
EE231002 Introduction to Programming
Lab09. Word Processing

Due: Dec. 3, 2016

Word processing has been one of the major applications for computers.
In this assignment you will try to write a program to perform simple word
processing with a fixed character width, such as the workstation terminal
display. Today’s powerful word processors use similar concept but with more
complicated fonts and more flexible font positioning.

Let’s assume the output has N characters per line. Thus, any line which
has more than N characters will take more than one output line. It is very
likely that line-change happens within a word. This would make the output
less legible. Thus, a reasonable word processor would break a line only on
word boundaries. Assuming each paragraph is read in as a single string, the
number of characters of each paragraph can be less than, equal to or larger
than N . Your assignment is to write four functions:

1. int readLine(char para[LSTR]);
This function reads in a paragraph of text input as a single string
and stores it in the para array given by the function argument. The
array size LSTR should be defined as a macro in your program as the
following.
#define LSTR 5000

This function is similar to the read_line function in the text book.
But, the argument is different and also this function will detect the
end of the input file as following. If the string it reads in is equal to
the literal EOF then it returns 1, otherwise it returns 0. Using this
return value properly, your program can handle text files of any size.

2. void leftAlign(char *para);
This function prints out a paragraph with the left edge aligned. As-
suming N = 64, example output of this function is:

"He has been phenomenal," Bryant said. "We have watched some
tape on him. We came up with a strategy that we thought would be
effective, but he was knocking down his jump shot, penetrating
and he got around our guards.

3. void center(char *para);
This function prints out the paragraph with each line centered. As-
suming N = 64, example output of this function is:

1



"He has been phenomenal," Bryant said. "We have watched some
tape on him. We came up with a strategy that we thought would be
effective, but he was knocking down his jump shot, penetrating

and he got around our guards.
Note that blank spaces are added to the beginning and the end of a
line to make the line printed at the center.

4. void bothAlign(char *para);
This function prints out a paragraph with both left edge and right
edge aligned. Assuming N = 64, example output of this function is:

"He has been phenomenal," Bryant said. "We have watched some
tape on him. We came up with a strategy that we thought would be
effective, but he was knocking down his jump shot, penetrating
and he got around our guards.

Note that blank spaces are added evenly in the line such that both
edges of the printed line are aligned. Note also that when the remain-
ing line has less than N characters, the it is printed with left edge
aligned.

With these functions, one can read in a text file and print it out in
different formats. One can print it with very paragraph left-edge aligned,
centered or both-edge aligned. Two files are provided for you to test your
program’s capabilities. They are story1.txt and story2.txt. Both files
are ended with a line EOF .

Your program should accept two command line arguments. The first
argument specifies the line length, N , to be printed. The range of N is:
60 <= N <= 100. The second argument can be ℓ, c, or b. ℓ specifies
left-edge aligned print out, c specifies centered print out, and b specifies
both-edge-aligned print out. Example running the compiled program is as
follows.

$ ./a.out 64 b < story1.txt

where < story1.txt uses the unix input redirection. The content of the
file story1.txt is read in as the standard input, and thus scanf or gets
can be used to read in strings directly from the file.

Notes.

1. Create a directory lab09 and use it as the working directory.

2. Name your program source file as lab09.c.

2



3. The first few lines of your program should be comments as the follow-
ing.

/* EE231002 Lab09. Word Processing
ID, Name
Date:

*/

4. After you finish verifying your program, you can submit your source
code by

$ ∼ee231002/bin/submit lab09 lab09.c

If you see a ”submitted successfully” message, then you are done. In
case you want to check which file and at what time you submitted
your labs, you can type in the following command:

$ ∼ee231002/bin/subrec lab09

It will show youe submission records for lab09.

5. You should try to write the program as efficient as possible. The
format of your program should be compact and easy to understand.
These are part of the grading criteria.

3


