
Function and Operator Overloading

Introduction to Programming

12/26/2019

Introduction to Programming Function and Operator Overloading 12/26/2019 1 / 16

Function Overloading

C++ allows functions to have the same names
But the parameters, number or types, need to be different
Function overloading
To have similar functions with different data types
Return type is irrelevant

C++ compiler will use the best matched function
Argument promotion might be performed

Example: exq1.cpp

Introduction to Programming Function and Operator Overloading 12/26/2019 2 / 16



Operator Overloading

Operators: shorthand representations help in technical and nontechnical
communications
C++ provides user-defined types, classes, and most of the operators are not
defined for these classes
Operators for classes are user-defined
For example, + and * are well known for complex numbers
Define these operators can help program development
Many of the most obvious uses of operator overloading are for concrete types.
But the usefulness of user-defined operator is not restricted to concrete types
Example: exq20.h, exq21.cpp, exq2.cpp

Introduction to Programming Function and Operator Overloading 12/26/2019 3 / 16

Operator Functions

Most of the operators can be defined for classes
+ - * / % ̂ & | ∼ ! = < > += -= *= /= %= ̂=
&= |= << >> >>= <<= == != <= >= && || ++ -- ->*
, -> [] () new new[] delete delete[]

The following operators can not be redefined
:: scope resolution
. member selection
.* member selection through pointer to member
? : ternary condition expression
sizeof
typeid

The first 3 operators take a name, rather than value, as the second operand

Introduction to Programming Function and Operator Overloading 12/26/2019 4 / 16



Operator Functions

It is not possible to define new operator token
For example: ** is not defined

The name of an operator function is the keyword operator followed by the
operator itself

For example: operator+

Two ways of using operator function
Shorthand:

a + b

Explicit function call:

a.operator+(b); // a function call

Introduction to Programming Function and Operator Overloading 12/26/2019 5 / 16

Binary Operators

A binary operator can be defined by either a nonstatic member function
taking one argument or a nonmember function taking two arguments.

Example:

class myClass {
myClass operator+(myClass b); // nonstatic function member

};
myClass operator-(myClass a, myClass b) // utility function

Usage:

c = a + b;
c = a.operator+(b);
c = operator-(a, b);

Introduction to Programming Function and Operator Overloading 12/26/2019 6 / 16



Unary Operators

A unary operator, whether prefix or postfix, can be defined by either a
nonstatic member function taking no argument or a nonmember function
taking one argument.
Example:

class myClass {
myClass operator++(); //nonstatic member function

}
myClass operator--(myClass a); // utility function

Usage:

++a;
a.operator++();
operator++(a);

Introduction to Programming Function and Operator Overloading 12/26/2019 7 / 16

Postfix Unary Operator

For any postfix unary operator a++ , it can be interpreted as either
a.operator++(int) or operator++(a,int)

Example:

class myClass {
myClass operator++(int); //nonstatic member function

}
myClass operator--(myClass a, int n); // utility function

Usage:

a++;
a.operator++(1);
operator++(a,1);

Please note the differences in implementation for prefix and postfix unary
operators

Introduction to Programming Function and Operator Overloading 12/26/2019 8 / 16



Binary and Unary Operator Examples

class X {
X* operator&(); // prefix unary operator &
X operator&(X); // binary &
X operator++(int); // postfix increment
X operator&(X,X); // error ternary
X operator/(); // error unary

};

X operator-(X); // prefix unary minus
X operator-(X,X); // binary minus
X operator--(X&,int); // postfix decrement
X operator-(); // error no argument
X operator-(X,X,X); // error, ternary
X operator%(X); // error, unary

Introduction to Programming Function and Operator Overloading 12/26/2019 9 / 16

Operators and User-Defined Types

An operator function must be a member function or takes at least one
user-defined type argument

Thus not changing existing expression (without user-defined objects)
Operator function with a basic type as the first argument cannot be a
member function
= , [] , () , -> must be nonstatic member function so that the first

operand is an lvalue.
Combinations of operators are not assumed

+= is not + and =
++ is not +1 or += 1

= (assignment), & (address of) and , (sequencing) are predefined
but can be made to be private and thus not available to general users

Introduction to Programming Function and Operator Overloading 12/26/2019 10 / 16



Operators in Namespaces

Operator function can be defined in namespaces
Operator function is resolved for X@Y by

If X is a class, look for @ as member function of X or the base of X
Look for declarations of opertor@ in the context surrounding X@Y
If X is defined in namespace N, look for @ in N
If Y is defined in namespace M, look for @ in M

Unary operator is resolved analogously

Introduction to Programming Function and Operator Overloading 12/26/2019 11 / 16

Complex Number Type

Operators can be defined such that most math shorthand symbols can be
applied directly

Need copy assignment, assign with scalar, addition with scalar, adding to
scalar, unary −, multiplication, etc
Minimize the number of functions that directly manipulate the representation
of an object

Keep as member function
Other operators defined as nonmember functions

Example: exq30.h, exq31.cpp, exq3.cpp

Introduction to Programming Function and Operator Overloading 12/26/2019 12 / 16



Friends

Member functions specify 3 things
They can access private data members
Function is in the scope of the class
The function must be invoked through an object of the class

Static member function has only the first two properties
A friend function has only the first property
A friend function can be declared in either private or public part
A member function can be a friend of another class
All the member functions can be Friends of another. Shorthand
representation

class C1 { // all member functions of C2
friend class C2; // are friends of C1

};

Choose between making a class a member (nested class) or nonmember friend

Introduction to Programming Function and Operator Overloading 12/26/2019 13 / 16

Subscripting

The operator[] function can be used to give subscripts a meaning for a
class object.
The second argument, the subscript, may be of any type
It can be used to define vectors, associative arrays, etc
Example: exq4.cpp

i = tw["新竹"];

Introduction to Programming Function and Operator Overloading 12/26/2019 14 / 16



Constructors and Destructors
A constructor is called when an object is created
Three types of constructors exq5.cpp

Constructor without initialization

Complex z1;

Initialization constructor

Complex One(1, 0);

Copy constructor

Complex z2 = One;

In function call, the constructor is called for
Arguments passed by value
And may be for return value

A destructor is called when a variable is no longer needed
A variable is going out of scope

End-of-block for local variables
End-of-function-call for Passing-by-value arguments

Introduction to Programming Function and Operator Overloading 12/26/2019 15 / 16

Summary

Function overloading
Operator overloading
Operator functions

Binary operators
Unary operators
Postfix unary operators
Operator and user-defined types

Complex numbers
Subscripting

Introduction to Programming Function and Operator Overloading 12/26/2019 16 / 16


