
Program Assignment 2

Application of the Heap

Structure

Oct 10, 2018

By Jing-Jia Liou

Contents

• 1 Problems

o 1.1 Penalty of plagiarism

o 1.2 Part I Finding K-th smallest element from an unsorted array

o 1.3 Part II Test Case

o 1.4 Submission

o 1.5 Hints

1 Problems

o There are two parts of this assignment:

1. Reuse your assembly code and write some C code to find the k-th smallest

element from an unsorted array.

2. Prepare an unsorted array with a value K as a test case.

1.1 Penalty of plagiarism

o Each time you submit a plagiarized code, your grade of the homework will be

discounted to 90%. The check is done in batch every hour. The check is based

on code similarity at a 30% threshold (meaning 30% of your code is

structurally identical to other's codes).

o The deduction will be accumulated each time you submit a plagiarized

code. Please do not use trial-and-error approach to adjust your codes.

o If your final version (last submission before due date) is a plagiarized code,

no credit will be given.

https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html
https://www.ee.nthu.edu.tw/ee345000/author/jing-jia-liou.html
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#problems
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#penalty-of-plagiarism
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#part-i-finding-k-th-smallest-element-from-an-unsorted-array
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#part-ii-test-case
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#submission
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#hints
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id1
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id2

1.2 Part I Finding K-th smallest element

from an unsorted array

Due: 11:59 am on Oct. 18, 2018

Proportion: 85%

o For this part, you have to revise your heapify program (which is your

previous assignment) to an assembly function and write a C code to call

the assembly function. Then find the k-th smallest element from an

unsorted array (sorting is not allowed in this assignment).

o For example, give an array [15, 20, 10, 2, 7, 4, 8] and K = 3, your program

should report 7.

o As for exception handling, you don't need to print any error message,

simply use return -1; .

o We already prepared a template for you in the previous assignment, you

can download it by the following command:

o $ git clone http://gitlab.larc-nthu.net/ee3450_2018/pa1.git

o This is the content of our C code template. (pa1/pa1-2-heapify-

function/main.c) Note that this is just a sample, the output is not the final

output of your assignment.

o #include <stdio.h>

o #include <stdint.h>

o #include <stdlib.h>

o

o void heapify_asm(int64_t nums[], int size);

o

o void print_array(int64_t nums[], int len){

o for (int i = 0; i < len; ++i){

o printf("%lld ", nums[i]);

o }

o printf("\n");

https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id3
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id3

o }

o

o int main(){

o

o int size = 0;

o int64_t *list = NULL;

o

o scanf("%d",&size);

o list = (int64_t*) malloc(sizeof(int64_t) * size);

o for(int i = 0; i < size; i++){

o scanf("%lld",&list[i]);

o }

o printf("Before heapify\n");

o print_array(list, size);

o heapify_asm(list, size);

o printf("After heapify\n");

o print_array(list, size);

o

o return 0;

o }

• This sample code only presents how to use stdin and dynamic memory

allocation to load data from a text file, you have to do some modifications

on it.

o Using following commands to compile

o $ cd pa1/pa1-2-heapify-function

o $ make

o After your work, the expected output must looks like this.

o $ make run < data.txt

o 7

o $

o If you don't know how to call an assembly function in C code, please refer

the lab1.

1.3 Part II Test Case

Due: 11:59 am on Oct. 18, 2018

Proportion: 15%

o Your test case should look like this

o 9

o 3

o 8 7 15 4 20 10 22 12 2

o Rule

1. The first line should be the number of integers. The maximum number is

limited by the size of immediate field of RISC-V instructions (2^11-1).

Make sure the number represents a valid complete binary tree.

2. The second line is the K value.

3. The third line includes positive or negative 32-bit integers. The same

integers can appear in the array.

4. The integers in the third line are separated with a space.

5. If you generate your test case file on Windows, please follow the guide to

convert your file to a correct Unix text file.

1.4 Submission

o For example, if your student ID is 103061232,

1. Your part I assembly and C file name will

be hw2_103061232.S and hw2_103061232.c respectively.

2. Your test case file name will be hw2_103061232.txt

3. Submit your home work via the link.

1.5 Hints

o Before writing the assembly code, we highly recommend you to write this

program in high-level language first.

https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id4
https://kb.iu.edu/d/acux
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id5
https://goo.gl/forms/LmMAP5334etoOWr33
https://www.ee.nthu.edu.tw/ee345000/program-assignment-2-application-of-the-heap-structure.html#id6

