/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

QI 110060007 ={&%A

Your program reads in two sets of time in hh:mm:ss format, where
hh 1s the hour in 24 hours per day format, 1.e., 00 <= hh <= 23,
mm is the minute of the hour, thus, 00 <= mm <= 59,

ss 1s the second of the minute, and 00 <= ss <= 59,
and prints out the difference, also in hh:mm:ss format.
Example of program execution:
$ ./a.out
Timel: 22:22:22

Time2: 11:11:11
Difference: 11:11:11
$ ./a.out

Timel: 11:11:11
Time2: 22:22:22
Difference: 11:11:11

First example has inputs: 22:22:22 and 11:11:11
And the second example has input: 11:11:11 and 22:22:22

#include <stdio.h>

int main(void)

{

int hhl, mml, ssl;

int hh2, mm2, ss2;

int total secl;

int total sec2;

int diff;

int ans_hh, ans mm, ans_ss;

printf("Timel: ");
scanf("%d:%d:%d", &hhl, &mml, &ssl);
printf("Time2: ");
scanf("%d:%d:%d", &hh2, &mm2, &ss2);

total secl = hhl * 60 » 2 + mml * 60 + ssl;
total sec2 = hh2 * 60 » 2 + mm2 * 60 + ss2;



diff = total secl - total sec2;

if (diff < 0) {
diff = diff * (-1);

}
ans_hh = (int)(diff / 3600);
ans mm = (int)((diff - ans_hh * 3600) / 60);

ans_ss = diff - ans_hh * 3600 - ans mm * 60;

printf("Difference: %d:%d:%d", ans _hh, ans mm, ans Ss);
return 0;

/1 Q2 110060007 =&

/] Given a floating point matrix, A[N][N], please write a program to find
// the sum of all fraction part of each element 1n A.

/1l

/! For example, 1f N = 3 and

/1 A[N][N] = {{1.1, 2.2, 3.3},

/1l {4.4, 5.5, 6.6},

/1l {7.7, 8.8, 9.9}}

/] then your program should execute

/1l

/1'$ ./a.out

// Sum of fraction of each element: 4.5
/1l

// Note that your program should be able to handle different N and A array
// and both N and matrix A are given in the source file (no need to read in).

#include <stdio.h>

#define N 3

double A[N][N] = {{1.1, 2.2, 3.3},
{4.4, 5.5, 6.6},

{7.7, 8.8, 9.9}};

int main(void)



int row;

int column;

double sum = 0;
double fraction num;

/] row variable to do first loop

// column variable to do second loop
// initialize value of sum

/] fraction of each element

/] start find each fraction of element and sum up

for (row = 0; row < N; row++) {

for (column = 0; column < N; column++) {

fraction num = A[row][column] - (int)A[row][column];

sum += fraction num;

}

/] print out the result

printf("Sum of fraction of each element: %lg", sum);

return 0;

/7 Q3 110060007 =={&FH

/] Please write a program to find all solutions for the following

// Diophantine equation with 1 <= a, b, ¢ <= max.

/1l

/1l a+ b3 =2

/1l

/] Example program output:
/1l

/1'$ ./a.out

/1 Sol 1: 1+ 273
/] Sol 2: & + 273
/...

/1 Number of solutions found: xx

372
472

#include <stdio.h>

#define max 100

int main(void)

{



int a, b, c; /] variables of the equation
int b max; /] the upper bound of the variable b
int nas = 0; /] number of solutions found

/] start finding the b's maximum in the equation
for (b=1;b*b*b-max * max - max < 0; b++) {
b max = b; // find the maximum of b value

/] start finding solutions of the equation
for (¢ = 2; ¢ <= max; c++) {
/] ¢ starts from 2 because a + b*3 1s always larger than 1
for (b =1; b <= b max; b++) {
a=c*c-b*b*hb;
1f (a >0 && a <= max) {
/] detect 1f a 1s between the valid range
printf("Sol %d: % + %d*3 = %d"2\n", ++nas, a, b, c);
/] show the results of all valid sets of solution

printf("Number of solutions found: %d\n", nas);
/] show the total number of solutions
return O;



