/* EE2310 LabO5. Permutations
107061112, FEX
Date: 2018.10.22
107061112, FREX
Date: 2018/10/22 // should be indented.
*/

#include <stdio.h>
#define N 7 // macro N to determine the array

int main(void) {
int i, j, k, m, a[N], temp, stay, counter = 1;
/* i as a counter for a[N] to store numbers, it either
counts up or counts down. j as alj] is the one two
swap with alk], k as al[k], a[N] is the array, temp
to help swap two arrays, stay is to determine when to
jump out a loop, counter counts how many permutations
are there. */
// Comments can be indented one more level for better legibility.
// Can insert a blank line here.

printf ("permutation #)d:", counter); // first line
for (i = 0; i < N; i++) { // find out the first permutaion
permutaion // Spelling
alil = 1 + 1;
printf("%2d", alil); // prints out number from small to big
}
printf("\n");
/* if stay == 3, there are no more al[j] < a[j + 1], then

all the permutations found */
while (stay != 3) {
// Is 'stay' initialized?
for (i =N -2, stay =0, j =-1; i > 0 & stay == 0; i-—-) {
/* let i count from the back and count down. the first
ali] < ali + 1] is the biggest al[j]. Once found, stay ==
will jump out the for loop. we initialize j == -1, since
it is impossible for j == -1, if no j found, the value remains
and it's time to jump out the while loop */
if (ali] < ali + 1) { //alj] < alj + 1]

j=1; // store in j
stay = 1; // jump out the loop
counter++; // one more permutation found
}
}
if (j == -1) // no more alj] < al[j + 1] found



stay = 3; // jump out the while loop
for (k =N - 1; k > 0 & stay == 1; k—-) {
/* count k from the back, the first one to find is the
biggest alk] > aljl, then swap */

if (alk] > aljl) {

temp = alk];
alk]l = aljl;
aljl = temp; // swap arrays
stay = 2; // jump to the next procedure
}
}
if (stay != 3) // if no j found then don't print
printf ("permutation #Jd:", counter);
for (i=j+ 1, m=N-1; i <m && stay == 2; i++, m—) {

/* we want to swap from al[j + 1] to a[N - 1], let the

alj + 1] and a[N - 1] swap first, then al[j + 2] and a[N - 2}
. and so on, until the two arrays are the same

or neighboring */

temp = alil; // swap
ali] = a[m];
alm] = temp;

}
for (i = 0; i < N && stay!= 3; i++) { // print out permutaion

permutaion // Spelling
printf ("%2d", alil);

}

if (stay != 3) { // if no j found don't print
printf("\n");

}

}

// last line

printf (" Total number of permutations is %d\n", counter);
return O;

return O;

// Program can be wrong due to an uninit variable.
// Program logic can be simplified.
Score: 80



