
Program Assignment 0

Sep 19, 2018

By Jing-Jia Liou

Program Assignment 0 – Tracing Registers’ Usage

Due: 23:59 Oct. 2, 2018

Introduction

o In this homework, you will write a C/C++ code to analyze register usage of an

assembly code. There are three parts of this assignment: (1) Generate an

assembly code from a provided C/C++ code (2) Write C/C++ code for analysis

(3) Provide an extra test case of assembly code.

Penalty of plagiarism

o Each time you submit a plagiarized code, your grade of the homework will be

discounted to 90%. The check is done in batch every hour. The check is based

on code similarity of 30% threshold (30% of your code is identical

structurally to another code).

o The discount will be accumulated each time you submit a plagiarized code.

Please do not use trial-and-error to adjust your codes.

o If your final version (last submission before due date) is a plagiarized code,

no credit will be given.

Fill Student Contact Form

Please fill this form first.

Part I : Generate assembly code via compiler

We assume you are logged in at a Workstation (EE3450B, EE3450C, EE3450D,

etc.) or use a provided Docker image. (The detailed tutorial to setup an offline

RISC-V testing environment is here.)

1. Please create a directory in your home and cd to the directory (Assume

pa0/).

2. Please download the example code and store it as example.c.

3. Use the following command to generate assembly code from the example

C code. (Note that the output filename will be example.s)

4. $ riscv64-unknown-elf-gcc -S example.c

5. Use vim or any text editor to view the generated assembly code.

Part II : Tracing the usage of registers (80%)

https://www.ee.nthu.edu.tw/ee345000/program-assignment-0.html
https://www.ee.nthu.edu.tw/ee345000/author/jing-jia-liou.html
https://docs.google.com/forms/d/e/1FAIpQLSdWfY-V7ATIoC8helTYrcg-zlB6POA4JjI0_jVbQyUs2FOlSQ/viewform
https://medium.com/@jerry_zj/docker-tutorial-906e4a8cdf34
http://gitlab.larc-nthu.net/snippets/15

o Please count the occurence of 32 RISC-V architecture registers with a

C/C++ code. There is no need to identify read/write operations.

o The names of 32 RISC-V registers are listed in the following table:

Name Description

zero Hard-wired zero

ra Return address

sp Stack pointer

gp Global pointer

tp Thread pointer

t0~2 Temporaries

s0/fp Saved registers/Frame pointer

s1 Saved registers

a0~1 Function arguments/return values

a2~7 Function arguments

s2~11 Saved registers

t3~6 Temporaries

o Assume your code is named as “count.cpp” and you have compiled the

code into an executable with the following command(Note that here we

use clang instead of g++ to show warning message):

o $ clang++ -Wall -o count count.cpp

o The program execution and outputs are shown below. Note that your

output format must be exactly the same as the example shows. Otherwise

your homework will be rejected.

o $./count < example.s

o REG: zero, count= 1

o REG: ra, count= 4

o REG: sp, count= 16

o REG: gp, count= 0

o REG: tp, count= 0

o REG: fp, count= 0

o REG: t0, count= 0

o REG: t1, count= 0

o REG: t2, count= 0

o REG: t3, count= 0

o REG: t4, count= 0

o REG: t5, count= 0

o REG: t6, count= 0

o REG: a0, count= 7

o REG: a1, count= 2

o REG: a2, count= 0

o REG: a3, count= 0

o REG: a4, count= 6

o REG: a5, count= 45

o REG: a6, count= 0

o REG: a7, count= 0

o REG: s0, count= 28

o REG: s1, count= 0

o REG: s2, count= 0

o REG: s3, count= 0

o REG: s4, count= 0

o REG: s5, count= 0

o REG: s6, count= 0

o REG: s7, count= 0

o REG: s8, count= 0

o REG: s9, count= 0

o REG: s10, count= 0

o REG: s11, count= 0

o $

If a register is not used, please still report occurrence to be 0.

This example code shows how to report registers’ usage.

for(auto reg : regs) {

 cout <<"REG : "<< reg.getname() <<" ,count= "<< reg.getcount() << endl;

}

Part III : Create and submit your own test case (20%)

o Please use another C/C++ code to generate another assembly code to use

as a test case. (test.c)

o Your test case must not have any additional arguments or user prompt(s).

o Check if the code is executable. If not, no credit will be given in this part.

(the output is arbitrary in this case as long as the program can be

executed).

o $ riscv64-unknown-elf-gcc -o test test.c

o $ spike pk test

o 13

o $

o Before submission, make sure the total number of register reference

counts are between 200 and 1000 (to limit the analysis time).

Check output format of your analysis code

o Please use the following command to check if your output format is

correct(assume you have logged in ee3450B/C/D):

o $./count < example.s > output.txt

o $ ~ee345000/pa0/bin/check < output.txt

o Your format is correct.

o $

o Access test cases from other students

• Please check the test cases under ~ee345000/pa0/testcase in

workstations (EE3450B, EE3450C, EE3450D, etc.).

Submission

o Please rename your C++ code and testcase as hw0_ID.cpp and hw0_ID.s,

respectively. For example, if student ID is 103061232, the names will

be hw0_103061232.cpp and hw0_103061232.s.

o Submit your homework via the link.

https://goo.gl/forms/PmXdL0VLyyLe99LA2

