
.

......
C++ Exception Handling

Introduction to Programming

1/07/2016

Introduction to Programming C++ Exception Handling 1/07/2016 1 / 11

Error Handling

Traditional error handling
Terminate the program

exit and abort
Return a value representing error

string functions and malloc functions
Return a legal value and leave the program in an illegal state

files
Call function supplied in case of error

Introduction to Programming C++ Exception Handling 1/07/2016 2 / 11

C++ Exception Handling

C++ error handling is intended to support error handling in programs
composed of independently developed components
The author of a library can detect run-time errors but does not know what to
do with them.
The user of a library know how to cope with errors but cannot detect them
The fundamental idea of exception is that a function finds a problem it
cannot handle throws an exception, hoping the caller can handle the problem
A function that wants to handle that kinds of problem can indicate that it is
willing to catch that exception
Exception means some part of the system couldn’t do what it was asked to
do

Introduction to Programming C++ Exception Handling 1/07/2016 3 / 11

Exception Class

An exception is an object of some class representing an exception occurrence.
Code that detects an errors throws an error object.
A piece of code expresses desire to handle an exception by a catch clause
The effect of a throw is to unwind the stack until a suitable catch is found
Often exceptions fall into families
Inheritance can be useful to structure exceptions and exception handling
Example: ext1.cpp

Introduction to Programming C++ Exception Handling 1/07/2016 4 / 11

Grouping of Exceptions
Example

.

......

class Metherr { };
class Overflow: public Matherr { } ;
class Underflow: public Matherr { } ;
class Zerodivide: public Matherr { } ;
function f()
{

try { ...
}
catch (Overflow) {

// handle overflow
}
catch (Matherr) {

// handle Matherr except Overflow
}

}

With this grouping, new exceptions would not necessarily cause program halt

Introduction to Programming C++ Exception Handling 1/07/2016 5 / 11

Composite Exceptions

Exceptions might not always grouped by a tree structure
Example:

.

......

class Nwtfilw_err:
public Network_err, public File_system_err

{
//

};
// ...
try {

// ...
}
catch (Network_err& e) {

// catches network part of errors
}
catch (File_system_err& e) {

// catch file system errors
}

Introduction to Programming C++ Exception Handling 1/07/2016 6 / 11

Catching Exceptions

Example
.

......

void f()
{

try {
throw E();

}
catch (H) {
}

}

The handler is invoked if
H is the same type as E
H is an unambiguous public base of E
H and E are pointer types and the above hold for the types they refer to
H is a reference and the above hold for the type H refers to

const can be added to the type used to catch exception
In principle, an exception is copied when it is thrown

Introduction to Programming C++ Exception Handling 1/07/2016 7 / 11

Re-Throw and Practical Exception Handling

Having caught an exception, it is common for a handler to decide that it
can’t completely handle the error.
The error handler perform what it can and then throws the exception again
A re-throw is indicated by a throw without an operand.
The exception re-thrown is the original exception caught and not just the
part of it.

.

......catch (...) { } // catches every exception

Order of handler is significant
Compiler knows class hierarchy, thus, if a base class is handled first, the its
derived errors, listed later, will never get executed
If an exception is thrown but not caught, the function std::terminate()
will be called

Introduction to Programming C++ Exception Handling 1/07/2016 8 / 11

Exception Specifications

The following function declaration that this function can only throw two
types of faults (or faults derived from these two types)

.

......void f(int a) throw (x2, x3);

All other errors are handled by the function (or exited from the function)
The following declaration can throw any fault

.

......void f(int a) ;

And the following function throws no errors
.
......void f(int a) throw ();

A virtual function may be overridden only by a function that has an
exception-specification as restrictive as its own.

Introduction to Programming C++ Exception Handling 1/07/2016 9 / 11

Synchronous Errors

C++ error handling is designed to handle only synchronous exceptions, such as
array range check and I/O errors
Asynchronous events, such as keyboard interrupts and certain arithmetic
errors are not necessarily exceptional and are not handled directly by this
mechanism.
Standard C++ does not have the notion of a thread or a process, and thus
exceptions relating to concurrency are not discussed.
But error handling can be effective in a concurrent program as long as
programmer or system enforces basic concurrency rules, such as properly
locking a shared data structure when using it.

Introduction to Programming C++ Exception Handling 1/07/2016 10 / 11

Summary

Error handling
C++ exception handling
Exception class
Grouping of exceptions
Catching exceptions
Exception specifications
Synchronous Errors

Introduction to Programming C++ Exception Handling 1/07/2016 11 / 11

