

Chapter 1

Computer Abstractions and Technology

Outline

- Introduction
- Eight great ideas in computer architecture
- How a program is executed
- Under the cover of computers
- Technologies for building processors and memory

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

Personal computers

- General purpose, variety of software
- Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

Classes of Computers

- Supercomputers
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market

Embedded computers

- Hidden as components of systems
- Stringent power/performance/cost constraints

Smart Phone vs. PC Sales

The PostPC Era

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- How instruction sets work as the hardware/software interface
- What determines program performance
- How hardware designers improve performance
- What is parallel processing

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Eight Great Ideas

- Design for *Moore's Law*
- Use abstraction to simplify design
- Make the common case fast
- Performance via parallelism
- Performance via pipelining
- Performance via prediction
- Hierarchy of memories
- Dependability via redundancy

Moore's Law

- Integrated resources double every 18-24 months.
- Abstraction
 - Lower-level details are hidden with a simpler model
 - Ex. transistor \rightarrow gate \rightarrow digital circuit
- Make common case fast
 - Common cases consume most time in a process.
 - 90/10 rule

- Parallelism
 - Ex. more workers to pick fruits in a farm
 - Counter Ex. more engineers on designing one product
 - Pipelining
 - Ex. assembly line works
- Prediction
 - Ex. weather forecasting based on current weather, barometric measure, clouds, etc.
 - Cost associated with mis-prediction?
- Memory hierarchy
 - Ex. popular collection section in a library
- Redundancy
 - Ex. backing up your data at different cloud servers

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates high-level code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources

Hardware

Processor, memory, I/O controllers

Levels of Program Code High-level

(in C)

High-level language

- Level of abstraction closer to problem domain
- Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

000000010000110011001110000011 00000000111001100110000000100011 0000000010100110011010000100011

000000000000000100000001100111 Chapter 1 — Computer Abstractions and Technology — 14

(for RISC-V)

Operating Systems

- Load and execute user programs
- Provide input/output interface to programs
- Schedule processes and threads
- Manage memories
- Manage storage
- Manage networking
- Manage system security

Compiler and Toolchain

- **Compiler** will analyze your source codes and translate them into (optimized) machine codes.
- Linker will include libraries into the program.
- Debugger helps programmer to examine machine and memory states
- Profiler measures the performance of code segments

Components of a Computer

- Same components for all kinds of computer
 - Desktop, server, embedded

Input/output includes

- User-interface devices
 - Display, keyboard, mouse
- Storage devices
 - Hard disk, CD/DVD, flash
- Network adapters
 - For communicating with other computers

iPhone Xs Max Teardown

https://www.techinsights.com/blog/apple-iphone-xs-max-teardown https://www.ifixit.com/Teardown/iPhone+XS+and+XS+Max+Teardown/113021

Apple 338S00456 PMIC

Inside a Computer

Central Processing Unit (CPU)

Control Unit

23

- A finite state machine (FSM)
- Retrieves and decodes program instructions
- Generate signals to coordinate computer operations: load/store registers, perform ALU functions, take branches, etc...
- Arithmetic & Logic Unit (ALU)
 - Performs mathematical operations

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
 - Cache memory
 - Small fast SRAM memory for immediate access to data

Apple A12 Bionic Die Photo

- TSMC 7 nm process
- 6.9 billion transistors
- 2 big Vortex cores at up to 2.4 GHz
- 4 little Tempest highefficiency cores
- 4 core GPU

Data Storage

- Volatile main memory
 - Loses data when power off
 - SRAM
 - DRAM
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory and SSD
 - Optical disk (CDROM, DVD)
 - Tapes

Networking

- Communication, resource sharing, nonlocal access
- Local area network (LAN): Ethernet
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost	
1951	Vacuum tube	1	
1965	Transistor	35	
1975	Integrated circuit (IC)	900	
1995	Very large scale IC (VLSI)	2,400,000	
2013	Ultra large scale IC	250,000,000,000	

Semiconductor Technology

- Use silicon as a base material to create semiconductor properties
 - Controllable conductivity
- Transistors
 - Switch (digital)
 - Amplifier (analog)
- Integrated circuits
 - Use layers of conductors to interconnect transistors

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

300mm wafer, 280 chips, 32nm technology
Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost

Nonlinear relation to area and defect rate

- Wafer cost and area are fixed
- Defect rate determined by manufacturing process
- Die area determined by architecture and circuit design

Transistor Cost

Big Picture

Abstraction Layers	Application
	Algorithm
	Software
	ISA
	Microarchitecture
	Circuit
	Transistor

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 Hide lower-level detail
 - Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface