
Program Assignment 4 Cache

Simulation

Dec 18, 2018

By Jing-Jia Liou

Contents

• 1 Problems

o 1.1 Penalty of plagiarism

o 1.2 Part I LRU replacement policy

o 1.3 Part II Cache Optimization

• 2 Submission

o 2.1 Part I

o 2.2 Part II

• 3 Grading

1 Problems

o In this homework, there are two parts. In the first part (70%), we will

implement the LRU policy in a cache simulator. In the second part (30%), we

will design and optimize a cache architecture.

1.1 Penalty of plagiarism

o Each time you submit a plagiarized code, your grade of the homework will be

discounted to 90%. The check is done in batch every hour. The check is based

on code similarity at a 30% threshold (meaning 30% of your code is

structurally identical to other's codes).

o The deduction will be accumulated each time you submit a plagiarized

code. Please do not use trial-and-error approach to adjust your codes.

o If your final version (last submission before due date) is a plagiarized code,

no credit will be given.

o If your simulation reports is not identical to your program output, your

code'll be considered as plagiarism.

1.2 Part I LRU replacement policy

Due: 11:59 am on Jan. 3, 2019

https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html
https://www.ee.nthu.edu.tw/ee345000/author/jing-jia-liou.html
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#problems
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#penalty-of-plagiarism
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#part-i-lru-replacement-policy
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#part-ii-cache-optimization
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#submission
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#part-i
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#part-ii
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#grading
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id1
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id2
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id3

Proportion: 70%

o Please implement a LRU replacement policy in our cache simulator. Please

read our lecture notes about LRU policy. We will check the correctness of

your implementation with following tables.

o We prepared a C++ program template as a starting point. Please

download codes by the following command:

o $ git clone http://gitlab.larc-nthu.net/ee3450_2018/pa4_template.git pa4

o Compiling the simulator

The program directory structure looks like this

pa4/

|── CMakeLists.txt

|── src/

| |── CMakeLists.txt

| |── cache.cpp

| |── cache.hpp

| |── main.cpp

Here we use cmake instead of traditional makefile to build your project,

you can add any C++ source files in srcdirectory and cmake will detect

them automatically.

Use the following commands to build your simulator (Assume you are

already in the project root folder):

$ mkdir build && cd build

$ cmake ..

$ make

Then the binary executable file will be generated and named as cache_sim.

o We also prepared a few trace files under ~ee345000/pa4/trace/ directory.

You can use the following command to copy them into your project

directory.

o $ cp -r ~ee345000/pa4/trace .

Trace files are load/store records dumped from benchmark programs. We

will use trace files to represent program memory accesses. The format of a

trace file is as follows:

l 0x1fffff50

l or s means load or store.

0x1fffff50 is the 32-bit address in hexadecimal, note that the block size

should be at least 4B.

o There are three sample config files under config/ directory. Config file is

used to specify a cache architecture:

o 256 # Cache size: 256KB

o 8 # Cache block size: 8B

o 1 # Associativity: Direct mapped

o 64 # Cache size: 64KB

o 32 # Cache block size: 32B

o 2 # Set associative

o 4 # Number of sets

o 1 # Replacement policy: 1. Random 2. LRU

o 8 # Cache size: 8KB

o 64 # Cache block size: 64B

o 3 # Full associative

o 1 # Replacement policy: 1. Random 2. LRU

o Run simulation and dump your simulation results as a file

Assume you are running with "gcc.trace" and "cache1.cfg". Use the

following command to dump the simulation results into text file.

$./cache_sim ../trace/gcc.trace ../config/cache1.cfg > gcc.txt

o Your simulator output will be as follows:

o Test file: ../trace/gcc.trace

o Cache size: 256KB

o Cache block size: 8B

o Associativity: direct_mapped

o Replacement policy: None

o

o Number of cache access： 515683

o Number of cache load： 318197

o Number of cache store： 197486

o Cache hit rate: 0.958347

o To verify your LRU implementation, please use following tables to check

your outputs. You can also find results in results/ directory.

Test file gcc gzip mcf swim twolf

Total inst. 515683 481044 727230 303193 482824

Load 318197 320441 5972 220668 351403

Store 197486 160603 721258 82525 131421

• 256KB, 8 Bytes/line, direct_mapped, None

Test file gcc gzip mcf swim twolf

Hit Rate 0.958347 0.667072 0.010379 0.934319 0.988443

• 64KB, 32 Bytes/line, 4-way set_associative, LRU

Test file gcc gzip mcf swim twolf

Hit Rate 0.987636 0.668253 0.752378 0.978618 0.996578

• 8KB, 64 Bytes/line, fully_associative, LRU

Test file gcc gzip mcf swim twolf

Hit Rate 0.989703 0.668319 0.876024 0.986652 0.997067

o Note that your simulation results should match above tables or have

better hit rates for the same cache architecture and trace files.

o Please run all 5 different trace files with cache2.cfg and cache3.cfg and

dump the results.

1.3 Part II Cache Optimization

Due: 23:59 on Jan. 6, 2019

Proportion: 30%

https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id4

o In this part, we will design an optimized cache architecture with a cache

size of 64KB. The design parameters are cache block size, number of ways,

and replacement policy. Our objective is to have an average miss rate as

low as possible under the 64KB constraint over several trace files.

o If two cache architecture has similar miss rates (difference < 0.1%), we will

use hardware cost to find the best cache design. The hardware cost is

basically the total memory bits used in the cache. Note that we will actually

use a SRAM simulator (CACTI) to estimate the total memory area (not just

bit numbers).

o Cache designs from all students will be ranked in normal distribution

percentile for grading.

o Note that you may use other replacement policy to reduce miss rates

instead of just LRU or Random.

o To evaluate the hardware cost, we prepare an interactive evaluation tool,

you can use it by the following command.

o $ ~ee345000/pa4/bin/eval

The tool will ask for your cache configuration and generate a hardware

score for your cache design. The terminal output will looks like the

following. In this case, the score of the design is 86.37. Note that the

higher score, your cache needs less hardware (better).

Copy tech_params to local successfully!

Block size(bytes): 4

Associativity(2^n with n >= 0, e.g., 1, 2, 4...): 4

Generated 'cacti.cfg' successfully!

Final score: 86.37

$

Also note that this tool will generate a CACTI configuration file

named cacti.cfg in current folder. You will need to submit this

configuration file, too.

2 Submission

2.1 Part I

o Files to submit

1. Project directory (pa4): Including all C++ source files and CMakeLists.txt,

but DO NOT submit the build directory and trace files.

• The detailed file structure is listed below.

o pa4/

o |── CMakeLists.txt

o |── src/

o | |── CMakeLists.txt

o | |── cache.cpp

o | |── cache.hpp

o | |── main.cpp

o | |── any .cpp files you created

1. Simulation results: Please create a directory named as result and put all

the result files inside. Name your results according to trace and config

files. For example, if you run gcc.trace with cache2.cfg, the result file must

be gcc_cache2.txt.

• The detailed file structure is listed below.

o result/

o |── gcc_cache2.txt

o |── gcc_cache3.txt

o |── gzip_cache2.txt

o |── gzip_cache3.txt

o |── mcf_cache2.txt

o |── mcf_cache3.txt

o |── swim_cache2.txt

o |── swim_cache3.txt

https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id5
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id6

o |── twolf_cache2.txt

o |── twolf_cache3.txt

o If your student ID is 103061232 (as an example),

1. Zip your project directory as hw4_1_103061232.zip.

2. Zip the simulation report directories as hw4_1_103061232_report.zip.

3. Submit them via the link

2.2 Part II

o Files to submit:

1. Project directory (pa4_opt): including all C++ source files, optimized

cache configuration file and CMakeLists.txt. Please DO NOT submit the

build directory and trace files. They are not necessary and too big to

transfer/store at our gitlab site.

• Please name you optimal configuration file as cache_opt.cfg

• The detailed file structure is listed below.

o pa4_opt/

o |── CMakeLists.txt

o |── src/

o | |── CMakeLists.txt

o | |── cache.cpp

o | |── cache.hpp

o | |── main.cpp

o | |── any .cpp files you created

o |── config/

o | |── cache_opt.cfg

1. Simulation results: Please create a directory named as result_opt. Then

put all the five results (use your optimized cache configuration) and

CACTI configuration file (cacti.cfg) in the directory.

• The detailed file structure is listed below.

o result_opt/

o |── gcc.txt

o |── gzip.txt

https://docs.google.com/forms/d/e/1FAIpQLSe_wtQrZxfVahjCcbZ-2OGsqTlpP1JELOcV7mnYYkrlbKj0XQ/viewform?usp=sf_link/
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id7

o |── mcf.txt

o |── swim.txt

o |── twolf.txt

o |── cacti.cfg

1. (Optional) Readme file: If you implement some extra feature in the

simulator, please write a simple readme file in Markdown format.

o If your student ID is 103061232 (as an example),

1. Zip your project directory as hw4_2_103061232.zip.

2. Zip the simulation report directories as hw4_2_103061232_report.zip.

3. Readme file as hw4_2_103061232.md

4. Submit them via the link1

3 Grading

o No credit for dead or crashed codes. (We'll use DEBUG mode specified in

CMakeLists.txt to build your program)

o No credit for codes with wrong output formats.

o Each simulation (open traces) should be finished in 15 seconds. You may use

"time" command in Linux to find out run times.

o Part I

• The hit rate of each simulation should be identical to the tables listed (or

better). If some value mismatches the table, only partial credits will be

given.

o Part II

• We will use miss rate and hardware cost to rank all results in normal

percentile. Students who achieve the lowest miss rate (take average of all

traces) with the lowest cost will get the highest score.

• Note that we will test your cache design with some hidden traces.

• If implement extra features, we'll give you extra credits (even if your

results do not rank high in above evaluation). Please specify clearly in

your README file.

https://docs.google.com/forms/d/e/1FAIpQLSegpnlNou1ygtaCmujjogxBk3ZjRIeSyLqVqjOMB1j_e5wHOw/viewform?usp=sf_link
https://www.ee.nthu.edu.tw/ee345000/program-assignment-4-cache-simulation.html#id8

