1.

NATIONAL TSING HUA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
CS 4100: Computer Architecture
Spring 2018, Final Examination

(16%) Consider the pipelined design of the MIPS processor and the code segment shown below.
sub $2, $1,$3
1w $4,50($2)
add $4, 56,82
beq $4,%82,-5

sw $4,100($2)
EX.Flush
IF.Flush
ID.Flush
/ Hazard \
unit /l ¥
M
ID/EX u
— X
wB 0= EX/MEM
M — —_—
Control u M I\ull wWB VEMWS
X — Cause X — Li
IFID 0 EX ,—> EPC | 0> M wB—=e
— 1 'L —
Shift M
left 2 M
> * u
> X
Registers
| "
~ ALU [’
80000180 ——t Instruction || u
memory M Data
T — Y memory | J
(o) Y i
T (o)
>~ > u
" U
Forwarding —|
unit

(1) (8%) Suppose at any cycle the register file can perform either read (read from two registers)
or write (write into a register), but not both.

(a) What type of hazards will this design produce? Use the above code segment to explain
when this type of hazards will occur.

(b) To resolve this type of hazards, we let write-to-register take a higher priority than read-
from-register. Explain how you will handle the IF/ID and ID/EX pipeline registers,
respectively, when the hazard occurs, e.g., setting the control signals.

Ans :

a. structure hazard (between “sub” and beq” when “sub” in “WB”)
control hazard (between “beq” and ”sd” when “beq” in “ID”)

b. solution : FWiEEELE IF/ID stalling”
¢4 HazardUsE 5L 55 228 Astall > t15k 2 Kfstage” fEifybuffer;& 22 » Z2 2 ET{Zinst. iy
= ZEbeqHp B > FrLLE EbeqlEN - Z FIHYINSt E#RLLEIE T
= Set IF.Flush =1, let IF/ID flush ; Set ID.Flush =1, let ID/EX flush

)

()

(4)

(5)

(6)

(7)

(5%) For the following questions, assume that the register file can support two reads and one
write at the same cycle. What is the size of the ID/EX pipeline register, excluding the control
signals?

Ans :
PC — 64bits, data(rs1) & data(rs2) — 32bits, imm(after sign-extention) — 64bits,
rsl & rs2 — 5bits, rd — 5bits

(5%) When sub is at the WB stage and add at the EX stage, what are the values of the two
outputs of the “Forwarding unit”? Give your reasons. (Note: the possible values at each of the
two outputs are 0, 1, or 2.)

Ans :
ForwardA(upper) = 01, , ForwardB(lower) = 00,

(11%)

(a) When 1w is at the MEM stage, add at the EX stage, and beq at the ID stage, what is the
output value of “Sign-extend” in hexadecimal?

(b) Explain why the data hazard between 1w and beq or between add and beq CANNOT
be resolved by forwarding?

(c) How can this data hazard be resolved? Explain your answers.

Ans :

a. —5, =1011, - (sign-extend) = 1111 ... 1011 = FFFF FFFF FFFF FFFB,4

b. “ld” ZEEVEdata{E E1EWB » 4154 A stalling I A forwarding beq” IS EAFEX » 28
i “beq” 7EIDHF k7% Z 2 F x4y data > (K] IE H 75 forwarding i A fig 7 72 {[E data
hazard -

c. When “beq” in ID stage, give IF/ID a stalling to solve this problem.

(5%) It is possible to forward the ALU result from the MEM stage to the ID stage, if beq is
at the ID stage and it is data-dependent on the instruction at the MEM stage. Draw a diagram
to show how the outputs of the register file should be modified to take the data forwarded
from the MEM stage. (You need not show the forwarding unit.)

Ans : Draw

(5%) We want to extend the IF stage to include a branch target buffer (BTB) with branch
predictors. Draw a diagram to show how the input to and output from the PC register should
be modified to work with the BTB. Explain how your design work so that the next cycle can
fetch instructions from the predicted path after a beq.

Ans : Draw

(5%) Explain what happen when add causes an overflow exception at the EX stage.

Ans :

i. Save PC of offending instruction (SEPC)
ii. Save indication of the problem (SCAUSE)

2. Suppose we decide to design a two-way set-associative data cache for the above pipeline. The
pipeline uses 32-bit byte addresses and 32-bit words. The data cache consists of 512 sets. Each
cache block contains 2 words.

)

(2)

©)

(5%) What is the total size of the cache in bits, including the valid bits, tag bits, and data bits?

Ans :

index — 9 bits (since 2° = 512), 2 words = 8 bytes = 64 bits - offset — 3 bits,
tag = 32-9-3 = 20 bits, valid — 1 bit, data — 32*2 bits

=> Total bits = (1+20+32*2)*2*512

(6%) Explain how this cache organization exploits spatial locality of reference, and how it
reduces compulsory misses.

Ans :
i. Using it to move blocks consisting of contiguous words to the upper levels.
ii. Using larger block size to reduce compulsory misses.

(8%)

(a) For this cache organization, the time required for a read hit and a write hit are different.
Explain why.

(b) On the other hand, a direct-mapped cache with one work per block has almost the same
read hit and write hit time. Give you explanations. (Hint: Do we need to check the old data in
the cache on a write hit for this cache?)

Ans :
a.

