
C++ and Object-Oriented Programming

Introduction to Programming

12/19/2019

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 1 / 25

Contents

Structure programming and object oriented programming
C++ features
Classes

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 2 / 25



Computer System Development

Computer hardware is getting very powerful nowadays
Hardware cost has been driven down very significantly
Thanks for Moore’s Law and talented electrical engineers
General purpose processors for most applications

Application software development has seen significant progress as well, but to
a lesser extent

Software cost dominates in many applications
Software plays the role of product differentiation as well
Software programs sustained for a long time
Software maintenance and upgrade are crucial in many applications

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 3 / 25

Software engineering progress

High level languages
Library for reuse
Structured programming

Readability and maintenance
Basic components are functions

To solve a specific problem
C was developed with this intention

Object-Oriented Programming
Basic components are objects that model real world counterparts

Attributes and operations –data and functions
Data hiding and implementation hiding

Users know how to use them but not how were they implemented
Reusability increases so is team work

Interface and implementation
C++ fits to this paradigm

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 4 / 25



Object Oriented Programming

Define object attributes and operations
Data and functions

Objects such defined can be reused in other projects
Detailed data storage or function implementation need not be known to users

Only interface is known
Clear responsibility
Easier debugging
Enable team work

Program still needs algorithmic description and implementation

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 5 / 25

C++ Source File and Compiler

C++ source files have the file extension of .cpp instead of .c
C source files: lab1.c, lab2.c
C++ source files: lab1.cpp, lab2.cpp

Header files have .h file extension
The same as C headers

Compilation of C++ files
g++ lab1.cpp

Produce a.out program
g++ -o lab1 lab1.cpp

Produce lab1 program
g++ -c lab1.c

Produce lab1.o file

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 6 / 25



C++ Input and Output

Standard C printf and scanf functions are still available in C++
Need to #include <cstdio> header

C++ provides additional input and output methods
cin >> identifier

input to an identifier
cout << expression

output to std output
Need to #include <iostream> header
Note cin needs no pointer
<< and >> operators are overloaded

Examples: exp1.cpp

cin >> i >> j;
cout << "Hello!\n" << "i=" << i;

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 7 / 25

Namespaces

Two properties of a variable: storage duration and scope
For large programs, it is not difficult to see that we may need many variables
and functions

Name crashes can happen, especially in a large team
C++ provides a way to manage variable scopes - namespace

variable in a name space can be referenced by :: operator
using preprocessor can simplify accessing to these variables

Examples: exp2.cpp, exp3.cpp

namespace mySpace {
int i, j;
double mysqrt(double);

}

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 8 / 25



Reference Parameters and Variables

In addition to pass-by-value and pass-by-pointer schemes, C++ provides
additional pass-by-reference scheme
reference parameters of a function will not be copied and they occupy the
same memory locations as the referenced variables

Value of the referenced variable can be changed
Function calls are more efficient

reference variable within a function also serves as a alias to the referenced
variable

Same memory location and same value
The value of a reference variable needs no * operator
Examples: exp4.cpp

void func(int i, int &j) ; // j passed by reference
int i, &j = i; // j is an alias to i

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 9 / 25

Functions with Default Parameters

In C++ functions can have default arguments
Default value is declared in function definition
If a parameter is not provided by a function call, then the default value is
taken for the parameter
Only trailing parameters can be default parameters
Example: exp5.cpp

void f(int a = 1, int b = 1, int c = 1) {
// ...

}

// function calls
f(i, j, k);
f(i, j);
f(i);
f();

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 10 / 25



C++ and Classes

The aim of the C++ class concept is to provide the programmer with a tool
for creating new types that can be used as conveniently as the built-in types.
A type is a concrete representation of a concept.

For example, float with its operations +, -, *, etc., provides a concrete
approximation of the mathematical concept of a real number.

A class is a user-defined type.
A program that provides types that closely match the concepts of the
application tends to be easier to understand and easier to modify than a
program that does not.
Example: exp6.cpp

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 11 / 25

C++ and Classes

A well-chosen set of user-defined types makes a program more concise.
It also enables the compiler to detect illegal uses of objects that would
otherwise remain undetected until the program is thoroughly tested.

The fundamental idea in defining a new type is to separate the incidental
details of the implementation from the properties essential to the correct use
of it.
Such a separation is best expressed by channeling all uses of the data
structure and internal housekeeping routines through a specific interface.

