NATIONAL TSING HUA UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CS 4100: Computer Architecture Fall 2003, Mid-term Examination

1. (20%) Consider a program running on a 1-GHz processor with the following measurements:

Instruction type	Execution cycle	Number of instructions
Integer arithmetic and logic	2	350,000
Floating-point arithmetic	10	50,000
Load/store	5	300,000
Branch/jump	3	200,000
Others	2	100,000

- (a) What is the execution time of the program on the processor?
- (b) What is the maximum speedup if we enhance the performance of the floating-point unit in the processor?
- (c) Explain (b) in terms of the Amdahl's Law. Use the parameters: f as the faction of the program that can be enhanced and s as the ratio of improvement in the floating-point unit.
- 2. (10%) The following table shows the publication record of three universities, A, B, and C.

Iournala	Number of papers published			Ratio relative to C		
Journals	А	В	С	А	В	С
SCI	10	100	200	0.05	0.5	1
EI	1000	100	20	50	5	1

- (a) What is the performance ranking of universities A, B, and C using the arithmetic mean of the ratios relative to C?
- (b) Repeat (a) using the arithmetic mean of the ratios relative to B.
- (c) What kind of mean we should use to get a consistent ranking regardless of the reference?
- 3. (10%) Show the minimal sequence of instructions for the C statement:

x[1] = x[2] + c;

Assume that c corresponds to register t0 and the array x has a base address of 0x200.

4. (10%) The MIPS code segment on the right below implements the first few statements in the C recursive procedure on the left. What the values of A, B, and C?

fact:	sub	\$sp,\$sp,	A
	SW	В	
	SW	С	
	slt	\$t0,\$a0,1	
	beq	\$t0,\$0,L1	
	fact:	fact: sub sw sw slt beq	fact: sub \$sp,\$sp,

5. (10%) Complete the following table for Booth's multiplication of two signed 4-bit numbers: $0010_2 \times 1110_2$.

Iteration	Multiplicand	Product
0	0010	0000 1110 0
1		

- 6. (10%) (a) Write the 32-bit IEEE 754 floating-point number representation of -28.625. (b) Which number represents a larger IEEE 754 floating-point number: 0x738E9BD0 or 0x058AB913?
- 7. (30%) Suppose we want to add the MIPS instruction 1h (load halfword, opcode=0x21) to the single-cycle CPU shown in Figure 1. Assume that the data memory always supplies a word on a read. Therefore, we have to pick the lower two bytes (halfword) from the supplied word.
 - (a) Modify Figure 1 to implement this instruction. Please show the extra control signals.
 - (b) Can we reuse the "sign extend" unit in Figure 1 for (a)? Explain your reasons.
 - (c) Modify the single-cycle controller shown in Figure 2 for (a).

Figure 2