// EE231002 Lab12. Linked Lists
// 108061112, HKiF
// Date: Dec. 14, 2019

#include <stdio.h>
#include <stdlib.h>

typedef struct factor {
int prime;
int power;
struct factor *next;
} FACTOR;

FACTOR *factorize(int N);

lab12

// Standard input and output library
// Defined malloc(), atoi(), EXIT_FAILURE

// node for a prime factor

//
//
//

prime factor

associated power

pointer for the next prime factor

// Linked list for each prime factor

// This function factorizes the input N into its prime factors and their

// associated powers, and returns a linked list that contains all these

// prime factors.

FACTOR *GCD(FACTOR *A, FACTOR *B);

// This function takes two linked lists of prime factors as input, and finds the

// Greatest Common Divisor of these two inputs. Note that it returns a
// linked list of prime factors.

FACTOR *LCM(FACTOR *A, FACTOR *B);

// This function takes two linked lists of prime factors as input, and finds the

// Least Common Multiple of these two inputs. Note that it also returns a
// linked list of prime factors.

void write(FACTOR *A);

// This function prints out all the prime factors and their associated powers.
// In addition, it recalculates the product of all the factors and prints

// out at the end.

int main(int argc, char *argv[])

{
FACTOR *A;
FACTOR *B;

A

factorize(atoi(argvlargec - 21));

Why argc - 27

w
]

printf ("A =");
write(A);

printf ("B =");
write(B);

printf ("GCD =");
write(GCD(A, B));

factorize(atoi(argvlargc -

11));

//

//
//

//

//

//

//

//

Called at program startup

Point to 1st node of factorized A
Point to 1st node of factorized B

Take two command line arguments

as the inputs to the program

Print factorized A out

Print factorized B out

Print the GCD of A and B out

Memory leak!
printf ("LCM =");
write(LCM(A, B));

// Print the LCM of A and B out

return 0; // Normal program termination
b
// This function factorizes the input N into its prime factors and their
// associated powers, and returns a linked list that contains all these
// prime factors.
FACTOR *factorize(int N)
{

int divisor = 2;
FACTOR *head = NULL;
FACTOR *tail;
FACTOR *new;

while(N > 1) {
while (N > 1) {
if (N % divisor == 0) {

//
//
//
//

//

For testing whether N is divisible
Point to the 1st node of factorized N
Point to the last node of factorized N
Point to the newly created node

Keep trying division until N becomes 1

// Keep trying division until N becomes 1

//

If N is divisible by the divisor

new = (FACTOR *)malloc(sizeof (FACTOR)); // Allocate a block of

if (new == NULL)
exit (EXIT_FAILURE);
new->prime = divisor;

//

// memory and test to see
// if it's a null pointer
Save this factor into newly created node

for (new->power = 0; // Computing the power of this factor
N % divisor == 0; // While N is divisible by this divisor
N /= divisor, // This divisor is one of the factor
new->power++) ; // Update the power of this factor
new->next = NULL; // Mark the end of this linked list
if (head == NULL) // If this new node is the 1st node created
head = new; // Make head point to this new node
else // Otherwise
tail->next = new; // Make tail->next point to new node
tail = new; // Make tail point to the newly created node
}
if (divisor == 2) // If divisor is 2
divisor = 3; // Make it 3
else // Otherwise
divisor += 2; // N must be odd so skip even divisors
}
return head; // Return the 1st node of the factorized N
}
// This function takes two linked lists of prime factors as input, and finds the
// Greatest Common Divisor of these two inputs. Note that it returns a
// linked list of prime factors.

FACTOR *GCD(FACTOR *A, FACTOR *B)

{
FACTOR *head = NULL;

//

Point to the 1st node of factorized N

FACTOR *tail; // Point to the last node of factorized N
FACTOR *new; // Point to the newly created node

while (A != NULL && B != NULL) { // Until one of A and B points to NULL

if (A->prime < B->prime) { // If this factor of A is smaller
A = A->next; // Look for larger factor of A
} else if (A->prime > B->prime) { // If this factor of B is smaller
B = B->next; // Look for larger factor of B
} else { // If these two factors are equal
new = (FACTOR *)malloc(sizeof (FACTOR)); // Allocate a block of
if (new == NULL) // memory and test to see
exit (EXIT_FAILURE); // if it's a null pointer
new->prime = A->prime; // Save this factor into the new node
if (A->power < B->power) // Find the smaller power to save
new->power = A->power; // Power of A is smaller so save it
else
new->power = B->power; // Power of B is smaller so save it
new->next = NULL; // Mark the end of this linked list
if (head == NULL) // If this new node is the 1st node created
head = new; // Make head point to this new node
else // Otherwise
tail->next = new; // Make tail->next point to new node
tail = new; // Make tail point to the newly created node
A = A->next; // Look for larger factor of A
B = B->next; // Look for larger factor of B
}
}
return head; // Return the 1st node of the GCD of A and B

// This function takes two linked lists of prime factors as input, and finds the

//
//

Least Common Multiple of these two inputs. Note that it also returns a
linked list of prime factors.

FACTOR *LCM(FACTOR *A, FACTOR *B)

{

FACTOR #*head = NULL; // Point to the 1st node of factorized N
FACTOR *tail; // Point to the last node of factorized N
FACTOR *new; // Point to the newly created node

while (A != NULL || B != NULL) { // Until A and B both point to NULL
new = (FACTOR *)malloc(sizeof (FACTOR)); // Allocate a block of

if (new == NULL) // memory and test to see
exit (EXIT_FAILURE); // if it's a null pointer

if (B == NULL || // 1f the factor of A is smaller
A '= NULL && A->prime < B->prime) { // than B, save the factor
new->prime = A->prime; // and the power of A into
new->power = A->power; // the new node, and look
A = A->next; // for larger factor of A.

} else if (A == NULL || // 1f the factor of B is smaller

B != NULL && A->prime > B->prime) { //

new->prime = B->prime;
new->power = B->power;
B = B->next;

} else {
new->prime = A->prime;
if (A->power > B->power)

//
//
//

than A, save the factor
and the power of B into
the new node, and look
for larger factor of B.

// If these two factors are equal
// Save this factor into the new node
// Find the larger power to save

new->power = A->power; // Power of A is larger so save it
else
new->power = B->power; // Power of B os larger so save it
A = A->next; // Look for larger factor of A
B = B->next; // Look for larger factor if B
}
new->next = NULL; // Mark the end of this linked list
if (head == NULL) // If this new node is the 1st node created
head = new; // Make head point to this new node
else // Otherwise
tail->next = new; // Make tail->next point to new node
tail = new; // Make tail point to the newly created node
}
return head; // Return the 1st node of the LCM of A and B

// This function prints out all the prime factors and their associated powers.

// In addition, it recalculates the product of all the factors and prints
// out at the end.
void write(FACTOR *A)
{
int i; // The index fpr looping

int product = 1;

if (A == NULL)
printf(" 1");

for (; A '= NULL; A = A->next) {
printf (" %d", A->prime);
if (A->power > 1)
printf ("~%d", A->power);
if (A->next != NULL)
printf (" *");
for (i = 0; i < A->power; i++)
product *= A->prime;

printf (" = %d\n", product);

return;

// The product of A

// Exception handling

// For each nodes

// The base of this term

// The exponent of this term

// Multiplication between two terms
// Computing the exponentiation

// Print the final product of A

// Function termination

[Format] can be improved.
[Coding] lab12.c spelling errors: fpr(1), os(1)
[Efficiency] can be improved.

Score: 95

