
Lecture 13:
C++ string class
string processing and character processing

1

2

Strings
q There are 2 types of strings in C++:

Ø One inherited from the C language, we call them
cstrings

Ø The other is defined in the ANSI Standard Library
<string>

q Any sequence of characters enclosed with a pair of
" " is a cstring value, e.g.

cout << "Hello world\n";

q A cstring can be stored in an array of characters
q The following array can store a cstring of length at

most 9 (not 10): char s[10];

3

q By the following array declaration and
initialization:

char s[10] = "Hi Mom!";

array s contains:

H i M o m ! \0 \0 \0

0 1 2 3 4 5 6 7 8 9

q The null character '\0' is used to mark the end of
a cstring. ASCII value of '\0' is 0.

4

Initializing a cstring variable
q During declaration:

char my_message[20] = "Here there.";

q The cstring assigned to the variable need not fill
the entire array

q You can omit the size if you initialize:
char short_str[] = "abc";

The system will declare it as an array of 4 chars.
q This is different from :

char short_str[] = {'a', 'b', 'c'};

The system will declare it as an array of 3 chars.

5

Inputting and Outputting a Cstring
void main()
{

char message[20];
cin >> message;
cout << message;

}

q In the statement:
cin >> message;

a null character will be appended at the end of the
input string.

6

Passing a Cstring into a function
int str_length(char s[])
{ int i=0;

while (s[i]!='\0') i++;
return i;

}
void main()
{

char message[20]="Hi Mom!";
cout << str_length(message);
cout << str_length("How are you");

}

q No need to pass the length of a cstring into a
function. The null character can be used to tell the
end of the cstring.

7

C++ standard string class
qDefined in standard library <string>
qProvides a lot more functions than
<cstring> in a much more natural way

qE.g.,
string phrase, word1("hot"), word2("dog");
phrase = word1 + word2;

declares 3 string objects, phrase, word1 and
word2; concatenate word1 with word2; and copy
to phrase

8

String constructors
q Create empty strings:

string str;

q Create string objects from cstrings:
string str("abc");

Internally, str stores the 3 characters 'a', 'b',
'c' and the number 3

q Create string objects from another string:
string str(another_str);

9

Accessing strings
q [] is overloaded so that you can access individual

characters as if using an array. ([] is regarded as
an operator in C++.)

q E.g., for (i=0; i<surname.length(); ++i)
cout << surname[i] << " ";

q The [] operator does not do index range checking

10

q The member function at performs range checking
q E.g. string str("Mary");

cout << str[6]; // no complain
cout << str.at(6); // error

q Write is also possible: str.at(2) = 'X';
q Extract a (read-only) substring:

str.substr(start_pos, length);
q E.g. string str("computer");

cout << str.substr(3,3); // put
str.substr(3,3)="mut"; // error

11

String assignment and modifiers
q Copy one string to another:

str1 = str2;

q Concatenation:
str1 + str2

returns a string with str2 appended to str1
q Test for empty string:

str.empty();

q Insert and remove substrings:
str.insert(start_pos, str2);
str.erase(start_pos, length);

12

String comparison
q Equality and inequality:

str1 == str2
str1 != str2

q Lexicographical comparisons:
str1 < str2

> <= >= are similar
q Finding a subtring:

str.find(str1)

returns index of first occurrence of str1 in str
or string::npos if str1 is not found

13

String expressions
q Automatic type conversion is done by constructor

in the following:
phrase = word1 + " " + word2;

q Note: " " is a cstring, not a string
q Parentheses are not needed, + operators applied

from left to right

14

String input/output
q << and >> are also overloaded for strings; the

operator >> reads a word (of non-whitespace
characters)

q To read an entire line (up to the newline
character), use the getline function which is an
ordinary (non-member) function with 2 or 3
parameters:
Ø 1st parameter: an input stream
Ø 2nd parameter: a string
Ø 3rd parameter: terminating character, default to
'\n'

15

q E.g.
string str1;
getline(cin,str1);

inserts into str1 all that is typed up to '\n'; the
'\n' is removed from cin and discarded

q Note: There is another getline function which is
for cstrings and is a member function of all input
streams. E.g.:

char input[500];
cin.getline(input,500);

It will read at most 500 characters (including
'\0')

16

Ignore member function
q Consider cin >> x; // x is integer

When user types in some characters after a
number, these extra characters will be left in cin
and may corrupt the next extraction

q To skip extra inputs:
cin.ignore(count,delimiter);

Read up to count characters, or until delimiter
is reached, whichever is first, and discard these
characters. If delimiter is found, it is removed
from the input stream

17

Predefined character functions
q Defined in <cctype>
q toupper('a') returns the ascii of 'A'
q tolower('A') returns the ascii of 'a'
q isupper(sym) returns true if sym contains an

upper case letter
q islower(sym) similar
q isspace(sym) returns true if sym contains a

whitespace: blank, tab or newline
q isalpha(sym) returns true if sym contains a letter
q isdigit(sym) returns true if sym contains a digit

18

Lower-case to upper-case conversion
#include <iostream> // for I/O
#include <fstream> // for file I/O
#include <cctype> // for character handling
using namespace std;

void main() {
char ifile[20], ofile[20], c;
cin >> ifile >> ofile;
ifstream ins;
ofstream outs;
ins.open(ifile);
outs.open(ofile);

19

ins.get(c);
while (!ins.eof())
{

if (islower(c))
outs << char(toupper(c));

else
outs << c;

ins.get(c);
}
ins.close();
outs.close();

}

String Iterators
#include <iostream>
#include <string>
using namespace std;
int main () {
string str ("Test string");
for (string::iterator it = str.begin();

it != str.end(); ++it)
cout << *it;
cout << '\n’;
return 0;

}

20

