence 2 4 1 1
Sequence 1: IC =5 Sequence 2: IC =6
Clock Cycles Clock Cycles
=2x1 + 1x2 + 2x%3 =4x1 + 1%x2 + 1x3
=10 =9
Avg. CPI1=10/5=2.0 Avg. CPI=9/6 = 1.5

Chapter 1 — Computer Abstractions and Technology — 20

Max
Callout
Instruction Count

Performance Summary

%_ Program Instruction CPI1(CPU) Clock Period
. Instructions Clock cycles Seconds
CPUTime = X y. X
Program Instruction Clock cycle

Three principle components of runtime:
Instruction count

CPI
Clock rate
Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI

Compiler: affects IC, CPI
Instruction set architecture: affects IC, CPI, T,

Chapter 1 — Computer Abstractions and Technology — 21

Max
Rectangle

Max
Polyline

Max
Typewriter
CPI(CPU架構問題)

Max
Typewriter
Program內的Instruction個數

Max
Typewriter
Clock Period

Max
Rectangle

Max

Power Trends

10,000 - 2667 3300 3400 T 120
N T,
T 1000 4 —
< T80 Z
77 z
8 100+ 160 =
g . :
5 12.5 +a0 2
- o
8 104 B—H
3.3 4.1 T
14— =2 | — 0
ey 8% 89 Emz R YL Y=_ 3 y_)%,\y_)%/\
88 88 38 23 58 525583 995 pE: gas
T @ o T — cT S8 €0 0‘588‘5N8 I
o~ QB0 §=¥ g o0og=P5T0OT
a as o < -
Voltage
Voltage Threshold

In CMOS IC technology /

Power = Capacitive load x Voltage® x Frequency

(Power

Frequency
CPU

)

\

x30

.

\

5V — 1V

\

x1000

Chapter 1 — Computer Abstractions and Technology — 22

Max
Callout
Voltage很難再往下降，因為Voltage要超越Threshold值

Max
Callout
可以持續提升

Max
Callout
若拉高Frequency，則必須提高CPU散熱(Power提高)

| Reducing Power

Suppose a new CPU has
85% of capacitive load of old CPU
15% voltage and 15% frequency reduction

P C,,x0.85x(V,,x0.85)*xF ,x0.85

new 0)

— > =0.85* =0.52
P Coaia X Vg XFyq

The power wall
We can’t reduce voltage further
We can’'t remove more heat

How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 23

Processor Performance..........

Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
1 00,000 Intel Xeon 4 cores 3.6 GHz (Bog

Intel Xeon 6 cores,

Intel Xeon 4 cores, 3.3 #Hz (boost to

AX-11/780, 5 MHz

25%l/year

4 z (boost to 3.8 GHz)
Hz (boost to 3.6 GHz)

(boost to 3.5 GHz)

1 it ittt et AMD Athlon 64, 2.8\GHz --—@=="C=~»
— 0,000 AMD Athlon, 2.6 GHz pimE
o Intel Xeon EE 3.2 GHz . ’
lci) Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)
~
—
~—)
' Professional Workstation XP1000, 667 MHz 21264A
X e mcmmmcmmcmmmcmccmm e e e e e e e - - Digital AlphaServer 8400 6/575, 575 MHz 21264 g 77 TicOf 1 - 1T
< 1000 +
> AlphaServer 4000 5/600, 600 MHz 21164
. Digital Alphastation 5/500, 500 MHz
(7]
= o
< 23%lyear
Q ‘ ,
c 100 e nmanmnes BaE et e e
g ,
—_
)
—~—
-
)
o , 16. &
[V e T T £ 123 g R e

7 4 cores 4.2 GHz (Boost to 4.5 GHz)

3.6 GHz)

12%/year 3.5%lyear

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 200

Constrained by power, instruction-level parallelism,
memory latency

2008 2010 2012 2014 2016 2018

Chapter 1 — Computer Abstractions and Technology — 24

Max
Oval

Max
Typewriter
CPU效能被Power因素卡住，故

轉往多核心發展

| Multiprocessors

Multicore microprocessors
More than one processor per chip

Requires explicitly parallel programming

Compare with instruction level parallelism
Hardware executes multiple instructions at once
Hidden from the programmer

Hard to do

Programming for performance
Load balancing
Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 25

' Comparing Performance

Recap
“X is n time faster than Y~

Performance, /Performance,
= Execution time,, /Execution time, =n

It's easy to compare for one program
What about multiple programs?

Chapter 1 — Computer Abstractions and Technology — 26

' Comparing Multiple Programs

Two machines with two programs

Program 1 2s 4s
Program 2 12's 8s

Fkx Ratio

Try to average over machine A

(program 1 + program 2)/2 = (4/2 + 8/12)/2 = 4/3
Try to average over machine B K
(program 1 + program 2)/2 = (2/4 + 12/8)/2= 1

Chapter 1 — Computer Abstractions and Technology — 27

Max
Callout
平均快幾倍

Max
Typewriter
算數平均不能用倒數互比，如果有Ratio，計算出的平均必須互為倒數

Max
Arrow

Max
Arrow

Max
Line

Max
Line

| Solution

Use Geometric Mean

n
R/H Execution time ratio,
i=1
Program 1 0.5 *A B 0.5 * 2.0
Program 2 1.5 0.666
Geometric Mean 0.866 1.155
Note: 1.155=1/0.866 Geometric Mean A B !

Chapter 1 — Computer Abstractions and Technology — 28

Max
Rectangle

Max
Typewriter
由Geometric Mean可知，A比B快!

