EE231002 Introduction to Programming

Lab05. Permutations

Due: Oct. 28, 2015

Given a set of N distinct elements, there are N! possible permutations to arrange these elements. For example, given the set $\{1, 2, 3\}$ they can be arranged in the following 6 permutations:

Your assignment is to write a program to generate all possible permutations given the set of N integers from 1 to N. The output should follow the format below.

Assuming the array A[N] stores a permutation, the following algorithm by 14th century Narayana Pandita of India produces the next lexicographic permutation:

- Find the largest index j such that A[j]<A[j+1].
 If no such index exists, the permutation is the last permutation.
- 2. Find the largest index k such that A[j]<A[k].
- 3. Swap A[j] with A[k].
- 4. Reverse the sequence from A[j+1] up to and including the last element A[N-1].

If the array A is initialized to $\{1, 2, \dots, N\}$, then repeatedly applying Pandita's algorithm it would generate all possible permutations. Please implement Pandita's algorithm such that all possible permutations are generated in the following format: Example output (N=4):

#1:	1	2	3	4
#2:	1	2	4	3
#3:	1	3	2	4
#4:	1	3	4	2
#5:	1	4	2	3
#6:	1	4	3	2
#7:	2	1	3	4
#8:	2	1	4	3
#9:	2	3	1	4
#10:	: 2	2 3	3 4	ł 1
	#2: #3: #4: #5: #6: #7: #8: #9:	<pre>#2: 1 #3: 1 #4: 1 #5: 1 #6: 1 #7: 2 #8: 2 #9: 2</pre>	 #2: 1 2 #3: 1 3 #4: 1 3 #5: 1 4 #6: 1 4 #7: 2 1 #8: 2 1 #9: 2 3 	<pre>#1: 1 2 3 #2: 1 2 4 #3: 1 3 2 #4: 1 3 4 #5: 1 4 2 #6: 1 4 3 #7: 2 1 3 #8: 2 1 4 #9: 2 3 1 #10: 2 3 4</pre>

permutation	#11:	2	4	1	3		
permutation	#12:	2	4	3	1		
permutation	#13:	3	1	2	4		
permutation	#14:	3	1	4	2		
permutation	#15:	3	2	1	4		
permutation	#16:	3	2	4	1		
permutation	#17:	3	4	1	2		
permutation	#18:	3	4	2	1		
permutation	#19:	4	1	2	3		
permutation	#20:	4	1	3	2		
permutation	#21:	4	2	1	3		
permutation	#22:	4	2	3	1		
permutation	#23:	4	3	1	2		
permutation	#24:	4	3	2	1		
Total numb	er of	F	ber	mı	itations	is	24

Notes.

- 1. Create a directory lab05 and use it as the working directory.
- 2. Name your program source file as **lab05.c**.
- 3. The first few lines of your program should be comments as the following.

```
/* EE231002 Lab05. Permutations
    ID, Name
    Date:
*/
```

4. The number of elements, N, should be defined as a macro as following:

#define N 7

5. After finishing editing your source file, you can execute the following command to compile it,

\$ gcc lab05.c

If no compilation errors, the executable file, **a.out**, should be generated, and you can execute it by typing

\$./a.out

6. After you finish verifying your program, you can submit your source code by

```
ee231002/bin/submit lab05 lab05.c
```

If you see a "submitted successfully" message, then you are done. In case you want to check which file and at what time you submitted your labs, you can type in the following command:

```
ee231002/bin/subrec lab05
```

It will show the last few submission records.