
Lecture 13: 
C++ string class
string processing and character processing
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Strings
q There are 2 types of strings in C++:

Ø One inherited from the C language, we call them
cstrings

Ø The other is defined in the ANSI Standard Library
<string>

q Any sequence of characters enclosed with a pair of 
" " is a cstring value, e.g. 

cout << "Hello world\n";

q A cstring can be stored in an array of characters
q The following array can store a cstring of length at 

most 9 (not 10): char s[10];
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q By the following array declaration and 
initialization:

char s[10] = "Hi Mom!";

array s contains:

H      i                M      o       m       !      \0       \0      \0

0       1       2       3       4       5       6        7       8       9

q The null character '\0' is used to mark the end of 
a cstring.  ASCII value of '\0' is 0.
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Initializing a cstring variable
q During declaration:

char my_message[20] = "Here there.";

q The cstring assigned to the variable need not fill 
the entire array

q You can omit the size if you initialize:
char short_str[] = "abc";

The system will declare it as an array of 4 chars.
q This is different from :

char short_str[] = {'a', 'b', 'c'};

The system will declare it as an array of 3 chars.
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Inputting and Outputting a Cstring
void main()
{

char message[20];
cin >> message;
cout << message;

}

q In the statement: 
cin >> message;

a null character will be appended at the end of the 
input string.
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Passing a Cstring into a function
int str_length(char s[])
{  int i=0; 

while (s[i]!='\0') i++;
return i;

}
void main()
{

char message[20]="Hi Mom!";
cout << str_length(message);
cout << str_length("How are you");

}

q No need to pass the length of a cstring into a 
function.  The null character can be used to tell the 
end of the cstring.
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C++ standard string class
qDefined in standard library <string>
qProvides a lot more functions than 
<cstring> in a much more natural way

qE.g.,
string phrase, word1("hot"), word2("dog");
phrase = word1 + word2; 

declares 3 string objects, phrase, word1 and 
word2; concatenate word1 with word2; and copy 
to phrase 
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String constructors
q Create empty strings:

string str;

q Create string objects from cstrings:
string str("abc");

Internally, str stores the 3 characters 'a', 'b', 
'c' and the number 3

q Create string objects from another string:
string str(another_str);
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Accessing strings
q [] is overloaded so that you can access individual 

characters as if using an array.  ([] is regarded as 
an operator in C++.)

q E.g., for (i=0; i<surname.length(); ++i)
cout << surname[i] << " ";

q The [] operator does not do index range checking
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q The member function at performs range checking
q E.g. string str("Mary");

cout << str[6];     // no complain
cout << str.at(6); // error

q Write is also possible: str.at(2) = 'X';
q Extract a (read-only) substring:

str.substr(start_pos, length);
q E.g.   string str("computer");

cout << str.substr(3,3);  // put
str.substr(3,3)="mut";  // error
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String assignment and modifiers
q Copy one string to another:

str1 = str2;

q Concatenation:
str1 + str2

returns a string with str2 appended to str1
q Test for empty string:

str.empty();

q Insert and remove substrings:
str.insert(start_pos, str2);
str.erase(start_pos, length);



12

String comparison
q Equality and inequality:

str1 == str2
str1 != str2

q Lexicographical comparisons:
str1 < str2

>   <=  >=  are similar
q Finding a subtring:

str.find(str1)

returns index of first occurrence of str1 in str
or string::npos if str1 is not found
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String expressions
q Automatic type conversion is done by constructor 

in the following:
phrase = word1 + " " + word2;

q Note: " " is a cstring, not a string
q Parentheses are not needed, + operators applied 

from left to right
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String input/output 
q << and >> are also overloaded for strings; the 

operator >> reads a word (of non-whitespace 
characters)

q To read an entire line (up to the newline 
character), use the getline function which is an 
ordinary (non-member) function with 2 or 3 
parameters:
Ø 1st parameter: an input stream
Ø 2nd parameter: a string
Ø 3rd parameter: terminating character, default to  
'\n'
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q E.g.
string str1;
getline(cin,str1);

inserts into str1 all that is typed up to '\n'; the 
'\n' is removed from cin and discarded

q Note: There is another getline function which is 
for cstrings and is a member function of all input 
streams.  E.g.:

char input[500];
cin.getline(input,500);

It will read at most 500 characters (including 
'\0')
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Ignore member function
q Consider   cin >> x;  // x is integer

When user types in some characters after a 
number, these extra characters will be left in cin
and may corrupt the next extraction

q To skip extra inputs:
cin.ignore(count,delimiter);

Read up to count characters, or until delimiter
is reached,  whichever is first, and discard these 
characters. If delimiter is found, it is removed 
from the input stream
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Predefined character functions
q Defined in <cctype>
q toupper('a') returns the ascii of 'A'
q tolower('A') returns the ascii of 'a'
q isupper(sym) returns true if sym contains an 

upper case letter
q islower(sym) similar
q isspace(sym) returns true if sym contains a 

whitespace: blank, tab or newline
q isalpha(sym) returns true if sym contains a letter
q isdigit(sym) returns true if sym contains a digit
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Lower-case to upper-case conversion
#include <iostream>  // for I/O
#include <fstream>   // for file I/O 
#include <cctype>    // for character handling 
using namespace std;

void main() {
char ifile[20], ofile[20], c;
cin >> ifile >> ofile;
ifstream ins;
ofstream outs;
ins.open(ifile); 
outs.open(ofile);
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ins.get(c);
while (!ins.eof())
{

if (islower(c))
outs << char(toupper(c));

else 
outs << c;

ins.get(c);
}
ins.close();
outs.close();

}



String Iterators
#include <iostream> 
#include <string> 
using namespace std;
int main () {
string str ("Test string"); 
for (string::iterator it = str.begin(); 

it != str.end(); ++it) 
cout << *it; 
cout << '\n’; 
return 0; 

}
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