Max
Typewriter
A時間為B的0.5倍

| SPEC CPU Benchmark

Programs used to measure performance
Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)
Develops benchmarks for CPU, I/O, Web, ...

SPEC CPU2006

Elapsed time to execute a selection of programs
Negligible /O, so focuses on CPU performance

Normalize relative to reference machine

Summarize as geometric mean of performance ratios
CINT2006 (integer) and CFP2006 (floating-point)

Chapter 1 — Computer Abstractions and Technology — 29

CINT2006 for Intel Core i7 920

SPEC Ratio = Reference Time / Execution Time

Execution | Reference

Instruction Clock cycle time

Description count x 10° (seconds x 10-9) SPECratio
Interpreted string processing | perl 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression

GNU C compiler gee 794 1.20 0.376 358 8050 225
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation

Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library

Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalancbmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

Chapter 1 — Computer Abstractions and Technology — 30

Max
Oval

Max
Callout
SPEC Ratio = Reference Time / Execution Time

' SPEC Power Benchmark

Power consumption of server at different
workload levels

Performance: ssj_ops/sec
Power: Watts (Joules/sec) /orsumption - Trageofs

10 10
Overall ssj_ops per Watt = (Z ssj_opsij / (Z powerij
i=0 i=0

Chapter 1 — Computer Abstractions and Technology — 31

Max
Callout
Performance和Power Consumption之間做Tradeoff

SPECpower_ssj2008 for Xeon X5650

Performance
Target Load % (ss)_ops)

(Watts)
258

100% 865,618

90pk 786,688 242

80% 698,051 224

70% 607,826 204

60% 521,391 185

Cloud 50% 436,757 170
Worktoad

60% Perf/Powerd0% 345,919 157

e 30% 262,071 146

20% 176,061 135

10% 86,784 121

0% Pevl\’l?‘; EE&'S?‘ Ratio (g))
Overall Sum 4,787,166 1,922
Y.ssj_ops/YXpower = 2,490

Chapter 1 — Computer Abstractions and Technology — 32

Max
Oval

Max
Oval

Max
Typewriter
在WorkLoad偏低時，Perf/Power Ratio較差

Max
Typewriter
對於Cloud端來說

WorkLoad很少大於

60%，故Perf/Power

Ratio很難達到很高

| Things to Note

Performance is specific to a particular
program/s
Total execution time is a consistent summary of
performance
For a given architecture performance
Increases come from:

increases in clock rate (without adverse CPI
affects and power limits)

Improvements in processor organization that
lower CPI

compiler enhancements that lower CPI and/or
iInstruction count

Chapter 1 — Computer Abstractions and Technology — 33

Max
Rectangle

| Pitfall: Amdahl’s Law

Improving an aspect of a computer and
expecting a proportional improvement in

overall performance Iprove limit(Ex:)
T- — Taffected 4+ T
improved imprOVG ment factor unaffected

Improve

Example: multiply accounts for 80s/100s

How much improvement in multiply performance to
get 5x overall?

20 = 80 +20 Can’t be done!

n
Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 34

Max
Typewriter
用於計算能夠Improve的limit(Ex:平行化)

Max
Callout
無法Improve的部分

' Falla@: Low Power at Idle

Look back at i7 power benchmark
At 100% load: 258W
At 50% load: 170W (66%)
At 10% load: 121W (47%)

Google data center

Mostly operates at 10% — 50% load
At 100% load less than 1% of the time

Consider designing processors to make
power proportional to load

Chapter 1 — Computer Abstractions and Technology — 35

Max
Callout
謬誤

| Pitfall: MIPS as a Performance Metric

MIPS: Millions of Instructions Per Second

Doesn’t account for

Differences in ISAs between computers
Differences in complexity between instructions

Instruction count

MIPS = —— :
Execution time x10
B Instruction count | Clock rate
~ Instruction count x CPI 105 | CPIx10°
Clock rate

CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 36

Max
Rectangle

Max
Rectangle

Max

| Concluding Remarks

Cost/performance is improving
Due to underlying technology development

Hierarchical layers of abstraction
In both hardware and software
Instruction set architecture
The hardware/software interface

Execution time: the best performance
measure

Power is a limiting factor
Use parallelism to improve performance

Chapter 1 — Computer Abstractions and Technology — 37

Tradeoff between Clock

Period and Total Cycle Count

One possible case
Adder=1ps, Multiplier=1.5ps,
add instruction= 100
mul instruction = 20

Originally, if clock= 1.5ps

Total cycle= # add+#mul=100+20=120

Total time=120 cycle*1.5ps=180ps

Clock 1ps mul ti

Now, if clock=1ps Y LCycle

Total cycle= # add+#mul*2=100+40=140

Total time=140 cycle*1ps=140ps

Total time= 100 cycle*1ps+20 cycle*1ps+20 cycle*1.1=142ps
(+0.1ps overhead each pipeline stage) clock+

Now, if clock=0.5ps

Total cycle= # add*2+#mul*3=200+60=260

Total time=260 cycle*0. 593 130ps 0
Total time= 100*0.5+100%0 6+20*O 5+40*0.6=144ps
(+0.1ps overhead each pipeline stage)

o<
Oﬂ
(@lmy
X D

Chapter 1 — Computer Abstractions and Technology — 14

Max
Callout
若Clock為1ps，則multiplier需要2個Cycle才能完成

Max
Typewriter
clock+0.1ps

Max
Arrow

Max
Arrow

Max
Typewriter
真實時間和理想時間差異頗大

 overhead可能造成表現比

 大clock cycle差

Max

Max

Max

	Chapter_01_perf

