EE231002 Introduction to Programming

Lab06. Permutations

Due: Oct. 29, 2022

Given a set of N distinct elements, there are N! possible permutations to arrange these elements. For example, given the set {A, B, C} they can be arranged in the following 6 permutations:

A	B	C
A	C	B
B	A	C
B	C	A
C	A	B
C	В	A

Your assignment is to write a program to generate all possible permutations given the set of N letters starting from A using Pandita algorithm. The output should follow the format below.

Assuming the array A[N] stores a permutation, the following algorithm by 14th century Narayana Pandita of India produces the next lexicographic permutation:

- If no such index exists, the permutation is the last permutation and the program should terminate.
- 2. Find the largest index k such that A[j] < A[k].
- 3. Swap A[j] with A[k].
- 4. Reverse the sequence from A[j + 1] up to and including the last element A[N 1].

If the array A is initialized to $\{A, B, \dots\}$, then repeatedly applying Pandita's algorithm it would generate all possible permutations. Please implement Pandita's algorithm such that all possible permutations are generated in the following format:

Example output (N=4):

\$ a.out
permutation #1: A B C D
permutation #2: A B D C
permutation #3: A C B D
permutation #4: A C D B
permutation #5: A D B C
permutation #6: A D C B
permutation #7: B A C D
permutation #8: B A D C
permutation #9: B C A D
permutation #10: B C D A
permutation #11: B D A C
permutation #12: B D C A
permutation #13: C A B D
permutation #14: C A D B
permutation #15: C B A D
permutation #16: C B D A
permutation #17: C D A B
permutation #18: C D B A
permutation #19: D A B C
permutation #20: D A C B
permutation #21: D B A C
permutation #22: D B C A
permutation #23: D C A B
permutation #24: D C B A
Total number of permutations is 24

Please note that your loop of finding all permutations should be terminated using the step 1 of the Pandita algorithm.

Notes.

- 1. Create a directory **lab06** and use it as the working directory.
- 2. Name your program source file as lab06.c.
- 3. The first few lines of your program should be comments as the following.

```
// EE231002 Lab06. Permutations
// ID, Name
// Date
```

4. The number of elements, N, should be defined as a macro as following:

#define N 7

5. After finishing editing your source file, you can execute the following command to compile it,

\$ gcc lab06.c

If no compilation errors, the executable file, **a.out**, should be generated, and you can execute it by typing

- \$./a.out
- 6. After you finish verifying your program, you can submit your source code by

\$ ~ee2310/bin/submit lab06 lab06 c

If you see a "submitted" message, then you are done. In case you want to check which file and at what time you submitted your labs, you can type in the following command:

mm

 $\sim ee2310/bin/subrec lab06$

It will show the last few submission records.