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 12 / 25



Classes and Object-Oriented Programming

In C++ classes are the basic components of a program
Data members for attributes
Function members for operations

Example:

class Complex {
public:

Complex(double, double); // constructor
void printComplex(void);
double getReal(void);

private:
double x, y;

}; // need ;

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 13 / 25

Class Definition

Data members
Similar to struct’s definition (struct itself is also a class)
Any type: basic or user-defined, including class

Function members
Function declarations should be included
Function to operate on this class

public members (data or functions) can be accessed by any functions
private members (data or functions) can be accessed by member functions
only

Non-member functions accessing private members is a compilation error
Private functions: utility functions

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 14 / 25



Access Control

Private members can only be accessed by member functions
Public members can be accessed by any functions
A struct is a class with public members only
Benefits of access control:

Easier debugging, localization is done before the program is even run
Change of the class needs to recompile the member functions only
Serve as documentation as well

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 15 / 25

Class Member Function Definitions

Member functions’ definition can be done within class declaration
Function definition can also be done outside of class declaration

Need to prefix with classname and scope resolution operator ::
Member functions are invoked by

object.memberfunction()
objectPtr->memberfunction()

constructor
Same name as class and no return type (or value)

destructor
∼className
Called explicitly or when variables are released
Destructors clean up and release resources
Destructors are called, for example, when automatic variables go out of scope

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 16 / 25



Class and Memory Allocation

class similar to struct take actual memory space to store data
data member

Member functions are not duplicated, only one copy exists
Static data also has one copy only
Similar to struct, class object can be assigned using =

Member-wise copying
Each member is copied from rvalue object to lvalue object

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 17 / 25

Class Header and Implementation Files

Class definition and implementation can all be located in the same file as the
main function
In practice, for each object, a header file .h and an implementation file
.cpp are usually created

Interface .h and implementation .cpp are separated
Class users need to know the interface but not the actual implementation

Implementation source file needs not be provided.
Object file .o is sufficient to create final program
Hiding implementation from users

With the header and object files, the class can be reused by other programs
Limiting data member access to the member functions reduces possibility of
program bugs

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 18 / 25



const Objects and const Member Functions

Some objects are not changing and can be declared so by preceding a const
keyword

Example:

const Complex One(1.0, 0.0);

A member function is not allowed to operate on const object unless it is
declared to be const –not modifying the data members

Example:

double getReal() const;

Compiler check if data members are modified or not
Further reduces possibility of bugs

const data member must be initialized, not assigned, using initializer
Example: exp70.h , exp71.cpp , exp7.cpp

Complex(double r, double i) : x(r), y(i)
{ ... }

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 19 / 25

friend Functions and friend Classes
A friend function is a nonmember function but allowed to access private
data
It needs to be declared in the class preceded with a friend keyword

class Complex {
Complex(double, double); // member function

private:
double x, y;

friend void reset(void); // friend func, not member func
}

If the member functions of a class (class2) are all friends to a class (class1),
then declared class2 as a friend class of class1

friend class class2; // inside of class1 def

Friendship is granted not taken
Friendship is not symmetric
Friendship is not transitive

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 20 / 25



this Pointer and Member Functions

Compiler creates an implicit pointer, this, that points to the object
All data member can be accessed either directly or through this pointer
Sometimes we want to return a reference to the updated object so the
operations can be chained.

class_type & class::func() {
// ...
return *this;

}

*this refers to the object of which the function is invoked.
this is a pointer to the object

For const member function, this is

const X* this

Example: exp80.h, exp81.cpp, exp8.cpp

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 21 / 25

static Members

static member: a variable is part of a class but not part of an object
There is only one copy of static variable, not one for each object
Static member functions access to the members of a class not object
Static members can be accessed using class name as the qualifier
Static data and functions must be defined somewhere (data initialized)

class T {
static int accessCount;
static void incAccessCount(void) { accessCount++ };

}
// ...
int T::accessCount = 0;
T::incAccessCount();

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 22 / 25



Dynamic Memory Allocation using new and delete

C++ dynamic memory allocation is done by using new and new []
Example:

int *a, *bArray;
a = new int;
bArray = new int[10];

Free of allocated memory is done by using delete and delete []
Example: exp9.cpp

delete a;
delete [] bArray;

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 23 / 25

Efficient User-Defined Types

The following set of operations are typical for user-defined type:
A constructor to initialize the object
A set of functions to examine the data
A set of functions to manipulate the data
Copy function
A class for error handling

Constructor and copy function

T a(x); // initialization constructor for class T
T b = a; // copy constructor
T c; // uninitialization constructor
c = a; // copy function

// default to memberwise copying

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 24 / 25



Summary

Software development and OO programming
C++ source files and compilation
C++ input and output
Namespaces
Reference parameters and variables
new and delete
Classes
const object and member functions
friend functions and friend classes
this pointer and member functions
Static members
Class operations

Introduction to Programming C++ and Object-Oriented Programming 12/19/2019 25 / 25