SR ERIE (L5-2 p23) » Tu%tljreadﬁuﬂ
B I 5 {firead dataifricompare tag i (-5 - {1t/

Tag

compare tag{& % Hi¥b{Eblock7 & HEE > Er&jE—JU\%

Index

V Tag Data V Tag Data V Tag Data V Tag Data
A~
F=%l|data

253
254
255

. = read dataf{icompare tag:z- /Ty
1Elwr|teE’T§ » AI|ZEZ Scompare taghgEsT i {Eblock

HiEi% » A A DI Adata

(4)

()

b LLy | L ,
© JJS) dS) ? => write dataf#z{Fcompare tag” &

4-to-1 multiplexor)

b. [Fs e direct-mappedy g {4 > At LLindexfIblock 2 MY B HE —¥f— » TT LIS
compare tagi2 TEABE > 41k read hitfwrite hitgit 57 51 23] T~ read datafiiwrite datafy e
{E => FfEIEAMT

(5%) Ideally, the time to perform a cache access should be affected by that access only and
not by other accesses. Which write policy, write-through or write-back, is close to the ideal?
Give your explanations.

Ans : write-back - [X fywrite-back 2 ZEZiwrite{F cachefydata - “~ F & write-throughiz 25 22
access memoryZ:write/Fmemoryfydata e

(12%) Suppose we want to perform array addition of an array A[2048] (2048 words) with
each of the four arrays: B0[2048], B1[2048], B2[2048], and B3[2048]. Results are

(6)

accumulated in A[2048]. Assume the program does not access other variables, and arrays A,
B0, B1, B2, and B3 are allocated sequentially in the memory by the compiler.

(a) How many misses will occur if we perform A+B0, A+B1, A+B2, and A+B3 in sequence?
(b) Among the misses, how many are conflict or capacity misses?

(c) How will you rewrite the program to eliminate conflict and capacity misses?

Ans :

a. Cachejaif » £ blockE 25— load i3k
=> Fij1024{[Eblock&} 2 compulsory miss => 512 block/&A - 512 blockZB0
=> [LHS > EFTEIA[512%2] + BO[512*2] = A[1024] + BO[1024]

Cachet % HAE LA 1024(Eblock => 7 {&4p3EAK—{lblock » 5t &t —{Eblock
=> A FyEblockfl &2 words » w] AR {fkZarray 220#EH

A+BOZETH 1024 7H

=> (1024 / 2) blocks/per array * 2 array = 1024 misses

A+B1 - A+B2 ~ A+B3%H2048 7 AEH EH

=> (2048/2) blocks/per array * 2 array * 3 = 6144 misses

$£51024 + 1024 + 6144 = 8192 misses
b. Fr7Amisses - compulsory miss = conflict or capacity misses = 8192 - 1024 = 7168
c. SEHBO+B1+B2+B3 > FwriteZl]A o 1t 0] DL fp B ¢E read Afyblock -
(FI{EAEZAE - #FZE Hread A)

(6%) Suppose the 1w instruction in Question 1 produces an address of 0x004B50E2 at the EX
stage. When it enters the MEM stage, the address is used to fetch a word from the memory.
Now, assume that the system runs a virtual memory with a page size of 4096 bytes.

(a) What is the virtual page number of this address?

(b) Explain how the address is translated into the physical address with the help of TLB and
page table.

Ans :

Address — 0000 0000 0100 1011 0101 0000 1110 0010

a. 4096 bytes = 22 bytes - use address[11:0] to be as page offset
-> virtual page number is address[31:12] = 0x004B5

b.
TLB : (in Cache, SRAM)
Y e 1ag LB SIRCE
ol o 1. virtual address B] L #f fk virtual page
1 } 1 L Physical memory
NAK = numberA{Iipage offset
T8t = 4 2. virtual page number& {Ftag » =ik A [E
et page ftagiyentry - 287 > HiF[Page Table
Vil o dk adress, 3. HEIFEMTLB entryf% » B A 155

Disk storage physical page address
— 4 physical page addressf[Ipage offset&ff
| f¥physical address
=V 5. physical addressE[I&]{#physical memory
E-#block
Page Table : (in Physical Memory, DRAM)
1. virtual address =] DLffrfk virtual page number#f{ipage offset

2. virtual page number& {Findex » ®] DLFL HY ¥ fERPage Table Entry(PTE) » 41ILELAE

W\“ AN (RN

1
1
]
1
0
1
1
0
1
1
[
1

15-%Flphysical address -> Z5—Zmemory access
3. fR4Ephysical addressE[Ia]f¢physical memory#5Zijblock -> £ —Ztmemory access

(7) (5%) From Question 2(6) above, will the portion of the address that we use to index a set in
the data cache be changed before and after virtual address translation? Can virtual address
translation in TLB and data access in cache be performed at the same time, instead of
sequentially?

Ans :

the portion of the address before virtual address translation : virtual page number

the portion of the address after virtual address translation : physical page number

3E » virtual memory & K A physical memory > FffLlvirtual page numberfy £ f& & A7
physical page number -

w] DL - HE{f Fvirtual page numberE {ETLBF1CacherTag » 5t 7] LL[EHF #E 1T TLBAI
Cache - (&:1EL5-3 p23fy#itk)

Virtual address
BG4 131211 0 G- 3210
| Virtal g nurmissr | Parg sl |
20 112
ald Dirty Tag Physical paga mambar
TLB @:
TLE hit +f= —
@-.—
@-.—
@;_
120
Phiysical pege number Fage offsst
Physizal address
vl s f by i Block Byte
Physical address fag | Cache inde P pri
.|Ja Js 14 Iz
&
12 Cata
‘-v'a]lq Tag

Cacha

o

Cache hit +—{

Date

